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Spatiotemporal Time Series Data

• Transport & mobility & climate application scenarios

Highway (Portland) Uber movement (NYC) Uber movement (Seattle)

Taxi trajectory (Shenzhen) Temperature (NA)
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• Challenges: Sparsity, high-dimensionality, multi-dimensionality, heavy
tails, irregular sampling, and time-varying systems
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Motivation

Yearly temperature seasonality patterns in 2010s

North America

Seasonal
regions

Less
seasonal
regions

High
variability

Global sea surface

Areas of El Nino

What motivate us most about periodicity?

❶ Monitoring climate systems: Empirically measure the periodicity of climate
variables (e.g., temperature, precipitation).

❷ Discovering spatiotemporal patterns: Identify periodicity pattern shift and
special climate events.
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Motivation

Ridehailing trip data
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What motivate us most about periodicity?

❶ Resilience and stability of systems: Empirically measure the periodicity and
predictability of urban systems.

❷ Optimization of transport systems: Optimize resources (e.g., public transit,
taxi, ridehailing, micromobility) to meet transport demand efficiently.

❸ Design of sustainable transport & infrastructure: Implement energy-efficient
solutions (e.g., congestion pricing) tailored to peak hours.
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NYC
ridesharing
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Interpretable Time Series Autoregression

Z INTEGERS

https://github.com/xinychen/integers

❒ Interpretable ML

❒ ℓ0-norm optimization

❒ Climate system seasonality

❒ Sparse autoregression

❒ Mixed-integer programming

❒ Human mobility regularity
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Valorizing Autoregression

• Time series autoregression on x ∈ RT with order d ∈ Z+

w := argmin
w

T∑
t=d+1

(
xt −

d∑
k=1

wkxt−k

)2
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Periodicity of hourly rideshare trip time series

• Sparse coefficient vector 7→ Interpretability?

w︸︷︷︸
sparsity ∥w∥0≜ 3

= (0.33︸︷︷︸
k=1

, 0, · · · , 0, 0.20︸︷︷︸
k=167

, 0.46︸ ︷︷ ︸
k=168

)⊤ ∈ R168
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Sparse Autoregression

• Identify the dominant auto-correlations

◦ τ ∈ Z+: Upper bound of the number of nonzero entries in w ∈ Rd
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w := argmin
∥w∥0≤τ

T∑
t=d+1

(
xt −

d∑
k=1

wkxt−k

)2

=argmin
∥w∥0≤τ

∥x̃−Aw∥22

• ℓ0-norm optimization is NP-hard

• Formulate it as a mixed-integer programming

◦ Introduce binary decision variables β ∈ {0, 1}d

min
w

∥x̃−Aw∥22
s.t. ∥w∥0 ≤ τ︸ ︷︷ ︸

♣ sparsity of w

⇐⇒
min
w,β

∥x̃−Aw∥22

s.t. −β ≤ w ≤ β,︸ ︷︷ ︸
bounds being either 0 or ±1

∥β∥1 ≤ τ︸ ︷︷ ︸
♣ sparsity of β
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ℓ0-Norm Optimization

Orthogonal Matching
Pursuit (OMP)

Y. C. Pati

R. Rezaiifar

P. S. Krishnaprasad

1993 2008

Subspace Pursuit (SP)

Wei Dai

Olgica Milenkovic

Compressive Sampling Matching

Pursuit (CoSaMP)

Deanna Needell

Joel A. Tropp

2015

Modern Optimization (i.e., MIP)

Dimitris Bertsimas

Angela King

Rahul Mazumder

Greedy

min
w

∥y −Aw∥22 s. t. ∥w∥0 ≤ τ
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Solution Quality → Better Interpretability?

• Sparse autoregression

min
w≥0

∥x̃−Aw∥22 s.t. ∥w∥0 ≤ τ

• Subspace pursuit (SP) sometimes fails
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Periodicity of ridehailing trip time series

• Exact solution w/ mixed-integer programming (MIP)

• An intuitive example (sparsity τ = 2):

w = (· · · , 0.02︸︷︷︸
k=53

, · · · , 0.96︸︷︷︸
k=168

)⊤︸ ︷︷ ︸
obj. = 8.32× 107 (SP)

vs. w = (0.22︸︷︷︸
k=1

, · · · , 0.77︸︷︷︸
k=168

)⊤︸ ︷︷ ︸
♣ obj. = 6.25× 107 (MIP)
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John F. Kennedy International Airport

• Daily & weekly periodicity: dropoff > pickup trips at JFK airport

◦ Pickup trips are relevant to flight delay, baggage claim, and other factors.
◦ Dropoff trips to airport are highly related to flight schedules.
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• Sparse coefficient vectors (sparsity τ = 3):

w = (0.31︸︷︷︸
k=1

, · · · , 0.28︸ ︷︷ ︸
k=24

, · · · , 0.41︸ ︷︷ ︸
k=168

)⊤ vs. w = (0.18︸︷︷︸
k=1

, · · · , 0.35︸ ︷︷ ︸
k=24

, · · · , 0.47︸ ︷︷ ︸
k=168

)⊤
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High-Dimensional Sparse Autoregression

• On high-dimensional time series with a large N :

min
{wn}Nn=1,β︸ ︷︷ ︸

(N + 1)d decision var.

N∑
n=1

∥x̃n −Anwn∥22︸ ︷︷ ︸
multivariate time series

s.t. 0 ≤ wn ≤ β,︸ ︷︷ ︸
bounds being either 0 or 1

∥β∥1 ≤ τ,︸ ︷︷ ︸
sparsity of β

β ∈ {0, 1}d

• How to handle millions of time series (e.g., N ≥ 106)?

• Two-stage optimization (♣):

❶ Learn sparsity patterns in β ∈ {0, 1}d

min
w,β

tr(ww⊤ P )︸ ︷︷ ︸
quadratic

− 2w⊤ q︸ ︷︷ ︸
linear

s.t. 0 ≤ w ≤ β, ∥β∥1 ≤ τ
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204k monthly NA temperature time series

❷ Quadratic programming with index set Ω = supp(β)

wn := argmin
w≥0

∥x̃n −Anw∥22 s.t. wk = 0, ∀k /∈ Ω
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Climate Seasonality Patterns

(arXiv:2506.22895)

❒ North America temperature

❒ Climate variable seasonality

❒ Sea surface temperature

❒ Spatiotemporal patterns

Xinyu Chen

MIT

Vassilis Digalakis Jr

BU

Lijun Ding

UCSD

Dingyi Zhuang

MIT

Jinhua Zhao

MIT
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Understanding Climate Systems

Quantify yearly seasonality by {wm,n,γ,k} at index k = 12

min
{wm,n,γ},β

M∑
m=1

N∑
n=1

δ∑
γ=1

∥x̃m,n,γ −Am,n,γwm,n,γ∥22

s.t. 0 ≤ wm,n,γ ≤ β

∥β∥1 ≤ τ

β ∈ {0, 1}d

latitude

longitude

decade monthly
temperature

sparsity constraint

binary decision var.
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North America Temperature

Seasonal
regions

Less
seasonal
regions

High
variability

Yearly temperature seasonality pattern in 2010s

17 / 36



North America Temperature

tmin, 1980s tmin, 1990s tmin, 2000s tmin, 2010s

tmax, 1980s tmax, 1990s tmax, 2000s tmax, 2010s

• Identify yearly periodicity at k = 12 from temperature data (τ = 3)

❶ Stronger yearly seasonality in high-latitude areas
❷ Less seasonal temperature in south areas (e.g., Mexico)
❸ Seasonality patterns in 2000s & 2010s are different from 1980s & 1990s
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North America Precipitation

1980s 1990s 2000s 2010s

Yearly seasonality patterns

Maximum
temperature

Precipitation

⋆ Precipitation is less seasonal than temperature

Seasonal
regions

Less
seasonal
regions
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Sea Surface Temperature

1980s 1990s

2000s 2010s

• Identify yearly periodicity at k = 12 from SST data (τ = 3)

❶ The areas of El Nino events are less seasonal/predictable
❷ Arctic becomes less seasonal/predictable in the past 20 years
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Human Mobility Regularity

Applications and Case Studies

(arXiv:2508.03747)

❒ Daily & weekly periodicity

❒ NYC & Chicago ridehailing

❒ Multi-modal mobility

❒ Network resilience

❒ Post-pandemic recovery

❒ Metro passenger flow

Xinyu Chen

MIT

Qi Wang

NEU

Yunhan Zheng

MIT → PKU

Nina Cao

MIT

HanQin Cai

UCF

Jinhua Zhao

MIT
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Envisioning Human Mobility

• Human mobility data

min
{wn,γ},β

N∑
n=1

δ∑
γ=1

∥x̃n,γ −An,γwn,γ∥22

s.t. 0 ≤ wn,γ ≤ β

∥β∥1 ≤ τ

β ∈ {0, 1}d

spatial
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hourly trip data
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• Quantify weekly periodicity by {wn,γ,k} at index k = 168
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NYC Ridehailing

Hourly trip time series of 265 pickup areas

Less
periodic
areas

Periodic
areas

JFK airport

Weekly periodicity
patterns
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NYC Ridehailing

Periodicity: 0.186 0.136 0.175 0.194

Weekly periodicity patterns

Pandemic disruption

Weekly periodicity ↓
Less periodic areas ↑

Recovering
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Chicago Ridehailing

Periodicity: 0.214 0.175 0.187 0.207 0.214 0.212

Weekly periodicity patterns

Pandemic disruption

Weekly periodicity ↓
Less periodic areas ↑

Recovering

Hourly trip time series of 77 pickup areas
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Post-Pandemic Recovery

Downtown areas:
less periodic

Suburban areas: more periodic

2024’s periodicity minus 2019’s periodicity
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Weekly Periodicity of Manhattan Mobility

Ridehailing

Periodicity: 0.122

Yellow taxi

0.120

Subway

0.363

Bikesharing
(member)

0.191

Bikesharing
(all)

0.151

North areas:

Ridehailing > Yellow taxi

Overall:

Subway > Others

South areas:

Yellow taxi > Ridehailing

Remarkable weekly periodicity difference

between membership and all travels

Mobility data of 2024
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Daily Periodicity of Manhattan Mobility (Weekdays)

Ridehailing

Periodicity: 0.072

Yellow taxi

0.127

Subway

0.305

Bikesharing
(member)

0.232

Bikesharing
(all)

0.214

Overall:

Yellow taxi > Ridehailing

Subway:

North areas > South areas

Marginal daily periodicity difference

between membership and all travels

Mobility data of 2024
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Hangzhou Metro Passenger Flow

×

1

2

3

4

5

67

89

10

35

36

37

38

39

40

41

42

43

44

45

46

68

69

70

71

72

73

74

75

76

77
78

47

484950

28

272625242322

34

33

32

31

30

292120191817

7980

81

161514

13

12
11

5152

53

54

55

565758

59

60

61

62

63

64

65

66

67

Periodicity

[0.8, 1.0]

[0.6, 0.8)

[0.4, 0.6)

[0.2, 0.4)

[0.0, 0.2)

Inflow periodicity

×

1

2

3

4

5

67

89

10

35

36

37

38

39

40

41

42

43

44

45

46

68

69

70

71

72

73

74

75

76

77
78

47

484950

28

272625242322

34

33

32

31

30

292120191817

7980

81

161514

13

12
11

5152

53

54

55

565758

59

60

61

62

63

64

65

66

67

Periodicity

[0.8, 1.0]

[0.6, 0.8)

[0.4, 0.6)

[0.2, 0.4)

[0.0, 0.2)

Outflow periodicity

2000 4000

2000

4000

Station #10

Periodicity: 0.71

Trip count at t − 168

Tr
ip

co
un

ta
tt

4000 8000

4000

8000

Station #15

Periodicity: 0.71

Trip count at t − 168

Auto-correlation
analysis

time t−168

ti
m
e
t

“Closeness” to the anti-diagonal curve y = x

2000 4000

2000

4000

Station #11

Periodicity: 0.80

Trip count at t − 168

2000 4000

2000

4000

Station #14

Periodicity: 0.93

Trip count at t − 168

29 / 36



Hangzhou Metro Passenger Flow
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Hangzhou Metro Passenger Flow
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Wikipedia Page View Seasonality

Applications and Case Studies

❒ Digital platform behavior

❒ Daily & weekly seasonality

❒ Wikipedia pages

❒ Hourly page view time series

Xinyu Chen

MIT

HanQin Cai

UCF

Lijun Ding

UCSD

Jinhua Zhao

MIT
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Wikipedia Page View Data (Hourly)
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60M → 3M pages

(72% total page views)

Most pages have been viewed only once

Some pages have 1k+ hourly page views

Remarkable weekly seasonality

Heavy-tailed data
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Wikipedia Page View Seasonality

• Categorize page view time series

◦ Category γ = 1: Monthly page views O(102) = [102, 103)
◦ Category γ = 2: Monthly page views O(103) = [103, 104)
◦ Category γ = 3: Monthly page views O(104) = [104, 105) (popular

articles)

• Optimization of sparse autoregression:

min
{wγ}γ ,β

∑
γ

nγ∑
i=1

∥x̃i,γ −Ai,γwγ∥22

s.t. 0 ≤ wγ ≤ β, ∥β∥1 ≤ τ︸ ︷︷ ︸
sparse

, β ∈ {0, 1}d︸ ︷︷ ︸
binary

w/ interpretable wγ at seasonal cycles.
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Wikipedia Page View Seasonality
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Wikipedia Page View Seasonality

1 2 4 9 22 24 48 168
0

0.1
0.2
0.3
0.4
0.5

Index k

C
oe

ffi
ci

en
t O(102) O(103) O(104)

24 48 168
0

0.03

0.06

0.09

0.12

Index k

Sparsity τ = 8

Monthly page views

0.78M 2.04M 0.20M pages

Page views of popular

articles are less seasonal

Sparsity τ = 10

1 2 3 6 10 22 24 47 96 168
0

0.1
0.2
0.3
0.4
0.5

Index k

C
oe

ffi
ci

en
t O(102) O(103) O(104)

24 96 168
0

0.03

0.06

0.09

0.12

Index k

36 / 36



Thanks for your attention!

Any Questions?

Slides: https://xinychen.github.io/slides/ints.pdf

About me:

Ñ Homepage: https://xinychen.github.io

§ GitHub: https://github.com/xinychen

# How to reach me: chenxy346@gmail.com

https://xinychen.github.io/slides/ints.pdf
https://xinychen.github.io
https://github.com/xinychen
chenxy346@gmail.com
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