Skip to main content

Curve and image plotting tools for Python/Qt applications

Project description

PlotPy: Curve and image plotting tools for Python/Qt applications

pypi version PyPI status PyPI pyversions download count

ℹ️ Created in 2016 by Pierre Raybaut and maintained by the PlotPyStack organization.

ℹ️ PlotPy V2 is the new major release of guiqwt: same team 🏋️, same goal 🎯, same long-term support ⏳.

Overview

plotpy is is a Python library providing efficient 2D data-plotting features for interactive computing and signal/image processing application development. It is part of the PlotPyStack project, aiming at providing a unified framework for creating scientific GUIs with Python and Qt.

plotpy is based on:

See documentation for more details on the library.

Copyrights and licensing:

Features

The plotpy library also provides the following features.

General plotting features:

  • Ready-to-use plot widgets and dialog boxes
  • pyplot: interactive plotting widgets, equivalent to matplotlib.pyplot, at least for the implemented functions
  • Supported plot items: curves, images, contours, histograms, labels, shapes, annotations, ...

Interactive features (i.e. not only programmatic plotting but also with mouse/keyboard):

  • Multiple object selection for moving objects or editing their properties through automatically generated dialog boxes
  • Item list panel: move objects from foreground to background, show/hide objects, remove objects, ...
  • Customizable aspect ratio for images
  • Tons of ready-to-use tools: plot canvas export to image file, image snapshot, interval selection, image rectangular filter, etc.
  • Curve fitting tool with automatic fit, manual fit with sliders, ...
  • Contrast adjustment panel for images: select the LUT by moving a range selection object on the image levels histogram, eliminate outliers, ...
  • X-axis and Y-axis cross-sections: support for multiple images, average cross-section tool on a rectangular area, ...
  • Apply any affine transform to displayed images in real-time (rotation, magnification, translation, horizontal/vertical flip, ...)

Application development helpers:

  • Ready-to-use plot widgets and dialog boxes
  • Load/save graphical objects (curves, images, shapes) into HDF5, JSON or INI files
  • A lot of test scripts which demonstrate plotpy features (see examples)

Dependencies and installation

Supported Qt versions and bindings

The whole PlotPyStack set of libraries relies on the Qt GUI toolkit, thanks to QtPy, an abstraction layer which allows to use the same API to interact with different Python-to-Qt bindings (PyQt5, PyQt6, PySide2, PySide6).

Compatibility table:

PlotPy version PyQt5 PyQt6 PySide2 PySide6
2.0-2.5 ⚠️ ⚠️
Latest

Other dependencies and installation

See Installation section in the documentation for more details.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

plotpy-2.8.3.tar.gz (8.3 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

plotpy-2.8.3-cp313-cp313-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.13Windows x86-64

plotpy-2.8.3-cp313-cp313-win32.whl (1.0 MB view details)

Uploaded CPython 3.13Windows x86

plotpy-2.8.3-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

plotpy-2.8.3-cp313-cp313-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

plotpy-2.8.3-cp312-cp312-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.12Windows x86-64

plotpy-2.8.3-cp312-cp312-win32.whl (1.0 MB view details)

Uploaded CPython 3.12Windows x86

plotpy-2.8.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

plotpy-2.8.3-cp312-cp312-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

plotpy-2.8.3-cp311-cp311-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.11Windows x86-64

plotpy-2.8.3-cp311-cp311-win32.whl (1.0 MB view details)

Uploaded CPython 3.11Windows x86

plotpy-2.8.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

plotpy-2.8.3-cp311-cp311-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

plotpy-2.8.3-cp310-cp310-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.10Windows x86-64

plotpy-2.8.3-cp310-cp310-win32.whl (1.0 MB view details)

Uploaded CPython 3.10Windows x86

plotpy-2.8.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

plotpy-2.8.3-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

plotpy-2.8.3-cp39-cp39-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.9Windows x86-64

plotpy-2.8.3-cp39-cp39-win32.whl (1.0 MB view details)

Uploaded CPython 3.9Windows x86

plotpy-2.8.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

plotpy-2.8.3-cp39-cp39-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

File details

Details for the file plotpy-2.8.3.tar.gz.

File metadata

  • Download URL: plotpy-2.8.3.tar.gz
  • Upload date:
  • Size: 8.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for plotpy-2.8.3.tar.gz
Algorithm Hash digest
SHA256 e3adfec24758cf74515fb4a2302c7288b6551c77bdcac9784311397b2b8f6c7b
MD5 099ee7cd626af3219898a9b112343047
BLAKE2b-256 2e635e916f4d97eac326843f8ae865b5986504a62d2ef26433c41fcd7ca0eddd

See more details on using hashes here.

File details

Details for the file plotpy-2.8.3-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: plotpy-2.8.3-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for plotpy-2.8.3-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 c38be4690df31e0784b49c3438e201ec38954fb09e6509e2e90e27c4f745fc56
MD5 96858d0db47898dbb9a9bce501bfc05f
BLAKE2b-256 499c21d79ac4303104565b6223a2df02ef1dd3ae914a359a5976cd3e2dcc77e4

See more details on using hashes here.

File details

Details for the file plotpy-2.8.3-cp313-cp313-win32.whl.

File metadata

  • Download URL: plotpy-2.8.3-cp313-cp313-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for plotpy-2.8.3-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 9fc7c2e740f80a127c434d6cc9cd0fb654e08f5e68972f1d033216c1f38a08ea
MD5 26e5120a8e711eae275b2cf92c83153b
BLAKE2b-256 983729e6c2e4867da5c04ab40ae56c618c78c8b98cba7e3f4777fae79b2102f6

See more details on using hashes here.

File details

Details for the file plotpy-2.8.3-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for plotpy-2.8.3-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 97bef52a16e84d465b3eb9973a3d9050761b514b14619ab07740a8d8747a0f52
MD5 ca3eb937d0c8d6e6b62fe6f96c8eda51
BLAKE2b-256 749bd4d772806d59e9f19481c796c43230555187b0592ac71f5296c8776d7a10

See more details on using hashes here.

File details

Details for the file plotpy-2.8.3-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for plotpy-2.8.3-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 49c9f1f79f88898d9d48d891a99d664dadc05f7911254492b1b64a4f198a5770
MD5 df5bfc0470056d220874f1d7aeeba7e6
BLAKE2b-256 0372172f6608a6630cf4011d8e7a5e875d9d86271aab2c6d1020124e7f9d4763

See more details on using hashes here.

File details

Details for the file plotpy-2.8.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: plotpy-2.8.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for plotpy-2.8.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 1ac07840d46c94bc2d776fe2e6c54546bda4ff736db929a8d8915f610a5195c9
MD5 98c095f5851269a2103067b2bfdbd343
BLAKE2b-256 18ec77adf20316001d4cc2d7f339d11284ab2f56055ee44ba17b7f34c4f2d393

See more details on using hashes here.

File details

Details for the file plotpy-2.8.3-cp312-cp312-win32.whl.

File metadata

  • Download URL: plotpy-2.8.3-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for plotpy-2.8.3-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 b49689d09030902f4becc6a520cb6608da67ef37241e93f81366353e90cd0666
MD5 44f06c4d2b13d058434d62dd8649e0a1
BLAKE2b-256 a1a509aae5b0c234f07d74a8c80611ae1d0e99af3f4ac602606c92cfe9287775

See more details on using hashes here.

File details

Details for the file plotpy-2.8.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for plotpy-2.8.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 65194b580c95d638764ee300847692abe7ab1e9f1cf26c7d35c39cab2995e835
MD5 cd93593015ee2122f5c0eba503767c03
BLAKE2b-256 f230790a0fee512e2ffd57621fddccef752549ed33511e2b1f1a1e4c231f2774

See more details on using hashes here.

File details

Details for the file plotpy-2.8.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for plotpy-2.8.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e34e28037486292d39037a2aa4d8abec4abe13dc34928714cc4ad45f589bf05a
MD5 c64e09fcc0b0d52d3f161159538a5c92
BLAKE2b-256 2debaf20e05f7ca79af0e33bfefbf294b61e6df15238a745ba5dab02b2c26198

See more details on using hashes here.

File details

Details for the file plotpy-2.8.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: plotpy-2.8.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for plotpy-2.8.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a0a1cff06b84c357ae1b93180e387eda1f305775c8c452be0a32d3401bd4180c
MD5 2c29212c4e0bbe1023ea11e932628171
BLAKE2b-256 9f7b8f22691279fe0becee00d9b4055d20ab101c866dce80dc98eff194ddc9db

See more details on using hashes here.

File details

Details for the file plotpy-2.8.3-cp311-cp311-win32.whl.

File metadata

  • Download URL: plotpy-2.8.3-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for plotpy-2.8.3-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 35e6241436e40689a6f0c0a5f5431b68ea1d8d0856861db977c66c94803aa1fb
MD5 f44b11028dc063c5eb5fed4567c06f79
BLAKE2b-256 71d09d1e277cf7312f4cd0ac90535f889f1534c78a8528105bb3bd0fb94aff25

See more details on using hashes here.

File details

Details for the file plotpy-2.8.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for plotpy-2.8.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c37a017248e1a3209f5a9bb76f1a52fe7947ac33948197d3ad2f2103eef550c2
MD5 844735950e2ef1aca392bdfa3edda8ee
BLAKE2b-256 479d93abc365cd89695a07791028f7563d4e93b35498e1f85e1ea6051a7c892b

See more details on using hashes here.

File details

Details for the file plotpy-2.8.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for plotpy-2.8.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 844a1dfd23b7a8c6554b9f872375bfabae9b174f9b46ac9194c12a93808953c1
MD5 af55ff233a04fb1e090f7e1129354abf
BLAKE2b-256 9418228b4c50057b4b442ec6e4f23bd72b1e0d183100d581a861b164471f5c71

See more details on using hashes here.

File details

Details for the file plotpy-2.8.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: plotpy-2.8.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for plotpy-2.8.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ca5e8a436655a7863f6c00d52b33154c5bcddb198161ce24a66b4f9b64bbef97
MD5 2526216ab8fa7a04225eccd684b22cba
BLAKE2b-256 6ad6328d186719b31c93a87d568e63ee2f11356cc1ae21f17c9c3b64c4e50f4e

See more details on using hashes here.

File details

Details for the file plotpy-2.8.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: plotpy-2.8.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for plotpy-2.8.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 94611c42a16734384c939fc92d6dd325270247497f981d059dc40f5ace39cabe
MD5 3a36e8dbd2f884b440944742054ac3fc
BLAKE2b-256 5ca7b0e43953f21e4f9a5bdb5bc3a243b26ae7e1fe85f138641881265e4ba9ef

See more details on using hashes here.

File details

Details for the file plotpy-2.8.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for plotpy-2.8.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f23913c37d731adbc64fda2da605e37e1a0aabf2ef7c7f926c86abfe0f5303af
MD5 bf938a381c9ebcd145f8b48ab7def395
BLAKE2b-256 7ccb728a00cf7954ac6d1bd0849624b10b3c924012cfbae08ddf42e1900f860d

See more details on using hashes here.

File details

Details for the file plotpy-2.8.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for plotpy-2.8.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1c9144aff4da84dd43abf1d5d6f9d0139ed35754c7c58bade9e973aa36c04ab2
MD5 ab90027efff594cd8051e11076f931a0
BLAKE2b-256 53361f02e6f305650f96caf10375b3b3a0b50b345e0883306d76289d9066e880

See more details on using hashes here.

File details

Details for the file plotpy-2.8.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: plotpy-2.8.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for plotpy-2.8.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bbd4c48c55b0c14d49bffccbf585e8c22b490af6e2ea90e5ee2d30a1caa04520
MD5 f91d744fbddd453c2aba0066e729af6b
BLAKE2b-256 547a1c11fc81d59a0921f800182f1c2226116cf2c9a28c7ad2eb9afb46652c29

See more details on using hashes here.

File details

Details for the file plotpy-2.8.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: plotpy-2.8.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for plotpy-2.8.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 5049b16c8050470aee9774575dd9557546aca24f31d1e5d2b205c44abe1d7125
MD5 1989ad9c8bcedebcc03930beb9cd775b
BLAKE2b-256 863083cbc75552b210cfd199056cd19e90798bc02ada73c550315e09918e230c

See more details on using hashes here.

File details

Details for the file plotpy-2.8.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for plotpy-2.8.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5f0c44ba7e2251cc6bdefaac0471504902127fd15928ec0bcbb9959d1a0c8566
MD5 4365b372b67be340ed3e082750ea22b5
BLAKE2b-256 c7f692aebf83cdb2f698db45cc3db8007436e4e3f9cb49d1727d4dcba8f74608

See more details on using hashes here.

File details

Details for the file plotpy-2.8.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for plotpy-2.8.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c183fb793d27c436e1ca3b06e7f784d97f1e8ae53ccc7c7966e43483247456ad
MD5 28e0d609b592213c078ef9e8169eefe0
BLAKE2b-256 ec87c9d9c6225fe9c57ac63625885c3073385ee4e9bba944dcb48c59148966c9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page