Option hedging with Long-Short-Term-Memory Recurrent Neural Networks Part I

In the last two posts we priced exotic derivates with TensorFlow in Python. We implemented Monte-Carlo-Simulations to price Asian Options, Barrier Options and Bermudan Options. In this post we use deep learning to learn a optimal hedging strategy for Call Options from market prices of the underlying asset. This approach is purely data-driven and ‘model free’ as it doesnt make any assumptions of the underlying stochastic process.

We follow and adopt the ideas presented in the paper ‘Deep Hedging’ (https://arxiv.org/abs/1802.03042) by Hans Bühler, Lukas Gonon, Josef Teichmann, Ben Wood. The model can easily extended to incorporate transaction costs and trading limits.

In this part we will train a four layer Long-Short-Term-Memory (LSTM) Recurrent neural network (RNN) to learn a optimal hedging strategy given the individual risk aversion of the trader (we will minimize the Conditional Value at Risk also known as the Expected Shortfall of the hedging strategy) and derive an lower bound for a price which the risk-averse trader should charge if the trader follows the optimal hedging strategy.

For simplicty we use synthetic market prices of the underlying gernerated by a Black Scholes Process with a drift of zero (risk free interest is zero) and a volatility of 20%. We will train the network on one option on these simulated market values which matures in one month and has a moneyness of one (\frac{S}{K}=1).
This can easily adopted to more spohisticated models (see the reference paper for a Heston Model example) or even use real market data.

We will compare the effectivness of the hedging strategy and compare it to the delta hedging strategy using the delta from the Black Scholes model. We will evaluate the influence of the risk aversion of the trader on the hedging strategy and we will see how well the network can generalize the hedging strategy if we change the moneyness of the option, the drift (should have no effect in theory) and the volatility of the underlying process.

Start Spoiler This simple network is very good in pricing this particular option even on not observed market paths, but it will fail to generalize the strategy for options with different levels of moneyness or volatilities (but the Black Scholes strategy fails as well if we use a wrong volatility for pricing). End Spoiler

In the comming parts we will try to improve the network by changing the network architecture (e.g. simple MLP or Convolutional Networks) or using other and more features and try some approach to generate training data from market data or try transfer learning methods (since we dont have millions of training paths of one underlying) and include transaction costs.

Brief recap: Delta / Delta Hedge

The delta of an option is the sensitivity of the option price to a change of underlying stock’s price.

The idea of the delta hedging if to immunise a portfolio of option against changes in the market price of the underlying. If you have a long position of delta units of the underlying stock and you are one option short then your portfolio is not sensitive to changes of the market price (but its only a local approximation, if the price change the delta will change (2nd order greeks) and you need to adjust your position).

Black, Scholes and Merton used a (continuous time) self-financing delta hedge strategy to derive their famous pricing formula.

Setting

We are in Black Scholes setting. Current stock price is 100 and the volatility is 20%. The risk free interest rates is 0. We have a Call option with maturity in one month at a strike of 100. We adjust our hedge portfolio daily. Our training set will consists of 500,000 samples.

Our portfolio will consists of one short position of a call and \delta_{t_i} units of the underlying stock.

The PnL of our hedging / trading strategy is:

\sum_{I=0}^{n} S_{t_i} (\delta_{i-1} - \delta_{i}),

with $$\delta_{n}=\delta_{-1}=0.$ At time i we sell our previous position $\delta_{i-1}$ (cash inflow) and buy $\delta_{I}$ stocks (cash outflow). At the maturity $n$ we liquidate our position in stocks. The sum of all these transactions is our profit or loss.

The final value of our portfolio is given by the difference of the option payout and the PnL of our hedging strategy

\Pi = - max(S_T-K,0) + \sum_{I=0}^{n} S_{t_i} (\delta_{i-1} - \delta_{i}).

Under particular assumptions there exists a unique trading strategy and one fair price of the option that almost surely $\Pi + p_0 = 0$ (almost surely). One of the assumptions is continuous time trading.

But if we not hedge in continuous time, the quantity hold only in average.

In this example we sampled 10,000 paths from the Black Scholes process and applied the delta hedge strategy with different trading intervals (from once to twice a day).

hedging_error_bs1

hedging_error2.png

We follow the idea of the paper Deep Hedging and try to find a hedging strategy which minimize the CVaR given the risk aversion $\alpha$

E[-\Pi | \Pi \le -VaR_{\alpha}(\Pi)].

We will develop two trading strategies (alpha=0.5 and 0.99) and test them versus the black and Scholes delta hedge strategy.

For our test set we generate 100,000 paths from the same underlying process (not in the training set). We will test the hedging strategy for 3 different options (strike K=100, 95 and 105). Additionally we test the hedging strategies on market paths from a process with a shifted drift and from a process with shifted volatility.

Implementation

The code is as usual in my GitHub repository. Since the network needs approximately two and half hours for training, I also uploaded the pre-trained model. So one can skip the training step and directly restore the models.

We have a lot of helper function to generate the paths, calculate the Black Scholes prices and deltas and evaluate and compare the trading strategies, but the core class is our model.

<br />class RnnModel(object):
def __init__(self, time_steps, batch_size, features, nodes = [62,46,46,1], name='model'):
tf.reset_default_graph()
self.batch_size = batch_size
self.S_t_input = tf.placeholder(tf.float32, [time_steps, batch_size, features])
self.K = tf.placeholder(tf.float32, batch_size)
self.alpha = tf.placeholder(tf.float32)

S_T = self.S_t_input[-1,:,0]
dS = self.S_t_input[1:, :, 0] - self.S_t_input[0:-1, :, 0]
#dS = tf.reshape(dS, (time_steps, batch_size))

#Prepare S_t for the use in the RNN remove the last time step (at T the portfolio is zero)
S_t = tf.unstack(self.S_t_input[:-1, :,:], axis=0)

# Build the lstm
lstm = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.LSTMCell(n) for n in nodes])

self.strategy, state = tf.nn.static_rnn(lstm, S_t, initial_state=lstm.zero_state(batch_size, tf.float32), dtype=tf.float32)

self.strategy = tf.reshape(self.strategy, (time_steps-1, batch_size))
self.option = tf.maximum(S_T-self.K, 0)

self.Hedging_PnL = - self.option + tf.reduce_sum(dS*self.strategy, axis=0)
self.Hedging_PnL_Paths = - self.option + dS*self.strategy
# Calculate the CVaR for a given confidence level alpha
# Take the 1-alpha largest losses (top 1-alpha negative PnLs) and calculate the mean
CVaR, idx = tf.nn.top_k(-self.Hedging_PnL, tf.cast((1-self.alpha)*batch_size, tf.int32))
CVaR = tf.reduce_mean(CVaR)
self.train = tf.train.AdamOptimizer().minimize(CVaR)
self.saver = tf.train.Saver()
self.modelname = name

def _execute_graph_batchwise(self, paths, strikes, riskaversion, sess, epochs=1, train_flag=False):
sample_size = paths.shape[1]
batch_size=self.batch_size
idx = np.arange(sample_size)
start = dt.datetime.now()
for epoch in range(epochs):
# Save the hedging Pnl for each batch
pnls = []
strategies = []
if train_flag:
np.random.shuffle(idx)
for i in range(int(sample_size/batch_size)):
indices = idx[i*batch_size : (i+1)*batch_size]
batch = paths[:,indices,:]
if train_flag:
_, pnl, strategy = sess.run([self.train, self.Hedging_PnL, self.strategy], {self.S_t_input: batch,
self.K : strikes[indices],
self.alpha: riskaversion})
else:
pnl, strategy = sess.run([self.Hedging_PnL, self.strategy], {self.S_t_input: batch,
self.K : strikes[indices],
self.alpha: riskaversion})
pnls.append(pnl)
strategies.append(strategy)
#Calculate the option prive given the risk aversion level alpha
CVaR = np.mean(-np.sort(np.concatenate(pnls))[:int((1-riskaversion)*sample_size)])
if train_flag:
if epoch % 10 == 0:
print('Time elapsed:', dt.datetime.now()-start)
print('Epoch', epoch, 'CVaR', CVaR)
self.saver.save(sess, r"/Users/matthiasgroncki/models/%s/model.ckpt" % self.modelname)
self.saver.save(sess, r"/Users/matthiasgroncki/models/%s/model.ckpt" % self.modelname)
return CVaR, np.concatenate(pnls), np.concatenate(strategies,axis=1)

def training(self, paths, strikes, riskaversion, epochs, session, init=True):
if init:
sess.run(tf.global_variables_initializer())
self._execute_graph_batchwise(paths, strikes, riskaversion, session, epochs, train_flag=True)

def predict(self, paths, strikes, riskaversion, session):
return self._execute_graph_batchwise(paths, strikes, riskaversion,session, 1, train_flag=False)

def restore(self, session, checkpoint):
self.saver.restore(session, checkpoint)

The constructor creates the computational graph, we using the tf.contrib.rnn.MultiRNNCell() cell to stack the LSTM Cells tf.contrib.rnn.LSTMCell().

We can pass the timesteps, batch_size and number of nodes in each layer to the constructor.

At the moment the network is quite simple, we use in standard 4 Layers with 62, 46, 46, and 1 node. For a introduction in RNNs and LSTM I can recommend to read http://colah.github.io/posts/2015-08-Understanding-LSTMs/ or http://adventuresinmachinelearning.com/keras-lstm-tutorial/ but there are plenty of resources online.

Our class provides a function to train the model and to predict a trading strategy.

Results

We compare the average PnL and the CVaR of the trading strategies assuming we can charge the Black Scholes price for the option.

For the first test set (strike 100, same drift, same vola) the results looks quite good.

** alpha = 0.5 **

Screen Shot 2018-06-05 at 22.16.30

rnn_050_box_1

rnn_050_deltas_1

A trader with such a risk aversion should charge is 0.25 above the Black Scholes price.

** alpha = 0.99 **

Screen Shot 2018-06-05 at 22.20.09

rnn_050_box_1

rnn_050_deltas_1

A trader with such a risk aversion should charge about 0.99 above the Black Scholes price.

We see with a higher risk aversion extreme losses will be less likely. And the trader will need a higher compensation to take the risk to sell the option. Both strategies have a lower CVaR and a higher average profit compared to the Black Scholes strategy while the trading strategy of the RNN has a higher volatility as the Black Scholes one.

But what happen if we need a strategy for an option with a different strike:

Alpha = 0.5 and Strike @ 95:

We see that the PnL of the RNN strategy is significantly worse than then BS trading strategy. If we compare the deltas we see that the model assume a strike at 100.

We see a similar picture for higher strikes and different alphas.

If we change the drift of the observe market value, both hedges still hold (as expected). But its a different picture when we change the volatility.

In that case both models fails similar bad:

Conclusion

Overall it is a very interesting application of deep learning to option pricing and hedging and I am very curious about the future developments in this field.

The RNN is able to learn a hedging strategy for a particular option without any assumption of the underlying stochastic process. The hedging strategy outperforms the Black Scholes delta hedge strategy but the neural network fails at generalising the strategy for options at different strike levels. To be fair we have to admit that our training set consisted only of one option at one strike level. In the next part we will try to improve the model with a more diverse training set and add more features to it.

But the next post will be most likely the 3rd part of the fraud detection series (From Logistic Regression to Deep Learning – A fraud detection case study Part I, Part II).

So long…

Pricing Bermudan Options in TensorFlow – Learning an optimal Early Exercise Strategy

In the previous post we used TensorFlow to price some exotic options like Asian and Barrier Options and used the automatic differentiation feature to calculate the greeks of the options.

Today we will see how to price a Bermudan option in TensorFlow with the Longstaff-Schwartz (a.k.a American Monte Carlo) algorithm. For simplicity we assume Bermudan equity call option without dividend payments in a Black-Scholes-Merton world.

The complete Jupyter notebook can be found on GitHub.

Let start with a brief recap of Bermudan options and the Longstaff-Schwartz pricing method. For detailed and more formalized description have a look into my previous posts about Bermudan Swaptions and the American Monte Carlo Simulation for CVA calculations or have a look into the book ‘Monte Carlo Methods in Financial-Engineering’ from Paul Glasserman.

A Bermudan option give the holder the right to exercise option not only at the maturity of the option but also earlier on pre specified dates. At each exercise date the holder of the option has to decide if it’s better to exercise the option now (exercise value) or to wait for a later exercise date (continuation value). He has to find a optimal exercise strategy (early exercise boundary of the option). He has to decide if the exercise value is higher than the continuation value of the option. There are some trivial cases:

1) If the option is not in the money its always better to wait and
2) if the option hasn’t been exercised before the last exercise date the Bermudan become an European option.

Therefore the option price have to be higher than the price of an European (because its included).

One approach to price the option is to use Monte-Carlo simulations, but the problem is calculation of the continuation value. On each simulated path we can easily calculate the exercise value of the option at each exercise date given the state of the path, but the continuation value is a conditional expectation given the current underlying price of the path. The naive approach is to calculate this expectation with a Monte-Carlo Simulation again but then we need to run a simulation for each exercise date on each path. These kind of nested simulations can become very slow.

Longstaff-Schwartz method

One solution is the Longstaff-Schwartz method, the basic idea is to approximate the continuation value through a linear regression model.

The pricing consists of two phases:

In the learning phase we go backward through the time starting with the last exercise date (it is trivial to price), then we go to the previous exercise date and we fit a linear model to predict the continuation values (the option value at time t+1 which we just calculated) given the state of the paths (usually a system of polynomials of the state). Then we use the prediction to decide if we exercise or not and update the value of the option at time t (either exercise or continuation value). And we continue these steps that until we reach the first exercise date.

After we learned the models to predict the continuation values we use these linear models to predict the continuation values in the pricing phase. We generate a new set of random paths and go forward through the time and at each exercise date we decide if the exercise depending on the exercise value and the predicted continuation value.

There are two ways to fit the linear model. One could solve the normal equation
or use gradient descent. I decided to go for the gradient descent, it give us the opportunity to exchange the linear model with more sophisticated models like a deep network.

I use three helper functions, the first function get_continuation_function creates the Tensorflow operators needed for training a linear model at an exercise date and a second function feature_matrix_from_state creates a feature matrix for the model from the paths values at a given time step. I use Chebyshev polynomials up to the degree 4 as features, as we can see below the fit could be better. Feel free to play with it and adjust the code.

The third helper function pricing_function create the computational graph for the pricing and it generates for each call date the needed linear model and the training operator with the helper functions and store it in a list of training_functions.

previous_exersies = 0
    npv = 0
    for i in range(number_call_dates-1):
        (input_x, input_y, train, w, b, y_hat) = get_continuation_function()
        training_functions.append((input_x, input_y, train, w, b, y_hat))
        X = feature_matrix_from_current_state(S_t[:, i])
        contValue = tf.add(tf.matmul(X, w),b)
        continuationValues.append(contValue)
        inMoney = tf.cast(tf.greater(E_t[:,i], 0.), tf.float32)
        exercise = tf.cast(tf.greater(E_t[:,i], contValue[:,0]), tf.float32) * inMoney 
        exercises.append(exercise)
        exercise = exercise * (1-previous_exersies)
        previous_exersies += exercise
        npv += exercise*E_t[:,i]
    
    # Last exercise date
    inMoney = tf.cast(tf.greater(E_t[:,-1], 0.), tf.float32)
    exercise =  inMoney * (1-previous_exersies)
    npv += exercise*E_t[:,-1]
    npv = tf.reduce_mean(npv)
    greeks = tf.gradients(npv, [S, r, sigma])

The npv operator is sum of the optimal exercise decisions. At each time we exercise if the exercise value is greater than the predicted continuation value and the option is in the money. We store the information about previous exercise decision since we can only exercise the option once.

In the actual pricing functionbermudanMC_tensorFlow we execute the graph to create the paths, the exercise values for the training path then will iterate backward through the training_functions and learn for each exercise date the linear model.

# Backward iteration to learn the continuation value approximation for each call date
        for i in range(n_excerises-1)[::-1]:
            (input_x, input_y, train, w, b, y_hat) = training_functions[i]
            y = exercise_values[:, i+1:i+2]
            X = paths[:, i]
            X = np.c_[X**1, 2*X**2-1, 4*X**3 - 3 * X]
            X = (X - np.mean(X, axis=0)) / np.std(X, axis=0)
            for epoch in range(80):
                _ = sess.run(train, {input_x:X[exercise_values[:,i]>0], 
                                     input_y:y[exercise_values[:,i]>0]})
            cont_value = sess.run(y_hat, {input_x:X, 
                                     input_y:y})
            exercise_values[:, i:i+1] = np.maximum(exercise_values[:, i:i+1], cont_value)
            plt.figure(figsize=(10,10))
            plt.scatter(paths[:,i], y)
            plt.scatter(paths[:,i], cont_value, color='red')
            plt.title('Continuation Value approx')
            plt.ylabel('NPV t_%i'%i)
            plt.xlabel('S_%i'%i)

We take the prices of the underlying at time i and calculate the Chebyshey polynomials and store it in the predictor matrix X. The option value at the previous time is our target value y. We normalise our features and train our linear model with a stochastic gradient descent over 80 epochs. We exclude all samples where the option is not in the money (no decision to make). After we got our prediction for the continuation value we update the value of option at time i to be the maximum of the exercise value and the predicted continuation value.

After we learned the weights for our model we can execute the npv and greek operator to calculate the npv and the derivatives of the npv.

Pricing Example

Assume the spot is at 100 the risk free interest rate is at 3% and the implied Black vol is 20%. Lets price a Bermudan Call with strike level at 120 with yearly exercise dates and maturity in 4 years.

The fit off our continuation value approximation on the training set.

The runtime is between 7-10 second for a Bermudan option with 4 exercise dates. We could speed it up, if we would use the normal equations instead of a gradient descent method.

So thats it for today. As usual is the complete source code as a notebook on GitHub for download. I think with TensorFlow its very easy to try other approximations methods, since we can make use of TensorFlows deep learning abilities. So please feel free to play with the source code and experiment with the feature matrix (other polynomials, or higher degrees) or try another model (maybe a deep network) to get a better fit of the continuation values. I will play a bit with it and come back to this in a later post and present some results of alternative approximation approaches.

So long.

TensorFlow meets Quantitative Finance: Pricing Exotic Options with Monte Carlo Simulations in TensorFlow

During writing my previous post about fraud detection with logistic regression with TensorFlow and gradient descent methods I had the idea to use TensorFlow for the pricing of path dependent exotic options. TensorFlow uses automatic (algorithmic) differentitation (AD) to calculate the gradients of the computational graph. So if we implement a closed pricing formula in TensorFlow we should get the greeks for ‘free’. With ‘free’ I mean without implementing a closed formula (if available) or without implementing a numerical method (like finite difference) to calculate the greeks. In Theory the automatic differentiation should be a bit times slower than a single pricing but the cost should be independent on the number of greeks we calculate.

Monte Carlo Simulations can benefit of AD a lot, when each pricing is computational costly (simulation) and we have many risk drivers, the calculation of greeks become very challenging. Imagine a interest rate derivate and we want to calculate the delta and gamma and mixed gammas for each pillar on the yield curve, if we use bump-and-revaluate to calculate the greeks we need many revaluations.

For simplicty we focus on equity options in a Black-Scholes model world since I want to focus on the numerical implementation in TensorFLow. Today we will look into the Monte-Carlo pricing of Plain Vanilla Options, Geometric Asian Options and Down-And-Out Barriers. All options in this post are Calls. For a introduction into TensorFlow look into my previous post on Logisitc Regression in TensorFlow.

You will need TensorFlow 1.8 to run the notebook (which is available on my Github)

Plain Vanilla Call

Lets start with a plain vanilla Call. Let me give a brief introduction into options for the non-quant readers, if you familiar with options skip this part and go directly to the implementation.

A call gives us the right to buy a unit of a underlying (e.g Stock) at preagreed price (strike) at a future time (option maturity), regardless of the actual price at that time.So the value the Call at option maturity is

C = \max(S_T-K,0) ,

with S_T the price of the underlying at option maturity T and strike K. Clearly we wouldn’t exercise the option if the actual price is below the strike, so its worthless (out of the money).

Its very easy to calculate the price of the option at maturity but we are more interested into the todays price before maturity.

Black, Scholes and Merton had a very great idea how to solve this problem (Nobel prize worth idea), and come up with a closed pricing formula.

We will first implement the closed formula and then implement the pricing with a Monte Carlo Simulation.

Not for all kind of options and models we have analytical formula to get the price. A very generic method to price options is the Monte-Carlo Simulation. The basic idea is to simulated many possible (random) evolutions (outcomes/realizations) of the underlying price (paths) and price the option of each of these paths and approximate the price with the average of the simulated option prices. Depending on the underlying stochastic process for the underyling in the model we need numerical approximations for the paths.

For a more detailed introduction into derivates have a look into the book ‘Options, Futures and Other Derivates’ by Prof. John C. Hull.

We lets assume the current stock price is 100, the strike is 110 and maturity is in 2 years from now. The current risk free interest rate is 3% and the implied market vol is 20%.

Let implement the Black Scholes pricing formula in Python

import numpy as np
import tensorflow as tf
import scipy.stats as stats
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm

Plain Vanilla Call in TensorFlow


def blackScholes_py(S_0, strike, time_to_expiry, implied_vol, riskfree_rate):
    S = S_0
    K = strike
    dt = time_to_expiry
    sigma = implied_vol
    r = riskfree_rate
    Phi = stats.norm.cdf
    d_1 = (np.log(S_0 / K) + (r+sigma**2/2)*dt) / (sigma*np.sqrt(dt))
    d_2 = d_1 - sigma*np.sqrt(dt)
    return S*Phi(d_1) - K*np.exp(-r*dt)*Phi(d_2)

blackScholes_py(100., 110., 2., 0.2, 0.03)
9.73983632580859

The todays price is 9.73 and a pricing with the closed formula is super fast less then 200 mirco seconds.

Now lets implement the same pricing formula in TensorFLow. We use the concept of a function closure. The outer function constructs the static TensorFow graph, and the inner function (which we return) let us feed in our parameters into the graph and execute it and return the results.

def blackScholes_tf_pricer(enable_greeks = True):
    # Build the static computational graph
    S = tf.placeholder(tf.float32)
    K = tf.placeholder(tf.float32)
    dt = tf.placeholder(tf.float32)
    sigma = tf.placeholder(tf.float32)
    r = tf.placeholder(tf.float32)
    Phi = tf.distributions.Normal(0.,1.).cdf
    d_1 = (tf.log(S / K) + (r+sigma**2/2)*dt) / (sigma*tf.sqrt(dt))
    d_2 = d_1 - sigma*tf.sqrt(dt)
    npv =  S*Phi(d_1) - K*tf.exp(-r*dt)*Phi(d_2)
    target_calc = [npv]
    if enable_greeks:
        greeks = tf.gradients(npv, [S, sigma, r, K, dt])
        dS_2ndOrder = tf.gradients(greeks[0], [S, sigma, r, K, dt]) 
        # Calculate mixed 2nd order greeks for S (esp. gamma, vanna) and sigma (esp. volga)
        dsigma_2ndOrder = tf.gradients(greeks[1], [S, sigma, r, K, dt])
        dr_2ndOrder = tf.gradients(greeks[2], [S, sigma, r, K, dt]) 
        dK_2ndOrder = tf.gradients(greeks[3], [S, sigma, r, K, dt]) 
        dT_2ndOrder = tf.gradients(greeks[4], [S, sigma, r, K, dt])
        target_calc += [greeks, dS_2ndOrder, dsigma_2ndOrder, dr_2ndOrder, dK_2ndOrder, dT_2ndOrder]
    
    # Function to feed in the input and calculate the computational graph
    def execute_graph(S_0, strike, time_to_expiry, implied_vol, riskfree_rate):
        with tf.Session() as sess:
            res = sess.run(target_calc, 
                           {
                               S: S_0,
                               K : strike,
                               r : riskfree_rate,
                               sigma: implied_vol,
                               dt: time_to_expiry})
        return res
    return execute_graph

tf_pricer = blackScholes_tf_pricer()
tf_pricer(100., 110., 2., 0.2, 0.03)

[9.739834,
 [0.5066145, 56.411205, 81.843216, -0.37201464, 4.0482087],
 [0.014102802, 0.5310427, 2.8205605, -0.012820729, 0.068860546],
 [0.5310427, -1.2452297, -6.613867, 0.030063031, 13.941332],
 [2.8205605, -6.613866, 400.42563, -1.8201164, 46.5973],
 [-0.012820728, 0.030063028, -1.8201163, 0.011655207, -0.025798593],
 [0.06886053, 13.941331, 46.597298, -0.025798589, -0.62807804]]

We get the price and all first and 2nd order greeks. The code runs roughly 2.3 second on my laptop and roughly 270 ms (without greeks).

tf_pricer = blackScholes_tf_pricer(True)
%timeit tf_pricer(100., 110., 2., 0.2, 0.03)

2.32 s ± 304 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)


tf_pricer = blackScholes_tf_pricer(False)
%timeit tf_pricer(100., 110., 2., 0.2, 0.03)

269 ms ± 13.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

We calculated 30 different greeks and one npv, so for a bump and revaluation we would need 31 times the time for one pricing. So that definetly a speed up but compare to the ‘pure’ python implementation is awefully slow. But its easy to implement and reduce maybe developing time.

Monte Carlo Simulation with TensorFlow

In the Black Scholes model the underlying price follows a geometric Brownian motion and we now the distribution of the prices in the futures given the current price, the risk free interest rate and the implied volatiliy of the underlying. So we are able to sample future prices directly.

We use a helper function create_tf_graph_for_simulate_paths to build the computational graph in TensorFlow which can calculate the future prices given the required inputs and normal distributed random numbers dw with zero mean and a standard deviation of one. The function will return the operator to calculate the random price paths and the placeholder we need to feed in our parameter.

We assume we need to calculate the prices at equidistant points of time. The column of the random matrix dw defines the number of time on each path and the rows the numbers of different paths.

For example a random matrix with the shape (1000, 10) would have 1000 path with the prices of the underlying at times T/10, 2T/10, … T.

def create_tf_graph_for_simulate_paths():
    S = tf.placeholder(tf.float32)
    K = tf.placeholder(tf.float32)
    dt = tf.placeholder(tf.float32)
    T = tf.placeholder(tf.float32)
    sigma = tf.placeholder(tf.float32)
    r = tf.placeholder(tf.float32)
    dw = tf.placeholder(tf.float32)
    S_T = S * tf.cumprod(tf.exp((r-sigma**2/2)*dt+sigma*tf.sqrt(dt)*dw), axis=1)
    return (S, K, dt, T, sigma, r, dw, S_T)

To test the function we create another function which use the function above to create the computational graph and returns another function which feed our parametrization into the graph and run it and return the simulated paths.

def make_path_simulator():
    (S,K, dt, T, sigma, r, dw, S_T) = create_tf_graph_for_simulate_paths()
    def paths(S_0, strike, time_to_expiry, implied_vol, riskfree_rate, seed, n_sims, obs):
        if seed != 0:
            np.random.seed(seed)
        stdnorm_random_variates = np.random.randn(n_sims, obs)
        with tf.Session() as sess:
            timedelta = time_to_expiry / stdnorm_random_variates.shape[1]
            res = sess.run(S_T, 
                           {
                               S: S_0,
                               K : strike,
                               r : riskfree_rate,
                               sigma: implied_vol,
                               dt : timedelta,
                               T: time_to_expiry,
                               dw : stdnorm_random_variates
                         })
            return res
    return paths

path_simulator = make_path_simulator()
paths = path_simulator(100, 110.,  2, 0.2, 0.03, 1312, 10, 400)
plt.figure(figsize=(8,5))
_= plt.plot(np.transpose(paths))
_ = plt.title('Simulated Path')
_ = plt.ylabel('Price')
_ = plt.xlabel('TimeStep') 

paths

Now we going to price our plain vanilla call. We will use the same design pattern as above (function closure). The function will create the computational graph and returns a function that generates the random numbers, feed our parameter into the graph and run it.

Actually we just extend the previous function with the pricing of the call on the path payout = tf.maximum(S_T[:,-1] - K, 0) and we discount it and we add some extra lines to calculate the greeks.

def create_plain_vanilla_mc_tf_pricer(enable_greeks = True):
    (S,K, dt, T, sigma, r, dw, S_T) = create_tf_graph_for_simulate_paths()
    payout = tf.maximum(S_T[:,-1] - K, 0)
    npv = tf.exp(-r*T) * tf.reduce_mean(payout)
    target_calc = [npv]
    if enable_greeks:
        greeks = tf.gradients(npv, [S, sigma, r, K, T])
        target_calc += [greeks]
    def pricer(S_0, strike, time_to_expiry, implied_vol, riskfree_rate, seed, n_sims):
        if seed != 0:
            np.random.seed(seed)
        stdnorm_random_variates = np.random.randn(n_sims, 1)
        with tf.Session() as sess:
            timedelta = time_to_expiry / stdnorm_random_variates.shape[1]
            res = sess.run(target_calc, 
                           {
                               S: S_0,
                               K : strike,
                               r : riskfree_rate,
                               sigma: implied_vol,
                               dt : timedelta,
                               T: time_to_expiry,
                               dw : stdnorm_random_variates
                         })
            return res
    return pricer

plain_vanilla_mc_tf_pricer = create_plain_vanilla_mc_tf_pricer()
plain_vanilla_mc_tf_pricer(100, 110, 2, 0.2, 0.03, 1312, 1000000)
[9.734369, [0.5059894, 56.38598, 81.72916, -0.37147698, -0.29203108]]
%%timeit
plain_vanilla_mc_tf_pricer(100, 110, 2, 0.2, 0.03, 1312, 1000000)

392 ms ± 20.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)


plain_vanilla_mc_tf_pricer = create_plain_vanilla_mc_tf_pricer(False)
%timeit plain_vanilla_mc_tf_pricer(100, 110, 2, 0.2, 0.03, 1312, 1000000)

336 ms ± 24.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

The MC pricing is faster then the analytical solution in TensorFlow (ok we only have first order derivates) and the
extra costs for the greeks is neglect-able. I really wonder why a MC Simulation is faster than a closed formula.

Lets try some exotic (path dependent) options.

Exotic path dependent option

Asian Options

The fair value of a Asian option depends not only on the price of the underlying at option maturity but also on the values during the lifetime to predefined times. A Asian Call pay the difference between the average price and the strike or nothing.

A asian option which use the geometric mean of the underlying is also called Geometric Asian Option.

We follow the previous design we only make some extensions to the payoff and pricing method (need number of observation points).

def create_geometric_asian_mc_tf_pricer(enable_greeks = True):
    (S,K, dt, T, sigma, r, dw, S_T) = create_tf_graph_for_simulate_paths()
    A = tf.pow(tf.reduce_prod(S_T, axis=1),dt/T)
    payout = tf.maximum(A - K, 0)
    npv = tf.exp(-r*T) * tf.reduce_mean(payout)
    target_calc = [npv]
    if enable_greeks:
        greeks = tf.gradients(npv, [S, sigma, r, K, T])
        target_calc += [greeks]
    def pricer(S_0, strike, time_to_expiry, implied_vol, riskfree_rate, seed, n_sims, obs):
        if seed != 0:
            np.random.seed(seed)
        stdnorm_random_variates = np.random.randn(n_sims, obs)
        with tf.Session() as sess:
            timedelta = time_to_expiry / obs
            res = sess.run(target_calc, 
                           {
                               S: S_0,
                               K : strike,
                               r : riskfree_rate,
                               sigma: implied_vol,
                               dt : timedelta,
                               T: time_to_expiry,
                               dw : stdnorm_random_variates
                         })
            return res
    return pricer

geom_asian_mc_tf_pricer = create_geometric_asian_mc_tf_pricer()
geom_asian_mc_tf_pricer(100, 110, 2, 0.2, 0.03, 1312, 100000, 8)
[4.196899, [0.3719058, 30.388206, 33.445602, -0.29993924, -89.84526]]

The pricing is a bit slower than the plain vanilla case about 470ms and 319ms without greeks. Again the extra cost is neglect-able.

Down and Out Options

Now lets try a down and out call. A down-and-out Call behaves as a normal Call but if the price of the underlying touch or fall below a certain level (the barrier B) at any time until the expiry the option, then it becomes worthless, even if its at expiry in the money.

A down and out call is cheaper than the plain vanilla case, since there is a risk that the option get knocked out before reaching the expiry. It can be used to reduce the hedging costs.

In the Black-Scholes model there is again a closed formula to calculate the price. See https://people.maths.ox.ac.uk/howison/barriers.pdf or https://warwick.ac.uk/fac/soc/wbs/subjects/finance/research/wpaperseries/1994/94-54.pdf .

We want to price this kind of option in TensorFlow with a Monte-Carlo Simulation and let TensorFLow calculate the path derivates with automatic differentitation.

Because of the nature of the product it quite difficult to calculate the npv and greeks in a Monte-Carlo Simulation. Obviously we have a bias in our price since we check if the barrier hold on discrete timepoints while the barrier has to hold in continous time. The closer we get to the Barrier the more off we will be from the analytical price and greeks. The MC price will tend to overestimate the value of the option. See the slides from Mike Giles about Smoking adjoints (automtic differentiation) https://people.maths.ox.ac.uk/gilesm/talks/quant08.pdf.

First we implement the analytical solutions in ‘pure’ Python (actually we rely heavly on numpy) and in TensorFLow.

def analytical_downOut_py(S_0, strike, time_to_expiry, implied_vol, riskfree_rate, barrier):
    S = S_0
    K = strike
    dt = time_to_expiry
    sigma = implied_vol
    r = riskfree_rate
    alpha = 0.5 - r/sigma**2
    B = barrier
    Phi = stats.norm.cdf
    d_1 = (np.log(S_0 / K) + (r+sigma**2/2)*dt) / (sigma*np.sqrt(dt))
    d_2 = d_1 - sigma*np.sqrt(dt)
    bs = S*Phi(d_1) - K*np.exp(-r*dt)*Phi(d_2)
    d_1a = (np.log(B**2 / (S*K)) + (r+sigma**2/2)*dt) / (sigma*np.sqrt(dt))
    d_2a = d_1a - sigma*np.sqrt(dt)
    reflection = (S/B)**(1-r/sigma**2) * ((B**2/S)*Phi(d_1a) - K*np.exp(-r*dt)*Phi(d_2a))
    return max(bs - reflection,0)



def analytical_downOut_tf_pricer(enable_greeks = True):
    S = tf.placeholder(tf.float32)
    K = tf.placeholder(tf.float32)
    dt = tf.placeholder(tf.float32)
    sigma = tf.placeholder(tf.float32)
    r = tf.placeholder(tf.float32)
    B = tf.placeholder(tf.float32)
    Phi = tf.distributions.Normal(0.,1.).cdf
    d_1 = (tf.log(S / K) + (r+sigma**2/2)*dt) / (sigma*tf.sqrt(dt))
    d_2 = d_1 - sigma*tf.sqrt(dt)
    bs_npv =  S*Phi(d_1) - K*tf.exp(-r*dt)*Phi(d_2)
    d_1a = (tf.log(B**2 / (S*K)) + (r+sigma**2/2)*dt) / (sigma*tf.sqrt(dt))
    d_2a = d_1a - sigma*tf.sqrt(dt)
    reflection = (S/B)**(1-r/sigma**2) * ((B**2/S)*Phi(d_1a) - K*tf.exp(-r*dt)*Phi(d_2a))
    npv = bs_npv - reflection
    target_calc = [npv]
    if enable_greeks:
        greeks = tf.gradients(npv, [S, sigma, r, K, dt, B])
        # Calculate mixed 2nd order greeks for S (esp. gamma, vanna) and sigma (esp. volga)
        dS_2ndOrder = tf.gradients(greeks[0], [S, sigma, r, K, dt, B]) 
        #dsigma_2ndOrder = tf.gradients(greeks[1], [S, sigma, r, K, dt, B]) 
        # Function to feed in the input and calculate the computational graph
        target_calc += [greeks, dS_2ndOrder]
    def price(S_0, strike, time_to_expiry, implied_vol, riskfree_rate, barrier):
        """
        Returns the npv, delta, vega and gamma
        """
        with tf.Session() as sess:
            
            res = sess.run(target_calc, 
                           {
                               S: S_0,
                               K : strike,
                               r : riskfree_rate,
                               sigma: implied_vol,
                               dt: time_to_expiry,
                               B : barrier})
        if enable_greeks:
            return np.array([res[0], res[1][0], res[1][1], res[2][0]])
        else:
            return res
    return price

analytical_downOut_py(100., 110., 2., 0.2, 0.03, 80)
9.300732987604157

And again the TensorFlow implementation is super slow compared to the python one. 344 µs (pure Python) vs 1.63 s (TensorFlow with greeks).

We use the python implementation to visualise the npv of option dependent on the barrier.


def surface_plt(X,Y,Z, name='', angle=70):
    fig = plt.figure(figsize=(13,10))
    ax = fig.gca(projection='3d')
    surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,
                           linewidth=0, antialiased=False)
    fig.colorbar(surf, shrink=0.5, aspect=5)
    ax.set_title('Down-And-Out Option (%s vs Barrier)' % name)
    ax.view_init(35, angle)
    ax.set_xlabel(name)
    ax.set_ylabel('barrier')
    ax.set_zlabel('price')
    plt.savefig('npv_%s_barrier.png' % name, dpi=300)
    

T = np.arange(0.01, 2, 0.1)
S = np.arange(75, 110, 1)
V = np.arange(0.1, 0.5, 0.01)
B = np.arange(75, 110, 1)
X, Y = np.meshgrid(S, B)
vectorized_do_pricer = np.vectorize(lambda s,b : analytical_downOut_py(s, 110., 2, 0.2, 0.03, b))
Z = vectorized_do_pricer(X, Y)
surface_plt(X,Y,Z,'spot', 70)

X, Y = np.meshgrid(V, B)
vectorized_do_pricer = np.vectorize(lambda x,y : analytical_downOut_py(100, 110., 2, x, 0.03, y))
Z = vectorized_do_pricer(X, Y)
surface_plt(X,Y,Z,'vol', 120)

X, Y = np.meshgrid(T, B)
vectorized_do_pricer = np.vectorize(lambda x,y : analytical_downOut_py(100, 110., x, 0.2, 0.03, y))
Z = vectorized_do_pricer(X, Y)
surface_plt(X,Y,Z,'time', 120)

Now lets implement the Monte Carlo Pricing. First as pure python version.

def monte_carlo_down_out_py(S_0, strike, time_to_expiry, implied_vol, riskfree_rate, barrier, seed, n_sims, obs):
    if seed != 0:
            np.random.seed(seed)
    stdnorm_random_variates = np.random.randn(n_sims, obs)
    S = S_0
    K = strike
    dt = time_to_expiry / stdnorm_random_variates.shape[1]
    sigma = implied_vol
    r = riskfree_rate
    B = barrier
    # See Advanced Monte Carlo methods for barrier and related exotic options by Emmanuel Gobet
    B_shift = B*np.exp(0.5826*sigma*np.sqrt(dt))
    S_T = S * np.cumprod(np.exp((r-sigma**2/2)*dt+sigma*np.sqrt(dt)*stdnorm_random_variates), axis=1)
    non_touch = (np.min(S_T, axis=1) > B_shift)*1
    call_payout = np.maximum(S_T[:,-1] - K, 0)
    npv = np.mean(non_touch * call_payout)
    return np.exp(-time_to_expiry*r)*npv

monte_carlo_down_out_py(100., 110., 2., 0.2, 0.03, 80., 1312, 10000, 500)

Now now as TensorFlow version.

def create_downout_mc_tf_pricer(enable_greeks = True):
    (S,K, dt, T, sigma, r, dw, S_T) = create_tf_graph_for_simulate_paths()
    B = tf.placeholder(tf.float32)
    B_shift = B * tf.exp(0.5826*sigma*tf.sqrt(dt))
    non_touch = tf.cast(tf.reduce_all(S_T > B_shift, axis=1), tf.float32)
    payout = non_touch * tf.maximum(S_T[:,-1] - K, 0)
    npv = tf.exp(-r*T) * tf.reduce_mean(payout)
    target_calc = [npv]
    if enable_greeks:
        greeks = tf.gradients(npv, [S, sigma, r, K, T])
        target_calc += [greeks]
    def pricer(S_0, strike, time_to_expiry, implied_vol, riskfree_rate, barrier, seed, n_sims, obs):
        if seed != 0:
            np.random.seed(seed)
        stdnorm_random_variates = np.random.randn(n_sims, obs)
        with tf.Session() as sess:
            timedelta = time_to_expiry / obs
            res = sess.run(target_calc, 
                           {
                               S: S_0,
                               K : strike,
                               r : riskfree_rate,
                               sigma: implied_vol,
                               dt : timedelta,
                               T: time_to_expiry,
                               B: barrier,
                               dw : stdnorm_random_variates
                         })
            return res
    return pricer

downout_mc_tf_pricer = create_downout_mc_tf_pricer()
downout_mc_tf_pricer(100., 110., 2., 0.2, 0.03, 80., 1312, 10000, 500)
[9.34386, [0.47031397, 54.249084, 75.3748, -0.34261367, -0.2803158]]

The pure Python MC needs 211 ms ± 8.95 ms per npv vs the 886 ms ± 23.4 ms per loop for the TensorFlow MC with 5 greeks. So its not that bad as the performance for the closed formula implementation suggests.

There are many things we could try now: implementing other options, try different models (processes), implement a discretisation scheme to solve a stochastic process numerically in TensorFlow, try to improve the Barrier option with more advanced Monte Carlo techniques (Brownian Bridge). But that’s it for now.

For me it was quite fun to implement the Monte Carlo Simulations and do some simple pricing in TensorFlow. For me it was very suprising and unexpected that the analytical implementations are so slow compared to pure Python. Therefore the Monte Carlo Simulation in TensorFlow seems quite fast. Maybe the bad performance for the closed formula pricings is due to my coding skills.

Nevertheless TensorFlow offers a easy to use auto grad (greeks) feature and the extra cost in a MC Simulation is neglect-able and the automatic differentiation is faster than DF when we need to calculate more than 4-6 greeks. And in some cases we can be with 5 greeks as fast as pure Python as seen the barrier sample. (approx 1 sec for a Tensorflow (npv and 5 greeks) vs 200 ms for Python (single npv). So i assume we can be faster compared to a pure Python implementation when we need to calculate many greeks (pillars on a yield curve or vol surface).

Maybe we can get even more performance out of it if we run it on GPUs. I have the idea to try Bermudan Options in TensorFlow and I also want to give PyTorch a try. Maybe I will pick it up in a later post.

The complete source code is also on GitHub.

So long…

Exposure Simulation / CVA and PFE for multi-callable swaps Part II

Hey Everyone,

today I want to continue my last post and show you today how to calculate the NPV of a bermudan swaption through Monte-Carlo simulation. The techniques I will show you in this post can be easily extended to simulate exposure paths of a multi callable swap. This exposure simulations can be used for a xVA calculation like the Credit Value Adjustment (CVA) or Potential Future Exposure (PFE).

A physical settled Bermudan swaption is a path dependent derivate. The option has multiple exercise dates and the swaption holder has the right to enter the underlying swap at any of this exercise dates.

On each of the exercise dates the holder have to decide whether it is optimal to exercise the option now or continue to hold the option and may exercise it on a later date.

Lets consider a bermudan swaption with two exercise dates.

At the latest exercise date T the payoff is the well known european swaption payoff

V(T) = \max(S(T), 0),

where S(T) is the npv of the underlying swap at time t.

At the first exercise date t_i \le T the npv of the swaption given by

V(t_i) = \max(S(t_i), N(t_i) E [ \frac{V(T)} {N(T)} | F_{t_i}].

and so to the NPV at time 0

V(0) = N(0) E[\frac{V(t_i)}{N(t_i)} | F_0].

One way to solve problem is performing a Monte-Carlo-Simulation. But a naive Monte Carlo approach would require a nested Monte-Carlo Simulation on each path to calculate the continuation value
C(t_i ) = N(t_i) E[\frac{V(T)}{N(T)} | F_{t_i} ] at time t_i.

Lets say we use 100.000 samples in our simulation, so a bermudan swaption with two exercise dates would require 100.000 x 100.000 samples. Which is very time consuming and grows exponential with the number of exercise dates.

Instead of calculate the continuation value also with a Monte-Carlo simulation we will use a approximation. We use the approximation and algorithm developed by Longstaff and Schwarz.

We approximate the continuation value through some function of some state variable (e.g swap rate, short rate, etc…) x_i:

C(t_i) \approx f(x_i).

A common choice for the function is of the form:

f(x) = a_0 + a_1 g_1(x)+ a_2 g_2(x) + \dots a_n g_n(x)

with g_i (x) a polynom of the degree i.

Lets choice g_i (x)= x^{i-1} and n=5 for our example.

The coefficients of this function f are estimated by the ordinary least square error method. Thats why some people call this method also the OLS Monte-Carlo Method.

So how does the the algorithm look like?

We would simulate n paths of our stochastic process (in our case the short rate process) and go backward through time (backward induction).

We start at the last exercise date T and calculate for each path the deflated terminal value of the swaption V_T (exactly like we did in the european case).

Then we go back into time to the next exercise date and approximate the needed continuation value by our ordinary least square estimate.

Our choice for the state variable is the state variable of the short rate process itself.

We choice our coefficient so that the square error of f(x_i) - V(T) is minimized, where x_i is a vector of all simulated states over all paths and V(T) the corresponding vector of the calculated npvs at time T from the previous step.

Now we use this coefficients to calculate the continuation value on each path by inserting the state of the current path into the formula.

On path j the deflated value of the swaption will be

V_{i,j} = \frac{1}{N(t-i, x_{i,j})} max(S(t_i, x_{i,j}), N(t_i, x_{i,j}) C(x_{i,j})

where x_{i,j} is the the state of the process at time i on path j.

The npv at time 0 is then

V(0) = N(0) \frac{1}{n} \sum_j=0^n V_{i,j}.

Some remarks:

  • One could also perform a 2nd MC Simulation (forward in time). First estimate the needed coefficients with a smaller numbers of paths. After train the model with this small set generate a larger sets of paths and go straight forward in time and use the approximation of the continuation value of the first run. On each path you only need to go forward until the holder will exercise the option.
  • The exercise time by this approach is only approximatively optimal, since its uses a approximation of the continuation value. Therefore our price will be an (asymptotic) lower bound of the real price.
  • The choice of appropriate functions g_i and the degree n is not obvious and can be tricky (see below).

Now lets have a look how this algorithm could be implemented in Python and Quantlib.

We use the notebook from my previous post as our starting point. We use the same yield curves, model (Gaussian short rate model) and the same underlying swap. The underlying 5y swap starts in 1Y.

We setup a bermudan swaption with 2 exercise dates, the first exercise date is on the start date of the swap and the 2nd date on the start date of the 2nd fixed leg accrual period.

Lets add both dates in our list of exercise dates:

calldates = [ settlementDate, 
              euribor6m.valueDate(ql.Date(5,4,2017))
            ]

We need to evaluate the value of the underlying swap at both exercise dates on each simulated path. To do that we introduce two new auxiliary functions. The first gives us all future (relative to an arbitrary evaluation time t) payment times and amounts from the fixed rate leg of the swap:

def getFixedLeg(swap, t):
    """
    returns all future payment times and amount of the fixed leg of the underlying swap

    Parameter:
        swap (ql.Swap)
        t (float) 

    Return:
        (np.array, np.array) (times, amounts)

    """
    fixed_leg = swap.leg(0)
    n = len(fixed_leg)
    fixed_times=[]
    fixed_amounts=[]
    npv = 0
    for i in range(n):
        cf = fixed_leg[i]
        t_i = timeFromReference(cf.date())
        if t_i > t:
            fixed_times.append(t_i)
            fixed_amounts.append(cf.amount())
    return np.array(fixed_times), np.array(fixed_amounts)

The 2nd will give us all future payment times, accrual start and end times, notionals, gearings and day count fractions of the floating leg. We need all this information to estimate the fixing of the float leg.

def getFloatingLeg(swap, t):

    float_leg = swap.leg(1)
    n = len(float_leg)
    float_times = []
    float_dcf = []
    accrual_start_time = []
    accrual_end_time = []
    nominals = []
    for i in range(n):
        # convert base classiborstart_idx Cashflow to
        # FloatingRateCoupon
        cf = ql.as_floating_rate_coupon(float_leg[i])
        value_date = cf.referencePeriodStart()
        t_fix_i = timeFromReference(value_date)
        t_i = timeFromReference(cf.date()) 
        if t_fix_i >= t:
            iborIndex = cf.index()

            index_mat = cf.referencePeriodEnd()
            # year fraction
            float_dcf.append(cf.accrualPeriod())
            # calculate the start and end time
            accrual_start_time.append(t_fix_i)
            accrual_end_time.append(timeFromReference(index_mat))
            # payment time
            float_times.append(t_i)
            # nominals 
            nominals.append(cf.nominal())
    return np.array(float_times), np.array(float_dcf), np.array(accrual_start_time), np.array(accrual_end_time), np.array(nominals)

With these two function we can evaluate the the underlying swap given the time and state of the process:

def swapPathNPV(swap, t):
    fixed_times, fixed_amounts = getFixedLeg(swap, t)
    float_times, float_dcf, accrual_start_time, accrual_end_time, nominals = getFloatingLeg(swap, t)
    df_times = np.concatenate([fixed_times, 
                           accrual_start_time, 
                           accrual_end_time, 
                           float_times])
    df_times = np.unique(df_times)
    # Store indices of fix leg payment times in 
    # the df_times array
    fix_idx = np.in1d(df_times, fixed_times, True)
    fix_idx = fix_idx.nonzero()
    # Indices of the floating leg payment times 
    # in the df_times array
    float_idx = np.in1d(df_times, float_times, True)
    float_idx = float_idx.nonzero()
    # Indices of the accrual start and end time
    # in the df_times array
    accrual_start_idx = np.in1d(df_times, accrual_start_time, True)
    accrual_start_idx = accrual_start_idx.nonzero()
    accrual_end_idx = np.in1d(df_times, accrual_end_time, True)
    accrual_end_idx = accrual_end_idx.nonzero()
    # Calculate NPV
    def calc(x_t):
        discount = np.vectorize(lambda T: model.zerobond(T, t, x_t))
        dfs = discount(df_times)
        # Calculate fixed leg npv
        fix_leg_npv = np.sum(fixed_amounts * dfs[fix_idx])
        # Estimate the index fixings
        index_fixings = (dfs[accrual_start_idx] / dfs[accrual_end_idx] - 1) 
        index_fixings /= float_dcf
        # Calculate the floating leg npv
        float_leg_npv = np.sum(nominals * index_fixings * float_dcf * dfs[float_idx])
        npv = float_leg_npv - fix_leg_npv
        return npv
    return calc

This functions returns us a pricing function, which takes the current state of the process to price calculate the NPV of the swap at time t. The technique we use here is called closure function. The inner function is aware of the underlying swap and the ‘fixed’ time t and can access all variables defined in the outer function.

Remark on the pricing function
This is a very simple function. Its not possible to calculate the correct NPV of the swap for a time t between to fixing times of the floating leg. The current floating period will be ignored. So use that function only to evaluate the swap NPV only on fixing dates. We will extend this function to be capable to evaluate the NPV on any time t in the next post.

Use of the function at time t=0

SwapNPV at time t0

The generation of the time grid hasn’t changed from the last time. It just consists of three points.

Timegrid

Also the generation of our sample path is the same as last time. After we generate our path we calculate the deflated payoffs of our swap at time T:

pricer = np.vectorize(swapPathNPV(swap, time_grid[-1]))
cont_value = pricer(y[:,-1]) / numeraires[:,-1]
cont_value[cont_value < 0] = 0

First we generate a vectorised function of the pricing function and use it on the array of our sample paths y and then apply the maximum function on the result.

In the next step we go one step back in time and calculate the deflated exercise value of the swaption at that time:

pricer = np.vectorize(swapPathNPV(swap, time_grid[-2]))
exercise_values = pricer(y[:,-2]) / numeraires[:,-2]
exercise_values[exercise_values < 0] = 0

Now we estimate the coefficients of continuation value function. We use the library statsmodels and fit an OLS model to the data.

states = y[:, -2]
Y = np.column_stack((states, states**2, states**3, states**4))
Y = sm.add_constant(Y)
ols = sm.OLS(cont_value, Y)
ols_result = ols.fit()

With this coefficients we can now calculate the continuation value on each path, given the state:

cont_value_hat = np.sum(ols_result.params * Y, axis=1)

The deflated value of the swaption at the first exercise is the maximum out of exercise value and continuation value:

npv_amc = np.maximum(cont_value_hat, exercise_values)

The npv at time 0 is the mean of the simulated deflated npvs at the first exercise date times the value of the numeraire at time 0:

npv_amc = np.mean(npv_amc) * numeraires[0,0]

NPV Bermudan

To check the quality of our regression function f we can have a look on a scatter plot:

RegressionParameter

RegressionPlot

As we can see the regression function doesn’t seems to fit that good to the left tail. So we could either increase the degree of our function, try other polynomial function, change to another state variable or try piecewise regression functions.

As usual you can download the source code from my github account or find it on nbViewer.

In the next post we are going to use this regression based approach to generate exposure paths for a multi callable swap.

I hope you enjoy the post. Till next time.

Exposure simulation / PFE and CVA for multi-callable swaps / Bermudan swaptions… Part 1 of 3

In my previous posts we have seen a Monte-Carlo method to generate market scenarios and calculate the expected exposure, potential future exposure and credit value adjustment for a netting set of plain vanilla swaps. In the next three posts we will add multi-callable swaps (Bermudan swaptions) to the netting set.

Roadmap to multi callable products

In the first part we will see how to use a Monte-Carlo simulation for a single-callable swap (European Swaption) pricing. We don’t worry about the model calibration in this posts. This post is intend to fix the used notation and provide a simple example about basic Monte-Carlo pricing. The techniques presented here will be used and extend in the following two posts.

In the second part we develop a regression based approach (aka backward induction method or American Monte-Carlo or Longstaff-Schwartz method) to calculate the npv of a Bermudan swaption. Further we will calibrate the Gaussian short rate model to fit to a set of market prices of European swaptions.

At this point we will be able to calculate the npv of a multi-callable swap but the Monte-Carlo pricing is not suitable for an exposure simulation. Since a nested pricing simulation in a exposure simulation is very time consuming.

Therefore we will modify the American Monte-Carlo method in the third part and make it useable for our exposure simulation. The approach in the third post will follow the method presented by Drs. Alexandre Antonov, Serguei Issakov and Serguei Mechkov in their research paper ‘Backward Induction for Future Values’ and the methodology presented in the book ‘Modelling, Pricing, and Hedging Counterparty Credit Exposure: A Technical Guide’ by Giovanni Cesari et al.

But for now let’s start with something easy: European swaptions.

European swaption pricing

Since my first post we have been living in a single curve world and our model parameter have been being exogenous. To make things even more easy we have been using a flat yield curve. For now we don’t leave this comfortable world and apply the same setting for this example.

How to create a swaption with QuantLib?

An European payer/receiver swaption with physical delivery is an option that allows the option holder at option expiry to enter a payer/receiver swap. The rate paid/received on the fixed leg equals the strike of the swaption.

Given a plain vanilla swap, one can create an European swaption in the QuantLib with very few lines of code. All we need is the expiry date and the settlement type (cash settled or physical delivery).

def makeSwaption(swap, callDates, settlement):
    if len(callDates) == 1:
        exercise = ql.EuropeanExercise(callDates[0])
    else:
        exercise = ql.BermudanExercise(callDates)
    return ql.Swaption(swap, exercise, settlement)

settlementDate = today + ql.Period("1Y")

swaps = [makeSwap(settlementDate,
                  ql.Period("5Y"),
                  1e6,
                  0.03047096,
                  euribor6m)
        ]

calldates = [euribor6m.fixingDate(settlementDate)]
 
swaptions = [makeSwaption(swap, 
                          calldates, 
                          ql.Settlement.Physical) 
             for swap, fd in swaps]

Monte-Carlo pricing

At option expiry T_E the npv of the swaption is V(T_E) = \max(Swap(T_E), 0.0) with Swap(T_E) donating the value of the underlying swap at expiry.

In the Gaussian short rate model under the T-forward measure the zerobond with maturity in T years is our numeraire N(t). Under the usual conditions and using the T-forward measure we can calculate the npv at time 0 by

V(0) = N(0) E[\frac{V(T_E)}{N(T_E)} | F_0].

In our model the numeraire itself is not deterministic so we have to simulate it too.

The Monte-Carlo pricing will consist of three steps

– generate M paths of the short rate process and
– evaluate the swap npv V_i and calculate the numeraire price N_i at option expiry T_E for each path i=0\dots,M-1
– and finally approximate the expected value by \frac{1}{M} \sum_{i=0}^{M-1} \max(\frac{V_i}{N_i},0.0).

Implementation

Instead of using the QuantLib swap pricer we will do the path pricing in Python. Therefore we need to extract the needed information from the instrument.

We convert all dates into times (in years from today). We use the day count convention Act/365.

mcDC = yts.dayCounter()

def timeFromReferenceFactory(daycounter, ref):
    """
    returns a function, that calculate the time in years
    from a the reference date *ref* to date *dat* 
    with respect to the given DayCountConvention *daycounter*
    
    Parameter:
        dayCounter (ql.DayCounter)
        ref (ql.Date)
        
    Return:
    
        f(np.array(ql.Date)) -> np.array(float)
    """
    def impl(dat):
        return daycounter.yearFraction(ref, dat)
    return np.vectorize(impl)

timeFromReference = timeFromReferenceFactory(mcDC, today)

In the first step we extract all fixed leg cashflows and payment dates to numpy arrays.

That are all information we need to calculate the fixed leg npv on a path. We calculate the discount factors for each payment time and multiply the cashflow array with the discount factors array element-wise. The sum of this result gives us the fixed leg npv.

fixed_leg = swap.leg(0)
n = len(fixed_leg)
fixed_times = np.zeros(n)
fixed_amounts = np.zeros(n)
for i in range(n):
    cf = fixed_leg[i]
    fixed_times[i] = timeFromReference(cf.date())
    fixed_amounts[i] = cf.amount()

For the floating leg npv we extract all payment, accrual period start and end dates. We assume that the index start and end dates coincide with the accruals start and end dates and that all periods are regular. With this information we can estimate all floating cashflows by estimating the index fixing through

fixing(t_s) = (\frac{df(t_s)}{df(t_e)}-1) \frac{1}{dcf_{idx}(t_s,t_e)},

with the discount factor df(t) at time t, the year fraction dcf_{idx} between accrual start time t_s and accrual end time t_e using the index day count convention.

float_leg = swap.leg(1)
n = len(float_leg)
float_times = np.zeros(n)
float_dcf = np.zeros(n)
accrual_start_time = np.zeros(n)
accrual_end_time = np.zeros(n)
nominals = np.zeros(n)
for i in range(n):
    # convert base classiborstart_idx Cashflow to
    # FloatingRateCoupon
    cf = ql.as_floating_rate_coupon(float_leg[i])
    iborIndex = cf.index()
    value_date = cf.referencePeriodStart()
    index_mat = cf.referencePeriodEnd()
    # year fraction
    float_dcf[i] = cf.accrualPeriod()
    # calculate the start and end time
    accrual_start_time[i] = timeFromReference(value_date)
    accrual_end_time[i] = timeFromReference(index_mat)
    # payment time
    float_times[i] = timeFromReference(cf.date())
    # nominals 
    nominals[i] = cf.nominal()

We could extend this about gearings and index spreads, but we set the gearing to be one and the spread to be zero.

To calculate the swap npv we need the discount factors for all future payment times (fixed and floating leg), accrual period start and end dates. We store all times together in one array. To get the discount factors we apply the method zeroBond of the GSR model on this array element-wise.

# Store all times for which we need a discount factor in one array
df_times = np.concatenate([fixed_times,
				       ibor_start_time,
				       ibor_end_time,
				       float_times])
df_times = np.unique(df_times)

# Store indices of fix leg payment times in 
# the df_times array
fix_idx = np.in1d(df_times, fixed_times, True)
fix_idx = fix_idx.nonzero()
# Indices of the floating leg payment times 
# in the df_times array
float_idx = np.in1d(df_times, float_times, True)
float_idx = float_idx.nonzero()
# Indices of the accrual start and end time
# in the df_times array
accrual_start_idx = np.in1d(df_times, ibor_start_time, True)
accrual_start_idx = accrual_start_idx.nonzero()
accrual_end_idx = np.in1d(df_times, ibor_end_time, True)
accrual_end_idx = accrual_end_idx.nonzero()

Our pricing algorithm for the underlying swap is:

# Calculate all discount factors
discount = np.vectorize(lambda T: model.zerobond(T, t, x_t))
dfs = discount(df_times)
# Calculate fixed leg npv
fix_leg_npv = np.sum(fixed_amounts * dfs[fix_idx])
# Estimate the index fixings
index_fixings = (dfs[accrual_start_idx] / dfs[accrual_end_idx] - 1) 
index_fixings /= float_dcf
# Calculate the floating leg npv
float_leg_npv = np.sum(nominals * index_fixings * float_dcf * dfs[float_idx])
npv = float_leg_npv - fix_leg_npv

Our time grid for the simulation consists of two points, today and option expiry.

The path generation is very similar like the one in the previous posts, but this time we not only simulate the underlying process but also the numeraires, and we calculate all needed discount factors on a path.

M = 100000
m = len(time_grid)
x = np.zeros((M, m))
y = np.zeros((M, m))
numeraires = np.zeros((M,m))
dfs = np.zeros((M, m, len(df_times)))

for n in range(0,M):
    numeraires[n, 0] = model.numeraire(0, 0)
    
for n in range(0,M):
    dWs = generator.nextSequence().value()
    for i in range(1, len(time_grid)):
        t0 = time_grid[i-1]
        t1 = time_grid[i]
        e = process.expectation(t0, 
                                x[n,i-1], 
                                dt[i-1])
        std = process.stdDeviation(t0,
                                   x[n,i-1],
                                   dt[i-1])
        x[n,i] = e + dWs[i-1] * std 
        e_0_0 = process.expectation(0,0,t1)
        std_0_0 = process.stdDeviation(0,0,t1)
        y[n,i] = (x[n,i] - e_0_0) / std_0_0
        df = np.vectorize(lambda T : model.zerobond(T, t1, y[n,i]))
        numeraires[n ,i] = model.numeraire(t1, y[n, i])
        dfs[n,i] = df(df_times)                            

Given the matrix of numeraires and discount factors we can calculate the npv on the path very fast using numpy arrays.

index_fixings = dfs[:,-1, accrual_start_idx][:,0,:] / dfs[:, -1, accrual_end_idx][:,0,:] - 1
index_fixings /= float_dcf
floatLeg_npv = np.sum(index_fixings * float_dcf * dfs[:,-1, float_idx][:,0,:] * nominals, 
                     axis = 1) 
fixedLeg_npv = np.sum(fixed_amounts * dfs[:, -1, fix_idx][:,0,:], axis=1)
npv = (floatLeg_npv - fixedLeg_npv)
# Apply payoff function 
npv[npv < 0] = 0
# Deflate NPV
npv = npv / numeraires[:,-1] 
npv = np.mean(npv) * numeraires[0,0]

Some remarks

To extract the information from the swap we use the method leg. This method is not a part of the QuantLib 1.5, but you could clone my QuantLib fork on GitHub (branch: SwigSwapExtension) and build the Swig binding yourself. I also send a pull request to Luigi. Maybe it will be part of the official QuantLib at a later time.

In the real world there are quotes for European swaptions in terms of implied volatility available and one would like use a model that is consistent with the market quotes. This is done by model calibration (choice the model parameter so that the model give the same premium for the quoted swaptions). Of cause one could use the Monte-Carlo pricing to calibrate the model, but this would be very time consuming process. The Gaussian short rate model provide some faster and very convenient routines for that. In the next part we will see how to calibrate the model and use the calibrated model to price Bermudan swaptions.

As usual you can download the notebook on nbviewer or GitHub.

Stay tuned for the next part coming soon…