-
Notifications
You must be signed in to change notification settings - Fork 98
Add support for new initializers in rewrite rules #2019
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
gramalingam
commented
Jan 17, 2025
justinchuby
reviewed
Jan 17, 2025
justinchuby
reviewed
Jan 17, 2025
❌ 88 Tests Failed:
View the top 3 failed tests by shortest run time
To view more test analytics, go to the Test Analytics Dashboard |
justinchuby
approved these changes
Jan 17, 2025
justinchuby
reviewed
Jan 17, 2025
justinchuby
reviewed
Jan 17, 2025
justinchuby
reviewed
Jan 17, 2025
Co-authored-by: Justin Chu <justinchuby@users.noreply.github.com>
justinchuby
reviewed
Jan 17, 2025
kunal-vaishnavi
added a commit
to microsoft/onnxruntime
that referenced
this pull request
Jan 31, 2025
### Description This PR adds fusions for [Google's SigLIP model](https://huggingface.co/google/siglip-base-patch16-224/) and Microsoft's internal conformer-encoder model. Here is an example of how to run the ORT transformer optimizer for the SigLIP model. ``` $ git clone https://github.com/microsoft/onnxruntime $ cd onnxruntime/onnxruntime/python/tools/transformers $ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type clip --num_heads 16 --hidden_size 1152 --use_external_data_format --opt_level 0 --disable_shape_inference ``` Here is an example of how to run the ORT transformer optimizer for the conformer-encoder model. ``` $ git clone https://github.com/microsoft/onnxruntime $ cd onnxruntime/onnxruntime/python/tools/transformers $ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type conformer --num_heads 16 --hidden_size 1024 --use_external_data_format --opt_level 0 --disable_shape_inference --convert_attribute ``` ### Motivation and Context This PR helps optimize multi-modal models that use SigLIP for the vision encoder and conformer-encoder for the speech encoder. This PR uses changes from the following PRs: - pytorch/pytorch#144801 - microsoft/onnxscript#2018 - microsoft/onnxscript#2019 - microsoft/onnxscript#2020 - microsoft/onnxscript#2021 - microsoft/onnxscript#2022 - microsoft/onnxscript#2024 - microsoft/onnxscript#2025 - microsoft/onnxscript#2029 - microsoft/onnxscript#2033 ### Introduction of ONNX Script This PR introduces [ONNX Script](https://github.com/microsoft/onnxscript) into the ORT transformer optimizer as an optional step via the `fold_transpose_initializers()` method of the `DynamoOnnxHelper` class.
sfatimar
pushed a commit
to intel/onnxruntime
that referenced
this pull request
Feb 5, 2025
### Description This PR adds fusions for [Google's SigLIP model](https://huggingface.co/google/siglip-base-patch16-224/) and Microsoft's internal conformer-encoder model. Here is an example of how to run the ORT transformer optimizer for the SigLIP model. ``` $ git clone https://github.com/microsoft/onnxruntime $ cd onnxruntime/onnxruntime/python/tools/transformers $ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type clip --num_heads 16 --hidden_size 1152 --use_external_data_format --opt_level 0 --disable_shape_inference ``` Here is an example of how to run the ORT transformer optimizer for the conformer-encoder model. ``` $ git clone https://github.com/microsoft/onnxruntime $ cd onnxruntime/onnxruntime/python/tools/transformers $ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type conformer --num_heads 16 --hidden_size 1024 --use_external_data_format --opt_level 0 --disable_shape_inference --convert_attribute ``` ### Motivation and Context This PR helps optimize multi-modal models that use SigLIP for the vision encoder and conformer-encoder for the speech encoder. This PR uses changes from the following PRs: - pytorch/pytorch#144801 - microsoft/onnxscript#2018 - microsoft/onnxscript#2019 - microsoft/onnxscript#2020 - microsoft/onnxscript#2021 - microsoft/onnxscript#2022 - microsoft/onnxscript#2024 - microsoft/onnxscript#2025 - microsoft/onnxscript#2029 - microsoft/onnxscript#2033 ### Introduction of ONNX Script This PR introduces [ONNX Script](https://github.com/microsoft/onnxscript) into the ORT transformer optimizer as an optional step via the `fold_transpose_initializers()` method of the `DynamoOnnxHelper` class.
sfatimar
pushed a commit
to intel/onnxruntime
that referenced
this pull request
Feb 5, 2025
### Description This PR adds fusions for [Google's SigLIP model](https://huggingface.co/google/siglip-base-patch16-224/) and Microsoft's internal conformer-encoder model. Here is an example of how to run the ORT transformer optimizer for the SigLIP model. ``` $ git clone https://github.com/microsoft/onnxruntime $ cd onnxruntime/onnxruntime/python/tools/transformers $ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type clip --num_heads 16 --hidden_size 1152 --use_external_data_format --opt_level 0 --disable_shape_inference ``` Here is an example of how to run the ORT transformer optimizer for the conformer-encoder model. ``` $ git clone https://github.com/microsoft/onnxruntime $ cd onnxruntime/onnxruntime/python/tools/transformers $ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type conformer --num_heads 16 --hidden_size 1024 --use_external_data_format --opt_level 0 --disable_shape_inference --convert_attribute ``` ### Motivation and Context This PR helps optimize multi-modal models that use SigLIP for the vision encoder and conformer-encoder for the speech encoder. This PR uses changes from the following PRs: - pytorch/pytorch#144801 - microsoft/onnxscript#2018 - microsoft/onnxscript#2019 - microsoft/onnxscript#2020 - microsoft/onnxscript#2021 - microsoft/onnxscript#2022 - microsoft/onnxscript#2024 - microsoft/onnxscript#2025 - microsoft/onnxscript#2029 - microsoft/onnxscript#2033 ### Introduction of ONNX Script This PR introduces [ONNX Script](https://github.com/microsoft/onnxscript) into the ORT transformer optimizer as an optional step via the `fold_transpose_initializers()` method of the `DynamoOnnxHelper` class.
ashrit-ms
pushed a commit
to microsoft/onnxruntime
that referenced
this pull request
Feb 11, 2025
### Description This PR adds fusions for [Google's SigLIP model](https://huggingface.co/google/siglip-base-patch16-224/) and Microsoft's internal conformer-encoder model. Here is an example of how to run the ORT transformer optimizer for the SigLIP model. ``` $ git clone https://github.com/microsoft/onnxruntime $ cd onnxruntime/onnxruntime/python/tools/transformers $ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type clip --num_heads 16 --hidden_size 1152 --use_external_data_format --opt_level 0 --disable_shape_inference ``` Here is an example of how to run the ORT transformer optimizer for the conformer-encoder model. ``` $ git clone https://github.com/microsoft/onnxruntime $ cd onnxruntime/onnxruntime/python/tools/transformers $ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type conformer --num_heads 16 --hidden_size 1024 --use_external_data_format --opt_level 0 --disable_shape_inference --convert_attribute ``` ### Motivation and Context This PR helps optimize multi-modal models that use SigLIP for the vision encoder and conformer-encoder for the speech encoder. This PR uses changes from the following PRs: - pytorch/pytorch#144801 - microsoft/onnxscript#2018 - microsoft/onnxscript#2019 - microsoft/onnxscript#2020 - microsoft/onnxscript#2021 - microsoft/onnxscript#2022 - microsoft/onnxscript#2024 - microsoft/onnxscript#2025 - microsoft/onnxscript#2029 - microsoft/onnxscript#2033 ### Introduction of ONNX Script This PR introduces [ONNX Script](https://github.com/microsoft/onnxscript) into the ORT transformer optimizer as an optional step via the `fold_transpose_initializers()` method of the `DynamoOnnxHelper` class.
guschmue
pushed a commit
to microsoft/onnxruntime
that referenced
this pull request
Mar 6, 2025
### Description This PR adds fusions for [Google's SigLIP model](https://huggingface.co/google/siglip-base-patch16-224/) and Microsoft's internal conformer-encoder model. Here is an example of how to run the ORT transformer optimizer for the SigLIP model. ``` $ git clone https://github.com/microsoft/onnxruntime $ cd onnxruntime/onnxruntime/python/tools/transformers $ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type clip --num_heads 16 --hidden_size 1152 --use_external_data_format --opt_level 0 --disable_shape_inference ``` Here is an example of how to run the ORT transformer optimizer for the conformer-encoder model. ``` $ git clone https://github.com/microsoft/onnxruntime $ cd onnxruntime/onnxruntime/python/tools/transformers $ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type conformer --num_heads 16 --hidden_size 1024 --use_external_data_format --opt_level 0 --disable_shape_inference --convert_attribute ``` ### Motivation and Context This PR helps optimize multi-modal models that use SigLIP for the vision encoder and conformer-encoder for the speech encoder. This PR uses changes from the following PRs: - pytorch/pytorch#144801 - microsoft/onnxscript#2018 - microsoft/onnxscript#2019 - microsoft/onnxscript#2020 - microsoft/onnxscript#2021 - microsoft/onnxscript#2022 - microsoft/onnxscript#2024 - microsoft/onnxscript#2025 - microsoft/onnxscript#2029 - microsoft/onnxscript#2033 ### Introduction of ONNX Script This PR introduces [ONNX Script](https://github.com/microsoft/onnxscript) into the ORT transformer optimizer as an optional step via the `fold_transpose_initializers()` method of the `DynamoOnnxHelper` class.
ashrit-ms
pushed a commit
to microsoft/onnxruntime
that referenced
this pull request
Mar 17, 2025
### Description This PR adds fusions for [Google's SigLIP model](https://huggingface.co/google/siglip-base-patch16-224/) and Microsoft's internal conformer-encoder model. Here is an example of how to run the ORT transformer optimizer for the SigLIP model. ``` $ git clone https://github.com/microsoft/onnxruntime $ cd onnxruntime/onnxruntime/python/tools/transformers $ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type clip --num_heads 16 --hidden_size 1152 --use_external_data_format --opt_level 0 --disable_shape_inference ``` Here is an example of how to run the ORT transformer optimizer for the conformer-encoder model. ``` $ git clone https://github.com/microsoft/onnxruntime $ cd onnxruntime/onnxruntime/python/tools/transformers $ python3 optimizer.py --input /path/to/model.onnx --output /path/to/model_opt.onnx --model_type conformer --num_heads 16 --hidden_size 1024 --use_external_data_format --opt_level 0 --disable_shape_inference --convert_attribute ``` ### Motivation and Context This PR helps optimize multi-modal models that use SigLIP for the vision encoder and conformer-encoder for the speech encoder. This PR uses changes from the following PRs: - pytorch/pytorch#144801 - microsoft/onnxscript#2018 - microsoft/onnxscript#2019 - microsoft/onnxscript#2020 - microsoft/onnxscript#2021 - microsoft/onnxscript#2022 - microsoft/onnxscript#2024 - microsoft/onnxscript#2025 - microsoft/onnxscript#2029 - microsoft/onnxscript#2033 ### Introduction of ONNX Script This PR introduces [ONNX Script](https://github.com/microsoft/onnxscript) into the ORT transformer optimizer as an optional step via the `fold_transpose_initializers()` method of the `DynamoOnnxHelper` class.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Add support for creating new initializers in rewrite rules. The same can serve as the basis for creating new initializers in onnxscript (eager mode), but that is a separate issue to be tackled separately.
Addresses #2016