Category Archives: Uncategorized

Polynomial root finding algorithm

http://pastebin.com/kk9fHAaC

Posted in Uncategorized | Leave a comment

Dirichlet series for a symmetric matrix

Let be the Möbius function

Posted in Uncategorized | Leave a comment

Train of thought leading from the zeta function to the Möbius function

(*start Mathematica 8*) (*Start with Riemann zeta:*) Zeta[s] (*Take the logarithm:*) Log[Zeta[s]] (*Take the derivative:*) D[Log[Zeta[s]], s] Clear[s, c] (*Generalize it:*) Limit[Zeta[c] – Zeta[s]*Zeta[c]/Zeta[s + c – 1], c -> 1] (*See that Zeta[s]*Zeta[c]/Zeta[s+c-1] is the Dirichlet generating \ function … Continue reading

Posted in Uncategorized | Leave a comment

The Möbius function times n

1, -2, -3, 0, -5, 6, -7, 0, 0, 10, -11, 0, -13, 14, 15, 0, -17, 0, -19, 0, 21, 22, -23, 0, 0, 26, 0, 0, -29, -30, -31, 0, 33, 34, 35, 0, -37, 38, 39, 0, … Continue reading

Posted in Uncategorized | Comments Off on The Möbius function times n

Arne Bergstroms paper 26 6 2013

Posted in Uncategorized | Comments Off on Arne Bergstroms paper 26 6 2013

Arne Bergstroms paper

Posted in Uncategorized | Comments Off on Arne Bergstroms paper

Magic series and Magic constants

Craig Knecht sent me an email explaining magic series and magic constants. The following program lists magic series that add up to certain constants using the TableForm command in Mathematica: Mathematica 8: (*program for reordering of integer partitions start*) TableForm[ … Continue reading

Posted in Uncategorized | Comments Off on Magic series and Magic constants

Riemann zeta function on the critical line as a Fourier transform of exponential sawtooth function plus minus one

Riemann zeta function on the critical line as a Fourier transform of exponential sawtooth function plus minus one The code does not work when copy pasted in this blogging platform, so here is a link to Pastebin with some working … Continue reading

Posted in Uncategorized | Comments Off on Riemann zeta function on the critical line as a Fourier transform of exponential sawtooth function plus minus one

The summation symbol

Posted in Uncategorized | Comments Off on The summation symbol

A visual interpretation of Riemann zeta zeros via the Fourier transform

Mathematica 8: scale = 1000000; xres = .001; limit = 3000; x = Exp[Range[0, Log[scale], xres]]; a = FourierDCT[(SawtoothWave[x])*x^(-1/2)]; b = -FourierDST[(SawtoothWave[x] – 1)*x^(-1/2)]; (*ListLinePlot[((SawtoothWave[x])*x^(-1/2))[[1;;limit]]]*) gs = ListLinePlot[-((SawtoothWave[x] – 1)*x^(-1/2))[[1 ;; limit]], PlotStyle -> RGBColor[1, 0, 1]]; gsine = ListLinePlot[ … Continue reading

Posted in Uncategorized | Comments Off on A visual interpretation of Riemann zeta zeros via the Fourier transform