Datasets


🌍 Predicting Geoattributes with Street-Level Images

Dataset for predicting geoattributes using Mapillary street-level images.

GitHub


☁️ Cloud Removal in Satellite Imagery

Paired and unpaired cloudy and cloud-free satellite images for training generative models to remove clouds.

GitHub


🚗 Synthetic Aerial Vehicle Classification Dataset

A synthetic dataset for aerial vehicle detection and classification, designed for Wide Area Motion Imagery (WAMI) applications.

Overview

AttributeDetails
Total Samples55,226 images
Resolution64×64 px
ClassesVehicle (27,613) • Background (27,613)
Ground Sampling Distance~0.3m
GeneratorDIRSIG (Rochester Institute of Technology)

Download

📥 DIRSIG Training + WAMI Validation Images

Contents:

  • train_dirsig/ — Synthetic images + labels
  • validation_wami/ — 600 real WAMI images + labels

Sample Images

Dataset Samples Left: DIRSIG synthetic samples | Right: WAMI validation samples

Citation

```bibtex @article{uzkent2017tracking, title={Tracking in Aerial Hyperspectral Videos using Deep Kernelized Correlation Filters}, author={Uzkent, Burak and Rangnekar, Aneesh and Hoffman, Matthew J}, journal={arXiv preprint arXiv:1711.07235}, year={2017} }