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Wasted Fuel and Wasted Time

 In 2016, Los Angeles tops the global ranking with 104 hour/commuter
spent in traffic congestion

 In 2014, 3.1 billion gallons of energy were wasted worldwide due to
traffic congestion

« In 2013, fuel waste and time lost in traffic congestion cost $124 billion
in the U.S.

(Source: La La Land)



College of Engineering- Center for “
Environmental Research & Technology
Automated Vehicle Technology

e Definition of automated vehicles

At least some aspects of a safety-critical control function
(e.g., steering, acceleration, or braking) occur without
direct driver input

e Sensing techniques

Radar, Lidar, GPS, odometry, computer vision, etc.

e Level of automation by NHTSA

- Level 0: Driver is in complete and sole control

- Level 1: One or more specific control function is involved
- Level 2: Two or more functions work in unison

- Level 3: Driver cede full control under certain conditions
- Level 4: Driver is not expected to control at any time

(source: google)
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Connected Vehicle Technology

e Definition of connected vehicles

Vehicles that are equipped with Internet access, and
usually also with a wireless local area network

e Communication flow

- Based primarily on dedicated short-range
communications (DSRC)

- Between vehicles (V2V)
- Between vehicles and infrastructure (V21/12V)

(source: UDO;I:)



College of Engineering- Center for ‘
Environmental Research & Technology
Merging of Connectivity and Automation

Automated Vehicles

- Pros: In general, partial or full vehicle automation can help safety

- Cons: Mobility and environmental impacts may remain the same or could even get
worse, e.g., adaptive cruise control (ACC) has been shown to have negative
traffic mobility impacts

Connected Vehicles

- Pros: Introduction of a significant amount of information to support decision making

- Cons: Increase in the driver’s cognitive load, thus causing extra distraction and system
disturbance

Therefore, a potentially better solution: Connected + Automated
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Merging of Connectivity and Automation

(@ D)
Autonomous Vehicle , \
\\&k\ ,))//

Operates in isolation from other
vehicles using internal sensors

(—s
(U= ¥

Connected Automated Vehicle

Leverages autonomous and connected
vehicle capabilities

Connected Vehicle

Communicates with nearby

vehicles and infrastructure ‘) U.S. Department of Transportation
" ITS Joint Program Office
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Cooperative Adaptive Cruise Control
(CACC)

« Take advantage of connected vehicle technology and
automated vehicle technology

e Form platoons and driven at harmonized speed with
smaller time gap

Platoon driving Individual Platoon driving

T e — — —

Direction

splitting

(D. Jia et al., 2016)
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Advantages of CACC

e Safer than human driving by taking a lot of danger out
of the equation

« Roadway capacity is increased due to the reduction of
inter-vehicle time gap

e Fuel consumption and pollutant emissions are reduced
due to the mitigation of aerodynamic drag of following
_vehicles

(S. Oncu et al., 2014)

(source: www.youtube.com/watch?v=LIljnfGXos4c) 12
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e Distributed Consensus-Based CACC System
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Distributed Consensus Networks

Reach agreement or consensus upon the value of a variable of interest
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Distributed Consensus Networks
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Distributed Consensus Algorithm for the
CACC system

([ %:(8) = vy(2)
vi(t) = —al-j[xi(t) — Xj (t — Tij(t)) + llf + l]r + X] (t — Tij(t)) (tlg] + Tij(t)) bl]

\
\ — Yayj lffi(t) — X; (t - Tij(t))]
i=2..nj=i—1
x;(t) | Longitudinal position of vehicle i at time t tigj Inter-vehicle time gap
x;(t) | Longitudinal speed of vehicle i at time ¢ lir | Length between GPS antenna to front
bumper
v;(t) | Longitudinal acceleration of vehicle i at lir | Length between GPS antenna to rear
time ¢ bumper
a;j (i, j)th entry of the adjacency matrix b; | Braking factor of vehicle i
7;j(t) | Communication delay at time & v | Tuning parameter
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Distributed Consensus Algorithm for the
CACC system
(3,(6) = vy(0)
ﬁi(t) = —ayj [Xi(t) — Xj (t — Tij(t)) + lif + ljr + X] (t — Tij(t)) (tlg] + Tij(t)) bl]

\ — yaij [?'Ci(t) — X; (t —Tij(t))]
i=2,.,mj=i—1
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Distributed Consensus Algorithm for the
CACC system

position consensus

velocity consensus

i=2,.,nj=i—1

Consensus is reached by a platoon of vehicles if

x;(t) — x; (t - Tij(t))

x;(t) — X; (t — Tyj (t))

= lir + Ly + % (t — rij(t)) (tigj + rij(t)) b;

-0
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Distributed Consensus Protocol for the
CACC system

Assumption

Every vehicle in the system is equipped with appropriate sensors

Protocol 1: Normal platoon formation

Yes

Follower

Communicate with
its preceding vehicle

Algorithm is
applied

Vehicle i

Platoon
mode
witched o

Preceding
vehicle in a
distance of

Leader

Driver
takes over
contro

Vehicle i leaves the
platoon

Yes

Cruise at a
constant velocity

A,
Drives however
he/she wants
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Distributed Consensus Protocol for the
CACC system

Protocol 2: Merging and splitting maneuvers

Direction

\/

Platoon

e
=

Vehicle i communicates with the platoon and decides the jth vehicle of the platoon.

A “ghost” vehicle with respect to vehicle j — 1 in the platoon will be created on the lane
vehicle i is on.

Vehicle i autonomously adjusts its absolute position and velocity with the “ghost” vehicle
by distributed consensus algorithm proposed.

A “ghost” vehicle with respect to vehicle i is created in front of vehicle j + 1, and vehicle
J + 1 starts to create a gap for vehicle i by distributed consensus algorithm proposed.

Vehicle i merges into the platoon.

20
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Distributed Consensus Protocol for the
CACC system

e Protocol 2: Merging and splitting maneuvers

Direction

Platoon
|

21
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Distributed Consensus Protocol for the
CACC system

 Protocol 2: Merging and splitting maneuvers

Direction

v

Platoon

) Y
il

1. After the splitting mode is activated, the driver can take over the lateral control of the
vehicle and perform the lane change without adjusting the velocity longitudinally.

2. After vehicle j completes the lane change, vehicle j+1 will sense that its preceding
vehicle changes from vehicle j to vehicle j — 1, and therefore adjust its velocity to close
the gap.

3. Anew platoon is formed, where vehicle j + 1 becomes vehicle j, and vehicle j + 2
becomes vehicle j + 1, and so on.

22
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Simulation Study

e Scenario 1: Normal platoon formation

TABLE 1: Values of vehicle parameters.

20

Parameters Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4
GPS antenna to front bumper ;¢ Im Im 3m 6m
GPS antenna to rear bumper [;,. 2m 2m 2m 4m
braking factor b; 1 1 1.1 1.6
initial velocity X;, 30 m/s 33 m/s 36 m/s 39 m/s
desired velocity x; 30 m/s 30 m/s 30 m/s 30 m/s
initial time gap ¢, 091s 1.11s 1.67 s
initial weighted inter-vehicle distance d; g 30m 40m 65m
desired time gap t;.’} 043s 0.48 s 0.69 s
desired time headway ¢/} 0.6s 0.64 s 0.86 s
desired weighted inter-vehicle distance d;; 13m 143 m 20.8 m
desired unweighted inter-vehicle distance d;;/b; 13m 13m 13m

23
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Simulation Study

TABLE 1: Values of vehicle parameters.

Parameters Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4
GPS antenna to front bumper ;¢ Im Im 3m 6m
GPS antenna to rear bumper ;, 2m 2m 2m 4m
braking factor b; 1 1 1.1 1.6
initial velocity X;, 30 m/s 33 m/s 36 m/s 39 m/s
desired velocity x; 30 m/s 30 m/s 30 m/s 30 m/s
initial time gap ti’}o 091s 1.11s 1.67 s
initial weighted inter-vehicle distance d; g 30m 40m 65m
desired time gap t7] 043 s 0.48 s 0.69 s
desired time headway ¢/} 06s 0.64 s 0.86 s
desired weighted inter-vehicle distance d;; 13m 143 m 20.8 m
desired unweighted inter-vehicle distance d;;/b; 13m 13m 13m
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Simulation Study
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Scenario 2: Platoon restoration from disturbances
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Simulation Study

e Scenario 3: Merging and splitting maneuvers
Velocity of Vehicles in Platoon
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Simulation Study

e Scenario 3: Merging and splitting maneuvers
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e C(Cluster-Wise Cooperative EAD System
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Vehicles Approaching an Intersection

Intersection of interest
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Eco-Approach and Departure (EAD)

at Signalized Intersections

Roadside
Equipment Unit = - Traffic Si

gnal
\
Controller with

V2| Communications: S B SPaT Interface
SPaT and GID

Messages

*
/ ’
@ <
V2V Communications:

\ Basic Safety

Messages

%-- / .\
V \\
~

Vehicle Equipped with the
Eco-Approach and Departure
at Signalized Intersections
Application
(CACC capabilities optional)

Traffic Signal
Head

Source: Noblis, November 2013
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EAD Microscopic Simulation

baseline

eco approach & departure
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Cluster-Wise Cooperative EAD
at Signalized Intersections

e e e e e e @: @4; 1
Methodology S
L : Y () DUS < @: 2 1
Initial Vehicle Clustering <
Intra-Cluster Sequence Optimization ( > ...... : p '
Cluster Formation Control
Cooperative Eco-Approach and Departure - s @= @‘f 1
...... W 1
<> ;ll:i:)eornl:::;;& @ platoon leader O platoon follower
Advantages

Increase traffic flow throughput at a certain arterial segment
Decrease the travel time to go through signalized intersections
Decrease the total energy consumption and pollutant emissions

32



I College of Engineering- Center for

Environmental Research & Technology

=N

Cluster-Wise Cooperative EAD
at Signalized Intersections

Values of Simulation Parameters

Values of Vehicle Parameters

Parameter Value
Number of Cars (N) 16
Number of Lanes (J) 2
Simulation Time Step 0.1s
Communication Delay (7;;) 60 ms
Roadway Speed Limit (v!mit) 17.88 m/s
Maximum Acceleration (a;"*¥) 3.5m/s?
GPS Antenna to Front Bumper (;¢) 3m
GPS Antenna to Rear Bumper (1) 2m
Braking Factor (b;) 1
Desired Time Headway (tZ) for Ego-EAD 2s
Desired Time Headway (tZ) for Coop-EAD Is

Red Window (not allowed to travel through) 27s
Green Window (allowed to travel through) 8s
Yellow Window (not allowed to travel through) | 2 s

Vehicle | Lane/Sequence | Initial Initial Distance
Index | Index Speed to Intersection
1 a/1 13.41 m/s%® | 300 m

2 a/2 14.32 m/s? | 344 m

3 a/3 1442 m/s*> | 374 m

4 b/1 1410 m/s* [ 321 m

5 b/2 1239 m/s*> | 372 m

6 a/4 13.09 m/s? | 428 m

7 b/3 13.12m/s?> [ 417 m

8 a/5 1244 m/s* | 452 m

9 a/6 12.77 m/s® | 4994 m

10 b/4 13.88 m/s? [ 470 m

11 b/5 13.29 m/s® | 529 m

12 b/6 12.67 m/s* | 552 m

13 a/7 12.64 m/s? | 530 m

14 b/7 13.08 m/s? | 588 m

15 a/8 13.22m/s? | 584 m

16 a/9 13.30 m/s? [ 700 m

33
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Cluster-Wise Cooperative EAD
at Signalized Intersections

Distance of Vehicles on Lane a Distance of Vehicles on Lane b Distance of Vehicles on Lane a Distance of Vehicles on Lane b
1000 800 400 400
600
0 200 200
_° _400 _ _
E E EO E,
® ©200 10} [0}
e o e 2200 e
g S 0 3 B
% §7 % »200
[a) [a) 400 [a)
- -200
00g ~ 400
-400 £ -600
-1000 -600 -800 -600
0 20 40 60 0 20 40 60 0 10 20 30 40 0 10 20 30 40
Time (s) Time (s) Time (s) Time (s)
Vehicle Trajectories of Ego-EAD Vehicle Trajectories of Coop-EAD

Comparison of Energy Consumption and Pollutant Emissions of Ego-EAD and Coop-EAD

HC (g/s) | CO (g/s) | NOx (g/s) | CO; (2/s) | PM2.5 (g/s) | Energy (KJ/s)
Feo-EAD | 0.041 1.161 0.144 159.852 | 0.011 2222.938
Coop-EAD [ 0.037 1.398 0.141 142253 |0.009 1978.150
Reduction% | 10.23 13.25 2.29 11.01 19.91 11.01
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e Other Research Topics
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Other Research Topics

e Platoon-Wide Eco-CACC System

Reduce energy consumption at different stages of the CACC operation

AV(E) AV(t) 4
AVmax (0) *************************************** : :
AV, (0) [ : : . n/p t, t+a/p ‘,
! AD(0) ! AD(0) |
AV (0) | 1 | :
: : AV, 0) - : ‘
4 Ta/m & Ltan 1 J\/APN(1)) —— L

e Intra-Platoon Vehicle Sequence Optimization for Eco-CACC
Optimize the vehicle sequence when vehicle joins to minimize the total acceleration and
deceleration maneuvers

Direction of Travel

N
v

Strategy 1

Strategy2 |« —_—

A

Strategy 3
36
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Other Research Topics

e Connected Eco-Bus: An Innovative Vehicle-Powertrain Eco-Operation
System for Efficient Plug-In Hybrid Electric Buses

i.  Sponsored by USDOE ARPA-E, cooperating with Oak Ridge National Laboratory and US
Hybrid

ii. Adopt Eco-Approach and Departure, Eco-Cruise, Efficiency-Based Powertrain Control and
Machine Learning-Based Powertrain Control technology

iii. Achieve 20% transformational fuel efficiency improvements for transit buses

RIVERSIDE | ce-cerr
%OAK RIDGE f?

National Laboratory us Hyb rid

arpa-e =g

CHANGING WHAT’S POSSIBLE Riverside Transit Agency
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Q& A Time

Thank you very much for the attention!




