Author Archives: Mats Granvik
Dirichlet series for a symmetric matrix
Let be the Möbius function
Train of thought leading from the zeta function to the Möbius function
(*start Mathematica 8*) (*Start with Riemann zeta:*) Zeta[s] (*Take the logarithm:*) Log[Zeta[s]] (*Take the derivative:*) D[Log[Zeta[s]], s] Clear[s, c] (*Generalize it:*) Limit[Zeta[c] – Zeta[s]*Zeta[c]/Zeta[s + c – 1], c -> 1] (*See that Zeta[s]*Zeta[c]/Zeta[s+c-1] is the Dirichlet generating \ function … Continue reading
The Möbius function times n
1, -2, -3, 0, -5, 6, -7, 0, 0, 10, -11, 0, -13, 14, 15, 0, -17, 0, -19, 0, 21, 22, -23, 0, 0, 26, 0, 0, -29, -30, -31, 0, 33, 34, 35, 0, -37, 38, 39, 0, … Continue reading
Arne Bergstroms paper 26 6 2013
Magic series and Magic constants
Craig Knecht sent me an email explaining magic series and magic constants. The following program lists magic series that add up to certain constants using the TableForm command in Mathematica: Mathematica 8: (*program for reordering of integer partitions start*) TableForm[ … Continue reading
Riemann zeta function on the critical line as a Fourier transform of exponential sawtooth function plus minus one
Riemann zeta function on the critical line as a Fourier transform of exponential sawtooth function plus minus one The code does not work when copy pasted in this blogging platform, so here is a link to Pastebin with some working … Continue reading
A visual interpretation of Riemann zeta zeros via the Fourier transform
Mathematica 8: scale = 1000000; xres = .001; limit = 3000; x = Exp[Range[0, Log[scale], xres]]; a = FourierDCT[(SawtoothWave[x])*x^(-1/2)]; b = -FourierDST[(SawtoothWave[x] – 1)*x^(-1/2)]; (*ListLinePlot[((SawtoothWave[x])*x^(-1/2))[[1;;limit]]]*) gs = ListLinePlot[-((SawtoothWave[x] – 1)*x^(-1/2))[[1 ;; limit]], PlotStyle -> RGBColor[1, 0, 1]]; gsine = ListLinePlot[ … Continue reading