Skip to main content

Building stateful, multi-actor applications with LLMs

Project description

LangGraph Logo

Version Downloads Open Issues Docs

Trusted by companies shaping the future of agents – including Klarna, Replit, Elastic, and more – LangGraph is a low-level orchestration framework for building, managing, and deploying long-running, stateful agents.

Get started

Install LangGraph:

pip install -U langgraph

Create a simple workflow:

from langgraph.graph import START, StateGraph
from typing_extensions import TypedDict


class State(TypedDict):
    text: str


def node_a(state: State) -> dict:
    return {"text": state["text"] + "a"}


def node_b(state: State) -> dict:
    return {"text": state["text"] + "b"}


graph = StateGraph(State)
graph.add_node("node_a", node_a)
graph.add_node("node_b", node_b)
graph.add_edge(START, "node_a")
graph.add_edge("node_a", "node_b")

print(graph.compile().invoke({"text": ""}))
# {'text': 'ab'}

Get started with the LangGraph Quickstart.

To quickly build agents with LangChain's create_agent (built on LangGraph), see the LangChain Agents documentation.

Core benefits

LangGraph provides low-level supporting infrastructure for any long-running, stateful workflow or agent. LangGraph does not abstract prompts or architecture, and provides the following central benefits:

  • Durable execution: Build agents that persist through failures and can run for extended periods, automatically resuming from exactly where they left off.
  • Human-in-the-loop: Seamlessly incorporate human oversight by inspecting and modifying agent state at any point during execution.
  • Comprehensive memory: Create truly stateful agents with both short-term working memory for ongoing reasoning and long-term persistent memory across sessions.
  • Debugging with LangSmith: Gain deep visibility into complex agent behavior with visualization tools that trace execution paths, capture state transitions, and provide detailed runtime metrics.
  • Production-ready deployment: Deploy sophisticated agent systems confidently with scalable infrastructure designed to handle the unique challenges of stateful, long-running workflows.

LangGraph’s ecosystem

While LangGraph can be used standalone, it also integrates seamlessly with any LangChain product, giving developers a full suite of tools for building agents. To improve your LLM application development, pair LangGraph with:

  • LangSmith — Helpful for agent evals and observability. Debug poor-performing LLM app runs, evaluate agent trajectories, gain visibility in production, and improve performance over time.
  • LangSmith Deployment — Deploy and scale agents effortlessly with a purpose-built deployment platform for long running, stateful workflows. Discover, reuse, configure, and share agents across teams — and iterate quickly with visual prototyping in LangGraph Studio.
  • LangChain – Provides integrations and composable components to streamline LLM application development.

[!NOTE] Looking for the JS version of LangGraph? See the JS repo and the JS docs.

Additional resources

  • Guides: Quick, actionable code snippets for topics such as streaming, adding memory & persistence, and design patterns (e.g. branching, subgraphs, etc.).
  • Reference: Detailed reference on core classes, methods, how to use the graph and checkpointing APIs, and higher-level prebuilt components.
  • Examples: Guided examples on getting started with LangGraph.
  • LangChain Forum: Connect with the community and share all of your technical questions, ideas, and feedback.
  • LangChain Academy: Learn the basics of LangGraph in our free, structured course.
  • Case studies: Hear how industry leaders use LangGraph to ship AI applications at scale.

Acknowledgements

LangGraph is inspired by Pregel and Apache Beam. The public interface draws inspiration from NetworkX. LangGraph is built by LangChain Inc, the creators of LangChain, but can be used without LangChain.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langgraph-1.0.6.tar.gz (495.1 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

langgraph-1.0.6-py3-none-any.whl (157.4 kB view details)

Uploaded Python 3

File details

Details for the file langgraph-1.0.6.tar.gz.

File metadata

  • Download URL: langgraph-1.0.6.tar.gz
  • Upload date:
  • Size: 495.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for langgraph-1.0.6.tar.gz
Algorithm Hash digest
SHA256 dd8e754c76d34a07485308d7117221acf63990e7de8f46ddf5fe256b0a22e6c5
MD5 39dce2d7a6002c41ebb4974f5e5631c2
BLAKE2b-256 c29cdac99ab1732e9fb2d3b673482ac28f02bee222c0319a3b8f8f73d90727e6

See more details on using hashes here.

File details

Details for the file langgraph-1.0.6-py3-none-any.whl.

File metadata

  • Download URL: langgraph-1.0.6-py3-none-any.whl
  • Upload date:
  • Size: 157.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for langgraph-1.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 bcfce190974519c72e29f6e5b17f0023914fd6f936bfab8894083215b271eb89
MD5 0c3543a75aa17d8b31b33ebc15051f52
BLAKE2b-256 10459960747781416bed4e531ed0c6b2f2c739bc7b5397d8e92155463735a40e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page