-
Notifications
You must be signed in to change notification settings - Fork 614
fix: custom provider add refresh-model #1079
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
WalkthroughTwo files are updated: ProviderApiConfig.vue simplifies a button rendering condition by removing a custom provider dependency check. openAICompatibleProvider.ts receives a substantial refactor to support multimodal content, tool calls, tool results, and improved function call parsing with a non-native tool call path in the streaming flow. Changes
Sequence Diagram(s)sequenceDiagram
actor User
participant formatMessages
participant handleChatCompletion
participant parseFunctionCalls
participant API
User->>formatMessages: Message with tool_calls
Note over formatMessages: Process user/assistant/tool roles<br/>Merge tool_calls into assistant message<br/>Append tool results
formatMessages-->>handleChatCompletion: Formatted messages
alt Native tool support
handleChatCompletion->>API: Send with native tools
else Non-native tools
Note over handleChatCompletion: Convert tool_calls to text<br/>Inject into system/user context
handleChatCompletion->>API: Send text-based prompt
end
API-->>handleChatCompletion: Response (native or text)
handleChatCompletion->>parseFunctionCalls: Extract function calls
Note over parseFunctionCalls: Parse response text<br/>Apply jsonrepair if needed<br/>Standardize to tool call objects
parseFunctionCalls-->>handleChatCompletion: Array of {id, type, function}
handleChatCompletion-->>User: Tool calls or completion
Estimated code review effort🎯 4 (Complex) | ⏱️ ~45 minutes
Possibly related PRs
Suggested labels
Poem
Pre-merge checks and finishing touches❌ Failed checks (1 warning)
✅ Passed checks (1 passed)
✨ Finishing touches
🧪 Generate unit tests (beta)
Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out. Comment |
better compatibility
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 1
📜 Review details
Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (2)
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts(1 hunks)src/main/presenter/threadPresenter/promptBuilder.ts(1 hunks)
✅ Files skipped from review due to trivial changes (1)
- src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
🧰 Additional context used
📓 Path-based instructions (10)
**/*.{js,jsx,ts,tsx}
📄 CodeRabbit inference engine (.cursor/rules/development-setup.mdc)
**/*.{js,jsx,ts,tsx}: 使用 OxLint 进行代码检查
Log和注释使用英文书写
Files:
src/main/presenter/threadPresenter/promptBuilder.ts
src/{main,renderer}/**/*.ts
📄 CodeRabbit inference engine (.cursor/rules/electron-best-practices.mdc)
src/{main,renderer}/**/*.ts: Use context isolation for improved security
Implement proper inter-process communication (IPC) patterns
Optimize application startup time with lazy loading
Implement proper error handling and logging for debugging
Files:
src/main/presenter/threadPresenter/promptBuilder.ts
src/main/**/*.ts
📄 CodeRabbit inference engine (.cursor/rules/electron-best-practices.mdc)
Use Electron's built-in APIs for file system and native dialogs
Files:
src/main/presenter/threadPresenter/promptBuilder.ts
**/*.{ts,tsx}
📄 CodeRabbit inference engine (.cursor/rules/error-logging.mdc)
**/*.{ts,tsx}: 始终使用 try-catch 处理可能的错误
提供有意义的错误信息
记录详细的错误日志
优雅降级处理
日志应包含时间戳、日志级别、错误代码、错误描述、堆栈跟踪(如适用)、相关上下文信息
日志级别应包括 ERROR、WARN、INFO、DEBUG
不要吞掉错误
提供用户友好的错误信息
实现错误重试机制
避免记录敏感信息
使用结构化日志
设置适当的日志级别
Files:
src/main/presenter/threadPresenter/promptBuilder.ts
src/main/**/*.{ts,js,tsx,jsx}
📄 CodeRabbit inference engine (.cursor/rules/project-structure.mdc)
主进程代码放在
src/main
Files:
src/main/presenter/threadPresenter/promptBuilder.ts
**/*.{ts,tsx,js,vue}
📄 CodeRabbit inference engine (CLAUDE.md)
Use English for all logs and comments
Files:
src/main/presenter/threadPresenter/promptBuilder.ts
**/*.{ts,tsx,vue}
📄 CodeRabbit inference engine (CLAUDE.md)
Enable and adhere to strict TypeScript typing (avoid implicit any, prefer precise types)
Use PascalCase for TypeScript types and classes
Files:
src/main/presenter/threadPresenter/promptBuilder.ts
src/main/presenter/**/*.ts
📄 CodeRabbit inference engine (AGENTS.md)
Place Electron main-process presenters under src/main/presenter/ (Window, Tab, Thread, Mcp, Config, LLMProvider)
Files:
src/main/presenter/threadPresenter/promptBuilder.ts
**/*.{ts,tsx,js,jsx,vue,css,scss,md,json,yml,yaml}
📄 CodeRabbit inference engine (AGENTS.md)
Prettier style: single quotes, no semicolons, print width 100; run pnpm run format
Files:
src/main/presenter/threadPresenter/promptBuilder.ts
**/*.{ts,tsx,js,jsx,vue}
📄 CodeRabbit inference engine (AGENTS.md)
**/*.{ts,tsx,js,jsx,vue}: Use OxLint for JS/TS code; keep lint clean
Use camelCase for variables and functions
Use SCREAMING_SNAKE_CASE for constants
Files:
src/main/presenter/threadPresenter/promptBuilder.ts
🧠 Learnings (11)
📓 Common learnings
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/providers/*.ts : Provider implementations should yield tool call events (`tool_call_start`, `tool_call_chunk`, `tool_call_end`) in the standardized format.
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/providers/*.ts : Provider files should implement helper methods such as `formatMessages`, `convertToProviderTools`, `parseFunctionCalls`, and `prepareFunctionCallPrompt` as needed for provider-specific logic.
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/providers/*.ts : When a provider does not support native function calling, it must prepare messages using prompt wrapping (e.g., `prepareFunctionCallPrompt`) before making the API call.
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/providers/*.ts : When a provider supports native function calling, MCP tools must be converted to the provider's format (e.g., using `convertToProviderTools`) and included in the API request.
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/providers/*.ts : Each file in `src/main/presenter/llmProviderPresenter/providers/*.ts` should handle interaction with a specific LLM API, including request/response formatting, tool definition conversion, native/non-native tool call management, and standardizing output streams to a common event format.
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/index.ts : The main Agent loop in `llmProviderPresenter/index.ts` should handle multi-round LLM calls and tool usage, maintaining conversation state and controlling the loop with `needContinueConversation` and `toolCallCount`.
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/index.ts : The main Agent loop should buffer text content, handle tool call events, format tool results for the next LLM call, and manage conversation continuation logic.
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/providers/*.ts : All provider implementations must parse provider-specific data chunks and yield standardized events for text, reasoning, tool calls, usage, errors, stop reasons, and image data.
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: CLAUDE.md:0-0
Timestamp: 2025-09-06T03:07:23.817Z
Learning: Applies to src/main/presenter/configPresenter/providers.ts : Add provider configuration entries in src/main/presenter/configPresenter/providers.ts
📚 Learning: 2025-07-21T01:46:52.880Z
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/providers/*.ts : Provider implementations should yield tool call events (`tool_call_start`, `tool_call_chunk`, `tool_call_end`) in the standardized format.
Applied to files:
src/main/presenter/threadPresenter/promptBuilder.ts
📚 Learning: 2025-07-21T01:46:52.880Z
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/providers/*.ts : Provider files should implement helper methods such as `formatMessages`, `convertToProviderTools`, `parseFunctionCalls`, and `prepareFunctionCallPrompt` as needed for provider-specific logic.
Applied to files:
src/main/presenter/threadPresenter/promptBuilder.ts
📚 Learning: 2025-07-21T01:46:52.880Z
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/index.ts : The main Agent loop should buffer text content, handle tool call events, format tool results for the next LLM call, and manage conversation continuation logic.
Applied to files:
src/main/presenter/threadPresenter/promptBuilder.ts
📚 Learning: 2025-07-21T01:46:52.880Z
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/providers/*.ts : When a provider does not support native function calling, it must prepare messages using prompt wrapping (e.g., `prepareFunctionCallPrompt`) before making the API call.
Applied to files:
src/main/presenter/threadPresenter/promptBuilder.ts
📚 Learning: 2025-07-21T01:46:52.880Z
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/index.ts : The main Agent loop in `llmProviderPresenter/index.ts` should handle multi-round LLM calls and tool usage, maintaining conversation state and controlling the loop with `needContinueConversation` and `toolCallCount`.
Applied to files:
src/main/presenter/threadPresenter/promptBuilder.ts
📚 Learning: 2025-07-21T01:46:52.880Z
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/providers/*.ts : Each file in `src/main/presenter/llmProviderPresenter/providers/*.ts` should handle interaction with a specific LLM API, including request/response formatting, tool definition conversion, native/non-native tool call management, and standardizing output streams to a common event format.
Applied to files:
src/main/presenter/threadPresenter/promptBuilder.ts
📚 Learning: 2025-07-21T01:46:52.880Z
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/providers/*.ts : When a provider supports native function calling, MCP tools must be converted to the provider's format (e.g., using `convertToProviderTools`) and included in the API request.
Applied to files:
src/main/presenter/threadPresenter/promptBuilder.ts
📚 Learning: 2025-07-21T01:46:52.880Z
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/index.ts : `src/main/presenter/llmProviderPresenter/index.ts` should manage the overall Agent loop, conversation history, tool execution via `McpPresenter`, and frontend communication via `eventBus`.
Applied to files:
src/main/presenter/threadPresenter/promptBuilder.ts
📚 Learning: 2025-09-06T03:07:23.817Z
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: CLAUDE.md:0-0
Timestamp: 2025-09-06T03:07:23.817Z
Learning: Applies to src/main/presenter/mcpPresenter/index.ts : Register new MCP tools in src/main/presenter/mcpPresenter/index.ts
Applied to files:
src/main/presenter/threadPresenter/promptBuilder.ts
📚 Learning: 2025-09-04T11:03:30.184Z
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/provider-guidelines.mdc:0-0
Timestamp: 2025-09-04T11:03:30.184Z
Learning: Do not emit AssistantMessageBlock or any UI-layer types from the Provider
Applied to files:
src/main/presenter/threadPresenter/promptBuilder.ts
⏰ Context from checks skipped due to timeout of 90000ms. You can increase the timeout in your CodeRabbit configuration to a maximum of 15 minutes (900000ms). (1)
- GitHub Check: build-check (x64)
🔇 Additional comments (2)
src/main/presenter/threadPresenter/promptBuilder.ts (2)
500-506: Control flow change is consistent with plain-text formatting approach.The simplified logic correctly pushes all historical content (including tool calls) as plain text, which is consistent with the formatting changes above. The implementation is clean and the comment clearly explains the behavior.
471-478: Incomplete tool call check is defensive programming—not indicative of upstream issues.Tool calls generated by all providers (OpenAI, Anthropic, Ollama, GitHub Copilot, AWS Bedrock) consistently include both
idandname. This check handles edge cases in historical message processing: incomplete data from older formats or data reconstruction. The defensive skip is appropriate and safe. Plain text formatting for historical tool calls is the intended behavior for provider compatibility (comment notes this avoids validation errors). No upstream issues to investigate.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 1
🧹 Nitpick comments (2)
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts (2)
296-331: Consider logging the parsing error for tool call arguments.Lines 314-321 parse tool call arguments to format them as JSON, but the catch block silently converts to string without logging. This could hide malformed tool call data.
Apply this diff to add error logging:
try { const args = typeof toolCall.function?.arguments === 'string' ? JSON.parse(toolCall.function.arguments) : toolCall.function?.arguments argsText = JSON.stringify(args, null, 2) - } catch { + } catch (parseError) { + console.warn('[formatMessages] Failed to parse tool call arguments:', parseError) argsText = String(toolCall.function?.arguments || '{}') }
1232-1413: Consider refactoringparseFunctionCallsinto smaller helper methods.This method is quite complex (~180 lines) with deeply nested logic for parsing, validation, and extraction. While the error handling is robust, the method would be more maintainable if broken into focused helpers:
extractFunctionCallBlocks(response: string)- extract content between tagsparseAndRepairJson(content: string)- handle JSON.parse with jsonrepair fallbackextractFunctionNameAndArgs(parsedCall: any)- extract from various structurescreateToolCallObject(name, args, id)- build standardized objectThis would improve readability and make each piece easier to test independently.
Based on learnings
📜 Review details
Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (1)
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts(4 hunks)
🧰 Additional context used
📓 Path-based instructions (11)
**/*.{js,jsx,ts,tsx}
📄 CodeRabbit inference engine (.cursor/rules/development-setup.mdc)
**/*.{js,jsx,ts,tsx}: 使用 OxLint 进行代码检查
Log和注释使用英文书写
Files:
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
src/{main,renderer}/**/*.ts
📄 CodeRabbit inference engine (.cursor/rules/electron-best-practices.mdc)
src/{main,renderer}/**/*.ts: Use context isolation for improved security
Implement proper inter-process communication (IPC) patterns
Optimize application startup time with lazy loading
Implement proper error handling and logging for debugging
Files:
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
src/main/**/*.ts
📄 CodeRabbit inference engine (.cursor/rules/electron-best-practices.mdc)
Use Electron's built-in APIs for file system and native dialogs
Files:
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
**/*.{ts,tsx}
📄 CodeRabbit inference engine (.cursor/rules/error-logging.mdc)
**/*.{ts,tsx}: 始终使用 try-catch 处理可能的错误
提供有意义的错误信息
记录详细的错误日志
优雅降级处理
日志应包含时间戳、日志级别、错误代码、错误描述、堆栈跟踪(如适用)、相关上下文信息
日志级别应包括 ERROR、WARN、INFO、DEBUG
不要吞掉错误
提供用户友好的错误信息
实现错误重试机制
避免记录敏感信息
使用结构化日志
设置适当的日志级别
Files:
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
src/main/presenter/llmProviderPresenter/providers/*.ts
📄 CodeRabbit inference engine (.cursor/rules/llm-agent-loop.mdc)
src/main/presenter/llmProviderPresenter/providers/*.ts: Each file insrc/main/presenter/llmProviderPresenter/providers/*.tsshould handle interaction with a specific LLM API, including request/response formatting, tool definition conversion, native/non-native tool call management, and standardizing output streams to a common event format.
Provider implementations must use acoreStreammethod that yields standardized stream events to decouple the main loop from provider-specific details.
ThecoreStreammethod in each Provider must perform a single streaming API request per conversation round and must not contain multi-round tool call loop logic.
Provider files should implement helper methods such asformatMessages,convertToProviderTools,parseFunctionCalls, andprepareFunctionCallPromptas needed for provider-specific logic.
All provider implementations must parse provider-specific data chunks and yield standardized events for text, reasoning, tool calls, usage, errors, stop reasons, and image data.
When a provider does not support native function calling, it must prepare messages using prompt wrapping (e.g.,prepareFunctionCallPrompt) before making the API call.
When a provider supports native function calling, MCP tools must be converted to the provider's format (e.g., usingconvertToProviderTools) and included in the API request.
Provider implementations should aggregate and yield usage events as part of the standardized stream.
Provider implementations should yield image data events in the standardized format when applicable.
Provider implementations should yield reasoning events in the standardized format when applicable.
Provider implementations should yield tool call events (tool_call_start,tool_call_chunk,tool_call_end) in the standardized format.
Provider implementations should yield stop events with appropriatestop_reasonin the standardized format.
Provider implementations should yield error events in the standardized format...
Files:
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
src/main/**/*.{ts,js,tsx,jsx}
📄 CodeRabbit inference engine (.cursor/rules/project-structure.mdc)
主进程代码放在
src/main
Files:
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
**/*.{ts,tsx,js,vue}
📄 CodeRabbit inference engine (CLAUDE.md)
Use English for all logs and comments
Files:
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
**/*.{ts,tsx,vue}
📄 CodeRabbit inference engine (CLAUDE.md)
Enable and adhere to strict TypeScript typing (avoid implicit any, prefer precise types)
Use PascalCase for TypeScript types and classes
Files:
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
src/main/presenter/**/*.ts
📄 CodeRabbit inference engine (AGENTS.md)
Place Electron main-process presenters under src/main/presenter/ (Window, Tab, Thread, Mcp, Config, LLMProvider)
Files:
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
**/*.{ts,tsx,js,jsx,vue,css,scss,md,json,yml,yaml}
📄 CodeRabbit inference engine (AGENTS.md)
Prettier style: single quotes, no semicolons, print width 100; run pnpm run format
Files:
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
**/*.{ts,tsx,js,jsx,vue}
📄 CodeRabbit inference engine (AGENTS.md)
**/*.{ts,tsx,js,jsx,vue}: Use OxLint for JS/TS code; keep lint clean
Use camelCase for variables and functions
Use SCREAMING_SNAKE_CASE for constants
Files:
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
🧠 Learnings (14)
📓 Common learnings
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/providers/*.ts : Provider implementations should yield tool call events (`tool_call_start`, `tool_call_chunk`, `tool_call_end`) in the standardized format.
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/providers/*.ts : Each file in `src/main/presenter/llmProviderPresenter/providers/*.ts` should handle interaction with a specific LLM API, including request/response formatting, tool definition conversion, native/non-native tool call management, and standardizing output streams to a common event format.
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/providers/*.ts : When a provider supports native function calling, MCP tools must be converted to the provider's format (e.g., using `convertToProviderTools`) and included in the API request.
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/providers/*.ts : Provider files should implement helper methods such as `formatMessages`, `convertToProviderTools`, `parseFunctionCalls`, and `prepareFunctionCallPrompt` as needed for provider-specific logic.
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/vue-shadcn.mdc:0-0
Timestamp: 2025-07-23T00:45:57.322Z
Learning: Applies to src/renderer/**/*.{vue} : Use provide/inject for dependency injection when appropriate.
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: CLAUDE.md:0-0
Timestamp: 2025-09-06T03:07:23.817Z
Learning: Applies to src/main/presenter/configPresenter/providers.ts : Add provider configuration entries in src/main/presenter/configPresenter/providers.ts
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/providers/*.ts : All provider implementations must parse provider-specific data chunks and yield standardized events for text, reasoning, tool calls, usage, errors, stop reasons, and image data.
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/providers/*.ts : The `coreStream` method in each Provider must perform a single streaming API request per conversation round and must not contain multi-round tool call loop logic.
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: The architecture should ensure consistent behavior for tool handling, reasoning content parsing, and event emission across all Providers.
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/vue-best-practices.mdc:0-0
Timestamp: 2025-07-21T01:47:28.817Z
Learning: Applies to src/renderer/src/**/*.{vue,ts,tsx,js,jsx} : Use the Composition API for better code organization and reusability
📚 Learning: 2025-07-21T01:46:52.880Z
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/providers/*.ts : Provider files should implement helper methods such as `formatMessages`, `convertToProviderTools`, `parseFunctionCalls`, and `prepareFunctionCallPrompt` as needed for provider-specific logic.
Applied to files:
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
📚 Learning: 2025-07-21T01:46:52.880Z
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/providers/*.ts : When a provider supports native function calling, MCP tools must be converted to the provider's format (e.g., using `convertToProviderTools`) and included in the API request.
Applied to files:
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
📚 Learning: 2025-07-21T01:46:52.880Z
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/providers/*.ts : Each file in `src/main/presenter/llmProviderPresenter/providers/*.ts` should handle interaction with a specific LLM API, including request/response formatting, tool definition conversion, native/non-native tool call management, and standardizing output streams to a common event format.
Applied to files:
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
📚 Learning: 2025-07-21T01:46:52.880Z
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/providers/*.ts : Provider implementations should yield tool call events (`tool_call_start`, `tool_call_chunk`, `tool_call_end`) in the standardized format.
Applied to files:
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
📚 Learning: 2025-07-21T01:46:52.880Z
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/index.ts : The main Agent loop should buffer text content, handle tool call events, format tool results for the next LLM call, and manage conversation continuation logic.
Applied to files:
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
📚 Learning: 2025-07-21T01:46:52.880Z
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/providers/*.ts : When a provider does not support native function calling, it must prepare messages using prompt wrapping (e.g., `prepareFunctionCallPrompt`) before making the API call.
Applied to files:
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
📚 Learning: 2025-07-21T01:46:52.880Z
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/providers/*.ts : All provider implementations must parse provider-specific data chunks and yield standardized events for text, reasoning, tool calls, usage, errors, stop reasons, and image data.
Applied to files:
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
📚 Learning: 2025-07-21T01:46:52.880Z
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/index.ts : The main Agent loop in `llmProviderPresenter/index.ts` should handle multi-round LLM calls and tool usage, maintaining conversation state and controlling the loop with `needContinueConversation` and `toolCallCount`.
Applied to files:
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
📚 Learning: 2025-07-21T01:46:52.880Z
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/providers/*.ts : The `coreStream` method in each Provider must perform a single streaming API request per conversation round and must not contain multi-round tool call loop logic.
Applied to files:
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
📚 Learning: 2025-07-21T01:46:52.880Z
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/providers/*.ts : Provider implementations should yield text events in the standardized format.
Applied to files:
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
📚 Learning: 2025-07-21T01:46:52.880Z
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/llm-agent-loop.mdc:0-0
Timestamp: 2025-07-21T01:46:52.880Z
Learning: Applies to src/main/presenter/llmProviderPresenter/index.ts : `src/main/presenter/llmProviderPresenter/index.ts` should manage the overall Agent loop, conversation history, tool execution via `McpPresenter`, and frontend communication via `eventBus`.
Applied to files:
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
📚 Learning: 2025-10-14T08:02:59.495Z
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: AGENTS.md:0-0
Timestamp: 2025-10-14T08:02:59.495Z
Learning: Applies to src/main/presenter/LLMProvider/**/*.ts : Implement the two-layer LLM provider (Agent Loop + Provider) under src/main/presenter/LLMProvider
Applied to files:
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
📚 Learning: 2025-09-04T11:03:30.184Z
Learnt from: CR
Repo: ThinkInAIXYZ/deepchat PR: 0
File: .cursor/rules/provider-guidelines.mdc:0-0
Timestamp: 2025-09-04T11:03:30.184Z
Learning: Integrate via the llmProviderPresenter entry point (src/main/presenter/llmProviderPresenter/index.ts) as the related implementation entry
Applied to files:
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
🧬 Code graph analysis (1)
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts (1)
src/shared/types/presenters/legacy.presenters.d.ts (1)
ChatMessage(1384-1384)
⏰ Context from checks skipped due to timeout of 90000ms. You can increase the timeout in your CodeRabbit configuration to a maximum of 15 minutes (900000ms). (1)
- GitHub Check: build-check (x64)
🔇 Additional comments (2)
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts (2)
257-294: User message handling looks correct.The multimodal content preservation for user messages and content conversion for other roles is properly implemented. The early continue pattern helps maintain clarity.
679-681: Non-native function call path correctly implemented.The logic properly checks for tools and native function call support, then prepares the prompt wrapper when needed. This aligns with the provider architecture for handling non-native tool calls.
Based on learnings
src/main/presenter/llmProviderPresenter/providers/openAICompatibleProvider.ts
Show resolved
Hide resolved
* Merge pull request #1079 from ThinkInAIXYZ/bugfix/refresh-model fix: custom provider add refresh-model * fix: add tool call context for better conv (#1081) * fix: update `tag_name` for release artifact urls (#1084) Signed-off-by: Rui Chen <rui@chenrui.dev> * refactor: standardize image block data structure (#1082) * refactor: standardize image block data structure with backward compatibility Normalize image_data structure in ThreadPresenter to ensure consistent mimeType handling. Update MessageBlockImage component to support legacy data formats (content as object/string/data URI) while maintaining compatibility with new image_data field. * fix: properly normalize image data URIs before persistence Extract base64 content and mime type from data URIs (data:image/jpeg;base64,...) to prevent double-encoding in renderer. This fixes image display errors where :image/jpeg;base64,... was being constructed. - Parse data URIs to extract real mime type and base64 content - Force URL schemes (http://, https://, imgcache://) to deepchat/image-url - Preserve provided mime types when available - Fallback to image/png only for raw base64 without metadata * fix: normalize legacy data URIs in renderer to prevent double-encoding Handle historical image_data records that may still contain full data:image/...;base64,... URIs. Extract base64 content and mime type before template binding to prevent constructing invalid :image/png;base64,... URIs. - Parse data URIs in both new image_data and legacy content formats - Always provide mimeType fallback for historical records - Ensure normalized data format before template consumption * feat: add request trace for llm (#1085) * feat: add trace support wip * feat: add trace dialog with monaco * feat: add i18n for trace dialog * feat: add config for trace params * fix: prevent stale previews when messageId changes * fix: toggle model config refresh (#1086) * release: 0.4.5 --------- Signed-off-by: Rui Chen <rui@chenrui.dev> Co-authored-by: Rui Chen <rui@chenrui.dev> Co-authored-by: 韦伟 <xweimvp@gmail.com>
Summary by CodeRabbit
New Features
Bug Fixes