Skip to content

[ACM MM2025]UIS-Mamba: Exploring Mamba for Underwater Instance Segmentation via Dynamic Tree Scan and Hidden State Weaken

License

Notifications You must be signed in to change notification settings

Maricalce/UIS-Mamba

Repository files navigation

[ACM MM 2025] UIS-Mamba: Exploring Mamba for Underwater Instance Segmentation via Dynamic Tree Scan and Hidden State Weaken

Runmin Cong1, Zongji Yu1, Hao Fang1†, Haoyan Sun1, Sam Kwong2
Corresponding author
1 School of Control Science and Engineering, Shandong University 2 School of Data Science, Lingnan University

📖 Abstract

Underwater Instance Segmentation (UIS) is critical for underwater complex scene detection, but faces challenges like color distortion, blurred boundaries, and complex backgrounds. We propose UIS-Mamba—the first Mamba-based underwater instance segmentation model—equipped with two core modules: Dynamic Tree Scan (DTS) and Hidden State Weaken (HSW). UIS-Mamba achieves state-of-the-art (SOTA) performance on UIIS and USIS10K datasets while keeping parameters and computational complexity low.

UIS-Mamba Framework

📊 Experimental Results

Underwater Instance Segmentation (UIIS Dataset)

Method Backbone Params mAP AP₅₀ AP₇₅
WaterMask R-CNN ResNet-50 54M 26.4 43.6 28.8
UIS-Mamba-T UIS-Mamba-T 56M 29.4 46.7 31.3
WaterMask R-CNN ResNet-101 67M 27.2 43.7 29.3
UIS-Mamba-S UIS-Mamba-S 76M 30.4 48.6 33.2
USIS-SAM ViT-H 700M 29.4 45.0 32.3
UIS-Mamba-B UIS-Mamba-B 115M 31.2 49.1 34.5

Underwater Salient Instance Segmentation (USIS10K Dataset)

Method Backbone Params Class-Agnostic mAP Multi-Class mAP
WaterMask R-CNN ResNet-50 54M 58.3 37.7
UIS-Mamba-T UIS-Mamba-T 56M 62.2 42.1
WaterMask R-CNN ResNet-101 67M 59.0 38.7
UIS-Mamba-S UIS-Mamba-S 76M 63.1 44.5
USIS-SAM ViT-H 701M 59.7 43.1
UIS-Mamba-B UIS-Mamba-B 115M 63.8 46.2

🛠️ Environment Setup

Prerequisites

  • Python 3.9+
  • PyTorch 1.13.1+cu117 or higher
  • MMDetection (for detection/segmentation heads)

Installation Steps

# Create conda environment
conda create -n uis-mamba python=3.9
conda activate uis-mamba

# Install PyTorch (CUDA 11.7)
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117

# Install other dependencies
pip install -r requirements.txt

# Install TreeScan Modules
cd third-party/TreeScan
pip install -v -e .

🚀 Train & Evaluate

1. Dataset Preparation & Pre-trained Weights

Download the two benchmark datasets and organize them as follows:

data/
├── UIIS/
│   ├── train/
│   │   ├── images/
│   │   └── annotations/
│   └── val/
│       ├── images/
│       └── annotations/
└── USIS10K/
    ├── train/
    ├── val/
    └── test/

Pre-trained weights for UIS-Mamba variants (initialized with GrootV ImageNet-1K pre-trained weights) are available for download: Official Link

2. Training

Run training scripts for UIIS (instance segmentation) or USIS10K (salient instance segmentation):

# Train UIS-Mamba on UIIS/USIS10K (1 GPU)
python tools/train.py --config configs/vssm1/mask_rcnn_vssm_fpn_coco_tiny_ms_3x.py --work-dir you_dir_to_save_logs_and_models

3. Evaluation

Evaluate pre-trained models on validation/test sets:

# Evaluate on UIIS/USIS10K val set
python tools/test.py --config configs/vssm1/mask_rcnn_vssm_fpn_coco_tiny_ms_3x.py model_checkpoint_path --eval segm

📦 Model Zoo

Pre-trained weights for UIS-Mamba variants are available for download:

Model Backbone Dataset mAP Params Download Link
UIS-Mamba-T UIS-Mamba-T UIIS 29.4 56M ckpt
UIS-Mamba-S UIS-Mamba-S UIIS 30.4 76M ckpt
UIS-Mamba-B UIS-Mamba-B UIIS 31.2 115M ckpt
UIS-Mamba-T UIS-Mamba-T USIS10K 42.1 56M ckpt
UIS-Mamba-S UIS-Mamba-S USIS10K 44.5 76M ckpt
UIS-Mamba-B UIS-Mamba-B USIS10K 46.2 115M ckpt

⭐ BibTeX

If you use UIS-Mamba in your research, please cite our paper:

@inproceedings{cong2025uis,
  title={UIS-Mamba: Exploring Mamba for Underwater Instance Segmentation via Dynamic Tree Scan and Hidden State Weaken},
  author={Cong, Runmin and Yu, Zongji and Fang, Hao and Sun, Haoyan and Kwong, Sam},
  booktitle={Proceedings of the 33rd ACM International Conference on Multimedia},
  pages={343--352},
  year={2025}
}

❤️ Acknowledgement

Code is built upon MMDetection and GrootV.

☑️ LICENSE

The code is released under the MIT License.

About

[ACM MM2025]UIS-Mamba: Exploring Mamba for Underwater Instance Segmentation via Dynamic Tree Scan and Hidden State Weaken

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •