-
Notifications
You must be signed in to change notification settings - Fork 24.4k
Make RM_Yield thread-safe #12905
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Make RM_Yield thread-safe #12905
Conversation
oranagra
left a comment
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
thanks.
please extend the top comment with:
- description of the original issue (it's good to have a reference to the previous discussion, but let's have a summary of the issue described here too).
- if we're gonna refer to a previous idea that turned out being wrong, and list why it was wrong, we should also describe that idea. or we can just avoid mentioning it altogether.
- maybe we can list some of the considerations of the comment i added below if / when we agree on the details (mention them in both the code and the top comment)
the reason why moving the events processing into main thread: The main thread has prepared the eventloop's io events and the events number before it enters the acquiring GIL state, and when the module thread enters the event loop, it will rebuild this data and process these events data. Note that at this point the data for the main thread and the module thread may be in two caches, and we don't have a memory barrier to protect them. When the main thread comes back, the events it was processing may have already been processed or invalid.
|
@oranagra I dropped the last solution and used the one you give in #12817 (comment) the reason why moving the events processing into main thread: The main thread has prepared the eventloop's io events and the events number Note that at this point the data for the main thread and the module thread may be in two caches, When the main thread comes back, the events it was processing may have already been processed or invalid. |
|
didn't you have some argument against that approach at some point? or was that argument dismissed once we started skipping RM_Yield until we know the main thread is already blocked on the GIL? |
|
@oranagra Haha, this last solution is actually a combination of the original solution, it avoids idling before the main thread goes in to acquire the gil, and then uses sched_yield instead of usleep to more aggressively yield the cpu slice. |
1 similar comment
|
@oranagra Haha, this last solution is actually a combination of the original solution, it avoids idling before the main thread goes in to acquire the gil, and then uses sched_yield instead of usleep to more aggressively yield the cpu slice. |
|
ok. ready for merge? (top comment at all) |
|
please wait me to check again tomorrow, now AFK. |
src/module.c
Outdated
| if (write(server.module_pipe[1],"A",1) != 1) { | ||
| /* Ignore the error, this is best-effort. */ | ||
| } | ||
| goto end; |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
| goto end; | |
| yield_nesting--; return; |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Agree with you, goto can be abused, but we can't ignore its advantages because of its disadvantages.
- simplifies error handling, easy to jump to error block.
- jumping out of multiple nesting, although we can accomplish the same thing with other ways, but
gotois more simple. - improves readability, and allows you to reuse duplicate code, as in the current example, so that if we need to exit in another place in the future, all we need to do is
goto end.
…in thread isn't in the acquiring state
|
@oranagra I fixed a bug that missing restoring busy_module_yield_reply and busy_module_yield_flags. |
|
@oranagra this PR can be safely merged. |
|
@sundb thanks a lot. |
|
@oranagra sure. |
…12817) Fix #12785 and other race condition issues. See the following isolated comments. The following report was obtained using SANITIZER thread. ```sh make SANITIZER=thread ./runtest-moduleapi --config io-threads 4 --config io-threads-do-reads yes --accurate ``` 1. Fixed thread-safe issue in RM_UnblockClient() Related discussion: #12817 (comment) * When blocking a client in a module using `RM_BlockClientOnKeys()` or `RM_BlockClientOnKeysWithFlags()` with a timeout_callback, calling RM_UnblockClient() in module threads can lead to race conditions in `updateStatsOnUnblock()`. - Introduced: Version: 6.2 PR: #7491 - Touch: `server.stat_numcommands`, `cmd->latency_histogram`, `server.slowlog`, and `server.latency_events` - Harm Level: High Potentially corrupts the memory data of `cmd->latency_histogram`, `server.slowlog`, and `server.latency_events` - Solution: Differentiate whether the call to moduleBlockedClientTimedOut() comes from the module or the main thread. Since we can't know if RM_UnblockClient() comes from module threads, we always assume it does and let `updateStatsOnUnblock()` asynchronously update the unblock status. * When error reply is called in timeout_callback(), ctx is not thread-safe, eventually lead to race conditions in `afterErrorReply`. - Introduced: Version: 6.2 PR: #8217 - Touch `server.stat_total_error_replies`, `server.errors`, - Harm Level: High Potentially corrupts the memory data of `server.errors` - Solution: Make the ctx in `timeout_callback()` with `REDISMODULE_CTX_THREAD_SAFE`, and asynchronously reply errors to the client. 2. Made RM_Reply*() family API thread-safe Related discussion: #12817 (comment) Call chain: `RM_Reply*()` -> `_addReplyToBufferOrList()` -> touch server.current_client - Introduced: Version: 7.2.0 PR: #12326 - Harm Level: None Since the module fake client won't have the `CLIENT_PUSHING` flag, even if we touch server.current_client, we can still exit after `c->flags & CLIENT_PUSHING`. - Solution Checking `c->flags & CLIENT_PUSHING` earlier. 3. Made freeClient() thread-safe Fix #12785 - Introduced: Version: 4.0 Commit: 3fcf959 - Harm Level: Moderate * Trigger assertion It happens when the module thread calls freeClient while the io-thread is in progress, which just triggers an assertion, and doesn't make any race condiaions. * Touch `server.current_client`, `server.stat_clients_type_memory`, and `clientMemUsageBucket->clients`. It happens between the main thread and the module threads, may cause data corruption. 1. Error reset `server.current_client` to NULL, but theoretically this won't happen, because the module has already reset `server.current_client` to old value before entering freeClient. 2. corrupts `clientMemUsageBucket->clients` in updateClientMemUsageAndBucket(). 3. Causes server.stat_clients_type_memory memory statistics to be inaccurate. - Solution: * No longer counts memory usage on fake clients, to avoid updating `server.stat_clients_type_memory` in freeClient. * No longer resetting `server.current_client` in unlinkClient, because the fake client won't be evicted or disconnected in the mid of the process. * Judgment assertion `io_threads_op == IO_THREADS_OP_IDLE` only if c is not a fake client. 4. Fixed free client args without GIL Related discussion: #12817 (comment) When freeing retained strings in the module thread (refcount decr), or using them in some way (refcount incr), we should do so while holding the GIL, otherwise, they might be simultaneously freed while the main thread is processing the unblock client state. - Introduced: Version: 6.2.0 PR: #8141 - Harm Level: Low Trigger assertion or double free or memory leak. - Solution: Documenting that module API users need to ensure any access to these retained strings is done with the GIL locked 5. Fix adding fake client to server.clients_pending_write It will incorrectly log the memory usage for the fake client. Related discussion: #12817 (comment) - Introduced: Version: 4.0 Commit: 9b01b64 - Harm Level: None Only result in NOP - Solution: * Don't add fake client into server.clients_pending_write * Add c->conn assertion for updateClientMemUsageAndBucket() and updateClientMemoryUsage() to avoid same issue in the future. So now it will be the responsibility of the caller of both of them to avoid passing in fake client. 6. Fix calling RM_BlockedClientMeasureTimeStart() and RM_BlockedClientMeasureTimeEnd() without GIL - Introduced: Version: 6.2 PR: #7491 - Harm Level: Low Causes inaccuracies in command latency histogram and slow logs, but does not corrupt memory. - Solution: Module API users, if know that non-thread-safe APIs will be used in multi-threading, need to take responsibility for protecting them with their own locks instead of the GIL, as using the GIL is too expensive. ### Other issue 1. RM_Yield is not thread-safe, fixed via #12905. ### Summarize 1. Fix thread-safe issues for `RM_UnblockClient()`, `freeClient()` and `RM_Yield`, potentially preventing memory corruption, data disorder, or assertion. 2. Updated docs and module test to clarify module API users' responsibility for locking non-thread-safe APIs in multi-threading, such as RM_BlockedClientMeasureTimeStart/End(), RM_FreeString(), RM_RetainString(), and RM_HoldString(). ### About backpot to 7.2 1. The implement of (1) is not too satisfying, would like to get more eyes. 2. (2), (3) can be safely for backport 3. (4), (6) just modifying the module tests and updating the documentation, no need for a backpot. 4. (5) is harmless, no need for a backpot. --------- Co-authored-by: Oran Agra <oran@redislabs.com>
## Issues and solutions from redis#12817 1. Touch ProcessingEventsWhileBlocked and calling moduleCount() without GIL in afterSleep() - Introduced: Version: 7.0.0 PR: redis#9963 - Harm Level: Very High If the module thread calls `RM_Yield()` before the main thread enters afterSleep(), and modifies `ProcessingEventsWhileBlocked`(+1), it will cause the main thread to not wait for GIL, which can lead to all kinds of unforeseen problems, including memory data corruption. - Initial / Abandoned Solution: * Added `__thread` specifier for ProcessingEventsWhileBlocked. `ProcessingEventsWhileBlocked` is used to protect against nested event processing, but event processing in the main thread and module threads should be completely independent and unaffected, so it is safer to use TLS. * Adding a cached module count to keep track of the current number of modules, to avoid having to use `dictSize()`. - Related Warnings: ``` WARNING: ThreadSanitizer: data race (pid=1136) Write of size 4 at 0x0001045990c0 by thread T4 (mutexes: write M0): #0 processEventsWhileBlocked networking.c:4135 (redis-server:arm64+0x10006d124) redis#1 RM_Yield module.c:2410 (redis-server:arm64+0x10018b66c) redis#2 bg_call_worker <null>:83232836 (blockedclient.so:arm64+0x16a8) Previous read of size 4 at 0x0001045990c0 by main thread: #0 afterSleep server.c:1861 (redis-server:arm64+0x100024f98) redis#1 aeProcessEvents ae.c:408 (redis-server:arm64+0x10000fd64) redis#2 aeMain ae.c:496 (redis-server:arm64+0x100010f0c) redis#3 main server.c:7220 (redis-server:arm64+0x10003f38c) ``` 2. aeApiPoll() is not thread-safe When using RM_Yield to handle events in a module thread, if the main thread has not yet entered `afterSleep()`, both the module thread and the main thread may touch `server.el` at the same time. - Introduced: Version: 7.0.0 PR: redis#9963 - Old / Abandoned Solution: Adding a new mutex to protect timing between after beforeSleep() and before afterSleep(). Defect: If the main thread enters the ae loop without any IO events, it will wait until the next timeout or until there is any event again, and the module thread will always hang until the main thread leaves the event loop. - Related Warnings: ``` SUMMARY: ThreadSanitizer: data race ae_kqueue.c:55 in addEventMask ================== ================== WARNING: ThreadSanitizer: data race (pid=14682) Write of size 4 at 0x000100b54000 by thread T9 (mutexes: write M0): #0 aeApiPoll ae_kqueue.c:175 (redis-server:arm64+0x100010588) redis#1 aeProcessEvents ae.c:399 (redis-server:arm64+0x10000fb84) redis#2 processEventsWhileBlocked networking.c:4138 (redis-server:arm64+0x10006d3c4) redis#3 RM_Yield module.c:2410 (redis-server:arm64+0x10018b66c) redis#4 bg_call_worker <null>:16042052 (blockedclient.so:arm64+0x169c) Previous write of size 4 at 0x000100b54000 by main thread: #0 aeApiPoll ae_kqueue.c:175 (redis-server:arm64+0x100010588) redis#1 aeProcessEvents ae.c:399 (redis-server:arm64+0x10000fb84) redis#2 aeMain ae.c:496 (redis-server:arm64+0x100010da8) redis#3 main server.c:7238 (redis-server:arm64+0x10003f51c) ``` ## The final fix as the comments: redis#12817 (comment) Optimized solution based on the above comment: First, we add `module_gil_acquring` to indicate whether the main thread is currently in the acquiring GIL state. When the module thread starts to yield, there are two possibilities(we assume the caller keeps the GIL): 1. The main thread is in the mid of beforeSleep() and afterSleep(), that is, `module_gil_acquring` is not 1 now. At this point, the module thread will wake up the main thread through the pipe and leave the yield, waiting for the next yield when the main thread may already in the acquiring GIL state. 2. The main thread is in the acquiring GIL state. The module thread release the GIL, yielding CPU to give the main thread an opportunity to start event processing, and then acquire the GIL again until the main thread releases it. This is what redis#12817 (comment) mentioned direction. --------- Co-authored-by: Oran Agra <oran@redislabs.com>
…edis#12817) Fix redis#12785 and other race condition issues. See the following isolated comments. The following report was obtained using SANITIZER thread. ```sh make SANITIZER=thread ./runtest-moduleapi --config io-threads 4 --config io-threads-do-reads yes --accurate ``` 1. Fixed thread-safe issue in RM_UnblockClient() Related discussion: redis#12817 (comment) * When blocking a client in a module using `RM_BlockClientOnKeys()` or `RM_BlockClientOnKeysWithFlags()` with a timeout_callback, calling RM_UnblockClient() in module threads can lead to race conditions in `updateStatsOnUnblock()`. - Introduced: Version: 6.2 PR: redis#7491 - Touch: `server.stat_numcommands`, `cmd->latency_histogram`, `server.slowlog`, and `server.latency_events` - Harm Level: High Potentially corrupts the memory data of `cmd->latency_histogram`, `server.slowlog`, and `server.latency_events` - Solution: Differentiate whether the call to moduleBlockedClientTimedOut() comes from the module or the main thread. Since we can't know if RM_UnblockClient() comes from module threads, we always assume it does and let `updateStatsOnUnblock()` asynchronously update the unblock status. * When error reply is called in timeout_callback(), ctx is not thread-safe, eventually lead to race conditions in `afterErrorReply`. - Introduced: Version: 6.2 PR: redis#8217 - Touch `server.stat_total_error_replies`, `server.errors`, - Harm Level: High Potentially corrupts the memory data of `server.errors` - Solution: Make the ctx in `timeout_callback()` with `REDISMODULE_CTX_THREAD_SAFE`, and asynchronously reply errors to the client. 2. Made RM_Reply*() family API thread-safe Related discussion: redis#12817 (comment) Call chain: `RM_Reply*()` -> `_addReplyToBufferOrList()` -> touch server.current_client - Introduced: Version: 7.2.0 PR: redis#12326 - Harm Level: None Since the module fake client won't have the `CLIENT_PUSHING` flag, even if we touch server.current_client, we can still exit after `c->flags & CLIENT_PUSHING`. - Solution Checking `c->flags & CLIENT_PUSHING` earlier. 3. Made freeClient() thread-safe Fix redis#12785 - Introduced: Version: 4.0 Commit: redis@3fcf959 - Harm Level: Moderate * Trigger assertion It happens when the module thread calls freeClient while the io-thread is in progress, which just triggers an assertion, and doesn't make any race condiaions. * Touch `server.current_client`, `server.stat_clients_type_memory`, and `clientMemUsageBucket->clients`. It happens between the main thread and the module threads, may cause data corruption. 1. Error reset `server.current_client` to NULL, but theoretically this won't happen, because the module has already reset `server.current_client` to old value before entering freeClient. 2. corrupts `clientMemUsageBucket->clients` in updateClientMemUsageAndBucket(). 3. Causes server.stat_clients_type_memory memory statistics to be inaccurate. - Solution: * No longer counts memory usage on fake clients, to avoid updating `server.stat_clients_type_memory` in freeClient. * No longer resetting `server.current_client` in unlinkClient, because the fake client won't be evicted or disconnected in the mid of the process. * Judgment assertion `io_threads_op == IO_THREADS_OP_IDLE` only if c is not a fake client. 4. Fixed free client args without GIL Related discussion: redis#12817 (comment) When freeing retained strings in the module thread (refcount decr), or using them in some way (refcount incr), we should do so while holding the GIL, otherwise, they might be simultaneously freed while the main thread is processing the unblock client state. - Introduced: Version: 6.2.0 PR: redis#8141 - Harm Level: Low Trigger assertion or double free or memory leak. - Solution: Documenting that module API users need to ensure any access to these retained strings is done with the GIL locked 5. Fix adding fake client to server.clients_pending_write It will incorrectly log the memory usage for the fake client. Related discussion: redis#12817 (comment) - Introduced: Version: 4.0 Commit: redis@9b01b64 - Harm Level: None Only result in NOP - Solution: * Don't add fake client into server.clients_pending_write * Add c->conn assertion for updateClientMemUsageAndBucket() and updateClientMemoryUsage() to avoid same issue in the future. So now it will be the responsibility of the caller of both of them to avoid passing in fake client. 6. Fix calling RM_BlockedClientMeasureTimeStart() and RM_BlockedClientMeasureTimeEnd() without GIL - Introduced: Version: 6.2 PR: redis#7491 - Harm Level: Low Causes inaccuracies in command latency histogram and slow logs, but does not corrupt memory. - Solution: Module API users, if know that non-thread-safe APIs will be used in multi-threading, need to take responsibility for protecting them with their own locks instead of the GIL, as using the GIL is too expensive. ### Other issue 1. RM_Yield is not thread-safe, fixed via redis#12905. ### Summarize 1. Fix thread-safe issues for `RM_UnblockClient()`, `freeClient()` and `RM_Yield`, potentially preventing memory corruption, data disorder, or assertion. 2. Updated docs and module test to clarify module API users' responsibility for locking non-thread-safe APIs in multi-threading, such as RM_BlockedClientMeasureTimeStart/End(), RM_FreeString(), RM_RetainString(), and RM_HoldString(). ### About backpot to 7.2 1. The implement of (1) is not too satisfying, would like to get more eyes. 2. (2), (3) can be safely for backport 3. (4), (6) just modifying the module tests and updating the documentation, no need for a backpot. 4. (5) is harmless, no need for a backpot. --------- Co-authored-by: Oran Agra <oran@redislabs.com>
…edis#12817) Fix redis#12785 and other race condition issues. See the following isolated comments. The following report was obtained using SANITIZER thread. ```sh make SANITIZER=thread ./runtest-moduleapi --config io-threads 4 --config io-threads-do-reads yes --accurate ``` 1. Fixed thread-safe issue in RM_UnblockClient() Related discussion: redis#12817 (comment) * When blocking a client in a module using `RM_BlockClientOnKeys()` or `RM_BlockClientOnKeysWithFlags()` with a timeout_callback, calling RM_UnblockClient() in module threads can lead to race conditions in `updateStatsOnUnblock()`. - Introduced: Version: 6.2 PR: redis#7491 - Touch: `server.stat_numcommands`, `cmd->latency_histogram`, `server.slowlog`, and `server.latency_events` - Harm Level: High Potentially corrupts the memory data of `cmd->latency_histogram`, `server.slowlog`, and `server.latency_events` - Solution: Differentiate whether the call to moduleBlockedClientTimedOut() comes from the module or the main thread. Since we can't know if RM_UnblockClient() comes from module threads, we always assume it does and let `updateStatsOnUnblock()` asynchronously update the unblock status. * When error reply is called in timeout_callback(), ctx is not thread-safe, eventually lead to race conditions in `afterErrorReply`. - Introduced: Version: 6.2 PR: redis#8217 - Touch `server.stat_total_error_replies`, `server.errors`, - Harm Level: High Potentially corrupts the memory data of `server.errors` - Solution: Make the ctx in `timeout_callback()` with `REDISMODULE_CTX_THREAD_SAFE`, and asynchronously reply errors to the client. 2. Made RM_Reply*() family API thread-safe Related discussion: redis#12817 (comment) Call chain: `RM_Reply*()` -> `_addReplyToBufferOrList()` -> touch server.current_client - Introduced: Version: 7.2.0 PR: redis#12326 - Harm Level: None Since the module fake client won't have the `CLIENT_PUSHING` flag, even if we touch server.current_client, we can still exit after `c->flags & CLIENT_PUSHING`. - Solution Checking `c->flags & CLIENT_PUSHING` earlier. 3. Made freeClient() thread-safe Fix redis#12785 - Introduced: Version: 4.0 Commit: redis@3fcf959 - Harm Level: Moderate * Trigger assertion It happens when the module thread calls freeClient while the io-thread is in progress, which just triggers an assertion, and doesn't make any race condiaions. * Touch `server.current_client`, `server.stat_clients_type_memory`, and `clientMemUsageBucket->clients`. It happens between the main thread and the module threads, may cause data corruption. 1. Error reset `server.current_client` to NULL, but theoretically this won't happen, because the module has already reset `server.current_client` to old value before entering freeClient. 2. corrupts `clientMemUsageBucket->clients` in updateClientMemUsageAndBucket(). 3. Causes server.stat_clients_type_memory memory statistics to be inaccurate. - Solution: * No longer counts memory usage on fake clients, to avoid updating `server.stat_clients_type_memory` in freeClient. * No longer resetting `server.current_client` in unlinkClient, because the fake client won't be evicted or disconnected in the mid of the process. * Judgment assertion `io_threads_op == IO_THREADS_OP_IDLE` only if c is not a fake client. 4. Fixed free client args without GIL Related discussion: redis#12817 (comment) When freeing retained strings in the module thread (refcount decr), or using them in some way (refcount incr), we should do so while holding the GIL, otherwise, they might be simultaneously freed while the main thread is processing the unblock client state. - Introduced: Version: 6.2.0 PR: redis#8141 - Harm Level: Low Trigger assertion or double free or memory leak. - Solution: Documenting that module API users need to ensure any access to these retained strings is done with the GIL locked 5. Fix adding fake client to server.clients_pending_write It will incorrectly log the memory usage for the fake client. Related discussion: redis#12817 (comment) - Introduced: Version: 4.0 Commit: redis@9b01b64 - Harm Level: None Only result in NOP - Solution: * Don't add fake client into server.clients_pending_write * Add c->conn assertion for updateClientMemUsageAndBucket() and updateClientMemoryUsage() to avoid same issue in the future. So now it will be the responsibility of the caller of both of them to avoid passing in fake client. 6. Fix calling RM_BlockedClientMeasureTimeStart() and RM_BlockedClientMeasureTimeEnd() without GIL - Introduced: Version: 6.2 PR: redis#7491 - Harm Level: Low Causes inaccuracies in command latency histogram and slow logs, but does not corrupt memory. - Solution: Module API users, if know that non-thread-safe APIs will be used in multi-threading, need to take responsibility for protecting them with their own locks instead of the GIL, as using the GIL is too expensive. 1. RM_Yield is not thread-safe, fixed via redis#12905. 1. Fix thread-safe issues for `RM_UnblockClient()`, `freeClient()` and `RM_Yield`, potentially preventing memory corruption, data disorder, or assertion. 2. Updated docs and module test to clarify module API users' responsibility for locking non-thread-safe APIs in multi-threading, such as RM_BlockedClientMeasureTimeStart/End(), RM_FreeString(), RM_RetainString(), and RM_HoldString(). 1. The implement of (1) is not too satisfying, would like to get more eyes. 2. (2), (3) can be safely for backport 3. (4), (6) just modifying the module tests and updating the documentation, no need for a backpot. 4. (5) is harmless, no need for a backpot. --------- Co-authored-by: Oran Agra <oran@redislabs.com>
1. Touch ProcessingEventsWhileBlocked and calling moduleCount() without
GIL in afterSleep()
- Introduced:
Version: 7.0.0
PR: redis#9963
- Harm Level: Very High
If the module thread calls `RM_Yield()` before the main thread enters
afterSleep(),
and modifies `ProcessingEventsWhileBlocked`(+1), it will cause the main
thread to not wait for GIL,
which can lead to all kinds of unforeseen problems, including memory
data corruption.
- Initial / Abandoned Solution:
* Added `__thread` specifier for ProcessingEventsWhileBlocked.
`ProcessingEventsWhileBlocked` is used to protect against nested event
processing, but event processing
in the main thread and module threads should be completely independent
and unaffected, so it is safer
to use TLS.
* Adding a cached module count to keep track of the current number of
modules, to avoid having to use `dictSize()`.
- Related Warnings:
```
WARNING: ThreadSanitizer: data race (pid=1136)
Write of size 4 at 0x0001045990c0 by thread T4 (mutexes: write M0):
Previous read of size 4 at 0x0001045990c0 by main thread:
```
2. aeApiPoll() is not thread-safe
When using RM_Yield to handle events in a module thread, if the main
thread has not yet
entered `afterSleep()`, both the module thread and the main thread may
touch `server.el` at the same time.
- Introduced:
Version: 7.0.0
PR: redis#9963
- Old / Abandoned Solution:
Adding a new mutex to protect timing between after beforeSleep() and
before afterSleep().
Defect: If the main thread enters the ae loop without any IO events, it
will wait until
the next timeout or until there is any event again, and the module
thread will
always hang until the main thread leaves the event loop.
- Related Warnings:
```
SUMMARY: ThreadSanitizer: data race ae_kqueue.c:55 in addEventMask
==================
==================
WARNING: ThreadSanitizer: data race (pid=14682)
Write of size 4 at 0x000100b54000 by thread T9 (mutexes: write M0):
Previous write of size 4 at 0x000100b54000 by main thread:
```
redis#12817 (comment)
Optimized solution based on the above comment:
First, we add `module_gil_acquring` to indicate whether the main thread
is currently in the acquiring GIL state.
When the module thread starts to yield, there are two possibilities(we
assume the caller keeps the GIL):
1. The main thread is in the mid of beforeSleep() and afterSleep(), that
is, `module_gil_acquring` is not 1 now.
At this point, the module thread will wake up the main thread through
the pipe and leave the yield,
waiting for the next yield when the main thread may already in the
acquiring GIL state.
2. The main thread is in the acquiring GIL state.
The module thread release the GIL, yielding CPU to give the main thread
an opportunity to start
event processing, and then acquire the GIL again until the main thread
releases it.
This is what
redis#12817 (comment)
mentioned direction.
---------
Co-authored-by: Oran Agra <oran@redislabs.com>
## Issues and solutions from redis#12817 1. Touch ProcessingEventsWhileBlocked and calling moduleCount() without GIL in afterSleep() - Introduced: Version: 7.0.0 PR: redis#9963 - Harm Level: Very High If the module thread calls `RM_Yield()` before the main thread enters afterSleep(), and modifies `ProcessingEventsWhileBlocked`(+1), it will cause the main thread to not wait for GIL, which can lead to all kinds of unforeseen problems, including memory data corruption. - Initial / Abandoned Solution: * Added `__thread` specifier for ProcessingEventsWhileBlocked. `ProcessingEventsWhileBlocked` is used to protect against nested event processing, but event processing in the main thread and module threads should be completely independent and unaffected, so it is safer to use TLS. * Adding a cached module count to keep track of the current number of modules, to avoid having to use `dictSize()`. - Related Warnings: ``` WARNING: ThreadSanitizer: data race (pid=1136) Write of size 4 at 0x0001045990c0 by thread T4 (mutexes: write M0): #0 processEventsWhileBlocked networking.c:4135 (redis-server:arm64+0x10006d124) #1 RM_Yield module.c:2410 (redis-server:arm64+0x10018b66c) #2 bg_call_worker <null>:83232836 (blockedclient.so:arm64+0x16a8) Previous read of size 4 at 0x0001045990c0 by main thread: #0 afterSleep server.c:1861 (redis-server:arm64+0x100024f98) #1 aeProcessEvents ae.c:408 (redis-server:arm64+0x10000fd64) #2 aeMain ae.c:496 (redis-server:arm64+0x100010f0c) #3 main server.c:7220 (redis-server:arm64+0x10003f38c) ``` 2. aeApiPoll() is not thread-safe When using RM_Yield to handle events in a module thread, if the main thread has not yet entered `afterSleep()`, both the module thread and the main thread may touch `server.el` at the same time. - Introduced: Version: 7.0.0 PR: redis#9963 - Old / Abandoned Solution: Adding a new mutex to protect timing between after beforeSleep() and before afterSleep(). Defect: If the main thread enters the ae loop without any IO events, it will wait until the next timeout or until there is any event again, and the module thread will always hang until the main thread leaves the event loop. - Related Warnings: ``` SUMMARY: ThreadSanitizer: data race ae_kqueue.c:55 in addEventMask ================== ================== WARNING: ThreadSanitizer: data race (pid=14682) Write of size 4 at 0x000100b54000 by thread T9 (mutexes: write M0): #0 aeApiPoll ae_kqueue.c:175 (redis-server:arm64+0x100010588) #1 aeProcessEvents ae.c:399 (redis-server:arm64+0x10000fb84) #2 processEventsWhileBlocked networking.c:4138 (redis-server:arm64+0x10006d3c4) #3 RM_Yield module.c:2410 (redis-server:arm64+0x10018b66c) #4 bg_call_worker <null>:16042052 (blockedclient.so:arm64+0x169c) Previous write of size 4 at 0x000100b54000 by main thread: #0 aeApiPoll ae_kqueue.c:175 (redis-server:arm64+0x100010588) #1 aeProcessEvents ae.c:399 (redis-server:arm64+0x10000fb84) #2 aeMain ae.c:496 (redis-server:arm64+0x100010da8) #3 main server.c:7238 (redis-server:arm64+0x10003f51c) ``` ## The final fix as the comments: redis#12817 (comment) Optimized solution based on the above comment: First, we add `module_gil_acquring` to indicate whether the main thread is currently in the acquiring GIL state. When the module thread starts to yield, there are two possibilities(we assume the caller keeps the GIL): 1. The main thread is in the mid of beforeSleep() and afterSleep(), that is, `module_gil_acquring` is not 1 now. At this point, the module thread will wake up the main thread through the pipe and leave the yield, waiting for the next yield when the main thread may already in the acquiring GIL state. 2. The main thread is in the acquiring GIL state. The module thread release the GIL, yielding CPU to give the main thread an opportunity to start event processing, and then acquire the GIL again until the main thread releases it. This is what redis#12817 (comment) mentioned direction. --------- Co-authored-by: Oran Agra <oran@redislabs.com>
…edis#12817) Fix redis#12785 and other race condition issues. See the following isolated comments. The following report was obtained using SANITIZER thread. ```sh make SANITIZER=thread ./runtest-moduleapi --config io-threads 4 --config io-threads-do-reads yes --accurate ``` 1. Fixed thread-safe issue in RM_UnblockClient() Related discussion: redis#12817 (comment) * When blocking a client in a module using `RM_BlockClientOnKeys()` or `RM_BlockClientOnKeysWithFlags()` with a timeout_callback, calling RM_UnblockClient() in module threads can lead to race conditions in `updateStatsOnUnblock()`. - Introduced: Version: 6.2 PR: redis#7491 - Touch: `server.stat_numcommands`, `cmd->latency_histogram`, `server.slowlog`, and `server.latency_events` - Harm Level: High Potentially corrupts the memory data of `cmd->latency_histogram`, `server.slowlog`, and `server.latency_events` - Solution: Differentiate whether the call to moduleBlockedClientTimedOut() comes from the module or the main thread. Since we can't know if RM_UnblockClient() comes from module threads, we always assume it does and let `updateStatsOnUnblock()` asynchronously update the unblock status. * When error reply is called in timeout_callback(), ctx is not thread-safe, eventually lead to race conditions in `afterErrorReply`. - Introduced: Version: 6.2 PR: redis#8217 - Touch `server.stat_total_error_replies`, `server.errors`, - Harm Level: High Potentially corrupts the memory data of `server.errors` - Solution: Make the ctx in `timeout_callback()` with `REDISMODULE_CTX_THREAD_SAFE`, and asynchronously reply errors to the client. 2. Made RM_Reply*() family API thread-safe Related discussion: redis#12817 (comment) Call chain: `RM_Reply*()` -> `_addReplyToBufferOrList()` -> touch server.current_client - Introduced: Version: 7.2.0 PR: redis#12326 - Harm Level: None Since the module fake client won't have the `CLIENT_PUSHING` flag, even if we touch server.current_client, we can still exit after `c->flags & CLIENT_PUSHING`. - Solution Checking `c->flags & CLIENT_PUSHING` earlier. 3. Made freeClient() thread-safe Fix redis#12785 - Introduced: Version: 4.0 Commit: redis@3fcf959 - Harm Level: Moderate * Trigger assertion It happens when the module thread calls freeClient while the io-thread is in progress, which just triggers an assertion, and doesn't make any race condiaions. * Touch `server.current_client`, `server.stat_clients_type_memory`, and `clientMemUsageBucket->clients`. It happens between the main thread and the module threads, may cause data corruption. 1. Error reset `server.current_client` to NULL, but theoretically this won't happen, because the module has already reset `server.current_client` to old value before entering freeClient. 2. corrupts `clientMemUsageBucket->clients` in updateClientMemUsageAndBucket(). 3. Causes server.stat_clients_type_memory memory statistics to be inaccurate. - Solution: * No longer counts memory usage on fake clients, to avoid updating `server.stat_clients_type_memory` in freeClient. * No longer resetting `server.current_client` in unlinkClient, because the fake client won't be evicted or disconnected in the mid of the process. * Judgment assertion `io_threads_op == IO_THREADS_OP_IDLE` only if c is not a fake client. 4. Fixed free client args without GIL Related discussion: redis#12817 (comment) When freeing retained strings in the module thread (refcount decr), or using them in some way (refcount incr), we should do so while holding the GIL, otherwise, they might be simultaneously freed while the main thread is processing the unblock client state. - Introduced: Version: 6.2.0 PR: redis#8141 - Harm Level: Low Trigger assertion or double free or memory leak. - Solution: Documenting that module API users need to ensure any access to these retained strings is done with the GIL locked 5. Fix adding fake client to server.clients_pending_write It will incorrectly log the memory usage for the fake client. Related discussion: redis#12817 (comment) - Introduced: Version: 4.0 Commit: redis@9b01b64 - Harm Level: None Only result in NOP - Solution: * Don't add fake client into server.clients_pending_write * Add c->conn assertion for updateClientMemUsageAndBucket() and updateClientMemoryUsage() to avoid same issue in the future. So now it will be the responsibility of the caller of both of them to avoid passing in fake client. 6. Fix calling RM_BlockedClientMeasureTimeStart() and RM_BlockedClientMeasureTimeEnd() without GIL - Introduced: Version: 6.2 PR: redis#7491 - Harm Level: Low Causes inaccuracies in command latency histogram and slow logs, but does not corrupt memory. - Solution: Module API users, if know that non-thread-safe APIs will be used in multi-threading, need to take responsibility for protecting them with their own locks instead of the GIL, as using the GIL is too expensive. ### Other issue 1. RM_Yield is not thread-safe, fixed via redis#12905. ### Summarize 1. Fix thread-safe issues for `RM_UnblockClient()`, `freeClient()` and `RM_Yield`, potentially preventing memory corruption, data disorder, or assertion. 2. Updated docs and module test to clarify module API users' responsibility for locking non-thread-safe APIs in multi-threading, such as RM_BlockedClientMeasureTimeStart/End(), RM_FreeString(), RM_RetainString(), and RM_HoldString(). ### About backpot to 7.2 1. The implement of (1) is not too satisfying, would like to get more eyes. 2. (2), (3) can be safely for backport 3. (4), (6) just modifying the module tests and updating the documentation, no need for a backpot. 4. (5) is harmless, no need for a backpot. --------- Co-authored-by: Oran Agra <oran@redislabs.com>
## Issues and solutions from redis#12817 1. Touch ProcessingEventsWhileBlocked and calling moduleCount() without GIL in afterSleep() - Introduced: Version: 7.0.0 PR: redis#9963 - Harm Level: Very High If the module thread calls `RM_Yield()` before the main thread enters afterSleep(), and modifies `ProcessingEventsWhileBlocked`(+1), it will cause the main thread to not wait for GIL, which can lead to all kinds of unforeseen problems, including memory data corruption. - Initial / Abandoned Solution: * Added `__thread` specifier for ProcessingEventsWhileBlocked. `ProcessingEventsWhileBlocked` is used to protect against nested event processing, but event processing in the main thread and module threads should be completely independent and unaffected, so it is safer to use TLS. * Adding a cached module count to keep track of the current number of modules, to avoid having to use `dictSize()`. - Related Warnings: ``` WARNING: ThreadSanitizer: data race (pid=1136) Write of size 4 at 0x0001045990c0 by thread T4 (mutexes: write M0): #0 processEventsWhileBlocked networking.c:4135 (redis-server:arm64+0x10006d124) redis#1 RM_Yield module.c:2410 (redis-server:arm64+0x10018b66c) redis#2 bg_call_worker <null>:83232836 (blockedclient.so:arm64+0x16a8) Previous read of size 4 at 0x0001045990c0 by main thread: #0 afterSleep server.c:1861 (redis-server:arm64+0x100024f98) redis#1 aeProcessEvents ae.c:408 (redis-server:arm64+0x10000fd64) redis#2 aeMain ae.c:496 (redis-server:arm64+0x100010f0c) redis#3 main server.c:7220 (redis-server:arm64+0x10003f38c) ``` 2. aeApiPoll() is not thread-safe When using RM_Yield to handle events in a module thread, if the main thread has not yet entered `afterSleep()`, both the module thread and the main thread may touch `server.el` at the same time. - Introduced: Version: 7.0.0 PR: redis#9963 - Old / Abandoned Solution: Adding a new mutex to protect timing between after beforeSleep() and before afterSleep(). Defect: If the main thread enters the ae loop without any IO events, it will wait until the next timeout or until there is any event again, and the module thread will always hang until the main thread leaves the event loop. - Related Warnings: ``` SUMMARY: ThreadSanitizer: data race ae_kqueue.c:55 in addEventMask ================== ================== WARNING: ThreadSanitizer: data race (pid=14682) Write of size 4 at 0x000100b54000 by thread T9 (mutexes: write M0): #0 aeApiPoll ae_kqueue.c:175 (redis-server:arm64+0x100010588) redis#1 aeProcessEvents ae.c:399 (redis-server:arm64+0x10000fb84) redis#2 processEventsWhileBlocked networking.c:4138 (redis-server:arm64+0x10006d3c4) redis#3 RM_Yield module.c:2410 (redis-server:arm64+0x10018b66c) redis#4 bg_call_worker <null>:16042052 (blockedclient.so:arm64+0x169c) Previous write of size 4 at 0x000100b54000 by main thread: #0 aeApiPoll ae_kqueue.c:175 (redis-server:arm64+0x100010588) redis#1 aeProcessEvents ae.c:399 (redis-server:arm64+0x10000fb84) redis#2 aeMain ae.c:496 (redis-server:arm64+0x100010da8) redis#3 main server.c:7238 (redis-server:arm64+0x10003f51c) ``` ## The final fix as the comments: redis#12817 (comment) Optimized solution based on the above comment: First, we add `module_gil_acquring` to indicate whether the main thread is currently in the acquiring GIL state. When the module thread starts to yield, there are two possibilities(we assume the caller keeps the GIL): 1. The main thread is in the mid of beforeSleep() and afterSleep(), that is, `module_gil_acquring` is not 1 now. At this point, the module thread will wake up the main thread through the pipe and leave the yield, waiting for the next yield when the main thread may already in the acquiring GIL state. 2. The main thread is in the acquiring GIL state. The module thread release the GIL, yielding CPU to give the main thread an opportunity to start event processing, and then acquire the GIL again until the main thread releases it. This is what redis#12817 (comment) mentioned direction. --------- Co-authored-by: Oran Agra <oran@redislabs.com>
…edis#12817) Fix redis#12785 and other race condition issues. See the following isolated comments. The following report was obtained using SANITIZER thread. ```sh make SANITIZER=thread ./runtest-moduleapi --config io-threads 4 --config io-threads-do-reads yes --accurate ``` 1. Fixed thread-safe issue in RM_UnblockClient() Related discussion: redis#12817 (comment) * When blocking a client in a module using `RM_BlockClientOnKeys()` or `RM_BlockClientOnKeysWithFlags()` with a timeout_callback, calling RM_UnblockClient() in module threads can lead to race conditions in `updateStatsOnUnblock()`. - Introduced: Version: 6.2 PR: redis#7491 - Touch: `server.stat_numcommands`, `cmd->latency_histogram`, `server.slowlog`, and `server.latency_events` - Harm Level: High Potentially corrupts the memory data of `cmd->latency_histogram`, `server.slowlog`, and `server.latency_events` - Solution: Differentiate whether the call to moduleBlockedClientTimedOut() comes from the module or the main thread. Since we can't know if RM_UnblockClient() comes from module threads, we always assume it does and let `updateStatsOnUnblock()` asynchronously update the unblock status. * When error reply is called in timeout_callback(), ctx is not thread-safe, eventually lead to race conditions in `afterErrorReply`. - Introduced: Version: 6.2 PR: redis#8217 - Touch `server.stat_total_error_replies`, `server.errors`, - Harm Level: High Potentially corrupts the memory data of `server.errors` - Solution: Make the ctx in `timeout_callback()` with `REDISMODULE_CTX_THREAD_SAFE`, and asynchronously reply errors to the client. 2. Made RM_Reply*() family API thread-safe Related discussion: redis#12817 (comment) Call chain: `RM_Reply*()` -> `_addReplyToBufferOrList()` -> touch server.current_client - Introduced: Version: 7.2.0 PR: redis#12326 - Harm Level: None Since the module fake client won't have the `CLIENT_PUSHING` flag, even if we touch server.current_client, we can still exit after `c->flags & CLIENT_PUSHING`. - Solution Checking `c->flags & CLIENT_PUSHING` earlier. 3. Made freeClient() thread-safe Fix redis#12785 - Introduced: Version: 4.0 Commit: redis@fa1b900 - Harm Level: Moderate * Trigger assertion It happens when the module thread calls freeClient while the io-thread is in progress, which just triggers an assertion, and doesn't make any race condiaions. * Touch `server.current_client`, `server.stat_clients_type_memory`, and `clientMemUsageBucket->clients`. It happens between the main thread and the module threads, may cause data corruption. 1. Error reset `server.current_client` to NULL, but theoretically this won't happen, because the module has already reset `server.current_client` to old value before entering freeClient. 2. corrupts `clientMemUsageBucket->clients` in updateClientMemUsageAndBucket(). 3. Causes server.stat_clients_type_memory memory statistics to be inaccurate. - Solution: * No longer counts memory usage on fake clients, to avoid updating `server.stat_clients_type_memory` in freeClient. * No longer resetting `server.current_client` in unlinkClient, because the fake client won't be evicted or disconnected in the mid of the process. * Judgment assertion `io_threads_op == IO_THREADS_OP_IDLE` only if c is not a fake client. 4. Fixed free client args without GIL Related discussion: redis#12817 (comment) When freeing retained strings in the module thread (refcount decr), or using them in some way (refcount incr), we should do so while holding the GIL, otherwise, they might be simultaneously freed while the main thread is processing the unblock client state. - Introduced: Version: 6.2.0 PR: redis#8141 - Harm Level: Low Trigger assertion or double free or memory leak. - Solution: Documenting that module API users need to ensure any access to these retained strings is done with the GIL locked 5. Fix adding fake client to server.clients_pending_write It will incorrectly log the memory usage for the fake client. Related discussion: redis#12817 (comment) - Introduced: Version: 4.0 Commit: redis@e96bac5 - Harm Level: None Only result in NOP - Solution: * Don't add fake client into server.clients_pending_write * Add c->conn assertion for updateClientMemUsageAndBucket() and updateClientMemoryUsage() to avoid same issue in the future. So now it will be the responsibility of the caller of both of them to avoid passing in fake client. 6. Fix calling RM_BlockedClientMeasureTimeStart() and RM_BlockedClientMeasureTimeEnd() without GIL - Introduced: Version: 6.2 PR: redis#7491 - Harm Level: Low Causes inaccuracies in command latency histogram and slow logs, but does not corrupt memory. - Solution: Module API users, if know that non-thread-safe APIs will be used in multi-threading, need to take responsibility for protecting them with their own locks instead of the GIL, as using the GIL is too expensive. ### Other issue 1. RM_Yield is not thread-safe, fixed via redis#12905. ### Summarize 1. Fix thread-safe issues for `RM_UnblockClient()`, `freeClient()` and `RM_Yield`, potentially preventing memory corruption, data disorder, or assertion. 2. Updated docs and module test to clarify module API users' responsibility for locking non-thread-safe APIs in multi-threading, such as RM_BlockedClientMeasureTimeStart/End(), RM_FreeString(), RM_RetainString(), and RM_HoldString(). ### About backpot to 7.2 1. The implement of (1) is not too satisfying, would like to get more eyes. 2. (2), (3) can be safely for backport 3. (4), (6) just modifying the module tests and updating the documentation, no need for a backpot. 4. (5) is harmless, no need for a backpot. --------- Co-authored-by: Oran Agra <oran@redislabs.com>
Issues and solutions from #12817
Introduced:
Version: 7.0.0
PR: Adding module api for processing commands during busy jobs and allow flagging the commands that should be handled at this status #9963
Harm Level: Very High
If the module thread calls
RM_Yield()before the main thread enters afterSleep(),and modifies
ProcessingEventsWhileBlocked(+1), it will cause the main thread to not wait for GIL,which can lead to all kinds of unforeseen problems, including memory data corruption.
Initial / Abandoned Solution:
__threadspecifier for ProcessingEventsWhileBlocked.ProcessingEventsWhileBlockedis used to protect against nested event processing, but event processingin the main thread and module threads should be completely independent and unaffected, so it is safer
to use TLS.
dictSize().Related Warnings:
aeApiPoll() is not thread-safe
When using RM_Yield to handle events in a module thread, if the main thread has not yet
entered
afterSleep(), both the module thread and the main thread may touchserver.elat the same time.Introduced:
Version: 7.0.0
PR: Adding module api for processing commands during busy jobs and allow flagging the commands that should be handled at this status #9963
Old / Abandoned Solution:
Adding a new mutex to protect timing between after beforeSleep() and before afterSleep().
Defect: If the main thread enters the ae loop without any IO events, it will wait until
the next timeout or until there is any event again, and the module thread will
always hang until the main thread leaves the event loop.
Related Warnings:
The final fix as the comments: #12817 (comment)
Optimized solution based on the above comment:
First, we add
module_gil_acquringto indicate whether the main thread is currently in the acquiring GIL state.When the module thread starts to yield, there are two possibilities(we assume the caller keeps the GIL):
The main thread is in the mid of beforeSleep() and afterSleep(), that is,
module_gil_acquringis not 1 now.At this point, the module thread will wake up the main thread through the pipe and leave the yield,
waiting for the next yield when the main thread may already in the acquiring GIL state.
The main thread is in the acquiring GIL state.
The module thread release the GIL, yielding CPU to give the main thread an opportunity to start
event processing, and then acquire the GIL again until the main thread releases it.
This is what Fix race condition issues between the main thread and module threads #12817 (comment) mentioned direction.