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Interpretable Time Series Autoregression for
Periodicity Quantification

Xinyu Chen, Vassilis Digalakis Jr, Lijun Ding, Dingyi Zhuang, and Jinhua Zhao

Abstract—Time series autoregression (AR) is a classical statistical tool for modeling auto-correlations and periodic structures in
real-world systems. We revisit this model from an interpretable machine learning perspective by introducing sparse autoregression
(SAR), where ℓ0-norm constraints are used to isolate dominant periodicities. We formulate exact mixed-integer optimization (MIO)
approaches for both stationary and non-stationary settings and introduce two scalable extensions: a decision variable pruning (DVP)
strategy for temporally-varying SAR (TV-SAR), and a two-stage optimization scheme for spatially- and temporally-varying SAR
(STV-SAR). These models enable efficient inference on real-world spatiotemporal datasets. We validate our framework on large-scale
mobility and climate data. On hourly NYC ridesharing data, TV-SAR reveals interpretable daily and weekly cycles as well as long-term
shifts due to COVID-19. On monthly climate datasets, STV-SAR uncovers the evolving spatial patterns of temperature and precipitation
seasonality across four decades in North America and detects global sea surface temperature dynamics, including El Niño. Together,
our results demonstrate the interpretability, flexibility, and scalability of sparse autoregression for periodicity pattern discovery in
complex spatiotemporal systems.

Index Terms—Interpretable machine learning, time series analysis, sparse autoregression, periodicity quantification, mixed-integer
optimization, urban transportation systems, human mobility, climate systems
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1 INTRODUCTION

MANY real-world systems represented by multivariate
or multidimensional time series exhibit complex spa-

tiotemporal patterns and temporal regularities, including
periodicity, seasonality, and anomalies. Detecting and un-
derstanding these patterns is essential for anticipating sys-
tem behavior, identifying disruptions, and supporting op-
erational decision-making. In dynamic environments such
as urban transportation and climate systems, periodicities
can shift due to several external factors such as policy
interventions, demand changes, service disruption, environ-
mental variability, global events, and extreme climate phe-
nomena, making interpretable, adaptive, and data-driven
methods indispensable. A central challenge is to automati-
cally identify dominant periodic components from spatially-
and temporally-varying systems, track their evolution over
a long-term time period, and distinguish true structural
changes from random variability.

Urban transportation systems display strong temporal
regularity driven by commuting travels, business cycles,
and travel demand. As a common sense, mobility regular-
ity patterns are often governed by the daily, weekly, and
multiple periodic cycles. However, such patterns are not
fixed—they evolve with infrastructure changes, economic
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conditions, and disruptive events. For example, the COVID-
19 pandemic in 2020 led to a collapse in established mo-
bility periodicities due to lockdowns and shifts to remote
work. These disruptions raise key questions: How do periodic
structures evolve over time? Can we systematically quantify
such changes in a temporally-varying system? How to identify
peirodicity patterns? Addressing these questions is critical for
planning, forecasting, and adaptive resource allocation in
transportation systems.

Climate systems also exhibit periodic and seasonal pat-
terns that shape temperature, precipitation, ocean circula-
tion, and atmospheric dynamics. Yet these patterns evolve
over time due to long-term variability and climate change.
Traditional time series decomposition methods [1], [2], [3]
assume fixed seasonal structure and often ignore gradual
or region-specific shifts. Accurately altering spatiotemporal
patterns and monitoring their changes are essential for un-
derstanding climate dynamics, anticipating extreme events,
managing agriculture production, and supporting policy-
making. This calls for interpretable and data-driven models that
can robustly uncover the dominant seasonal components and track
their evolution across space and time.

To address these needs, we develop a unified in-
terpretable machine learning framework for quantifying
spatially- and temporally-varying periodicity and structural
shifts in real-world time series data. Our models build on
classical autoregression (AR) [4], [5] but incorporate sparse
structure via ℓ0-norm induced sparsity constraints to pro-
mote interpretability. Inspired by recent advances in sparse
regression [6] and time series convolution [7], we formulate
interpretable AR models capable of isolating dominant pe-
riodic patterns over space and time. Our novelty is not the
introduction of sparse autoregression, which has extensive
prior foundations, but rather the development of exact
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sparse AR with mixed-integer optimization (MIO) for large-
scale spatiotemporal datasets. Overall, this work makes the
following contributions:

• Sparse Autoregression (SAR): We introduce an in-
terpretable machine learning framework for identi-
fying dominant auto-correlations from a sequence of
time lags by reformulating AR with ℓ0-norm induced
sparsity constraints. The problem is solved exactly
via MIO techniques, providing more accurate and
reliable periodicity quantification than conventional
greedy methods.

• Temporally-Varying SAR (TV-SAR): We extend SAR
to characterize non-stationary time series, enforc-
ing consistent support sets across time segments to
enhance interpretability. To improve scalability, we
introduce a decision variable pruning (DVP) strategy
that narrows the MIO search space using fast greedy
approximations such as subspace pursuit.

• Spatially- and Temporally-Varying SAR (STV-
SAR): We propose a scalable model for multidimen-
sional time series that vary over both space and time.
A two-stage optimization procedure—global support
set selection via MIO, followed by local coefficient
estimation via quadratic optimization—makes the
method tractable and efficient for millions of decision
variables.

• Extensive Real-World Validation: We demonstrate
the effectiveness of our models on large-scale trans-
portation and climate datasets. TV-SAR reveals dy-
namic changes in daily and weekly mobility period-
icity in New York City (NYC) during the period of
the COVID-19 pandemic. STV-SAR captures evolv-
ing spatial patterns of seasonality in North American
climate variables and identifies global sea surface
temperature dynamics related to El Niño.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 introduces notation
and background on AR models. Section 4 presents the core
SAR model. Sections 5 and 6 develop the TV-SAR and STV-
SAR extensions, respectively. Section 7 reports empirical
results. Finally, we conclude this study in Section 8.

2 LITERATURE REVIEW

2.1 Classical and Temporally-Varying Autoregression
Time series modeling is a foundational tool in transporta-
tion, climate science, econometrics, and other fields [8],
[9], [10]. Classical models such as AR, moving average
(MA), and their combinations (e.g., ARIMA) are widely
used for capturing temporal dependencies and seasonal
structures in univariate time series data [4], [5], [11].
Among these, AR models remain popular due to their
simplicity and interpretability. More recently, applications
have demanded models that adapt to non-stationary and
temporally-varying systems. Temporally-varying AR allows
coefficients to change over time [12], often incorporating
structural or smoothness constraints to ensure interpretabil-
ity and stability [13]. AR has also been generalized to multi-
variate settings, such as Vector Autoregressive (VAR) mod-
els [14], [15]. These ideas have been successfully applied in
finance, neuroscience, and dynamic mobility systems.

2.2 Sparse Autoregression and Interpretability

Traditional AR models include all lagged terms up to a fixed
order, which can lead to overfitting and obscure the most
meaningful temporal dependencies—particularly in high-
order settings [16]. Sparse AR addresses this limitation by
selecting a subset of informative lags and assumes sparsity
on the model parameter space, thereby improving both
parsimony and interpretability. LASSO-based methods [17]
have been widely used to induce sparsity in AR models,
offering scalability and robustness in high-dimensional con-
texts [18], [19]. Recent work has further explored structured
sparsity in time series models. For instance, [20], [21], [22]
develop interpretable sparse formulations for nonlinear and
dynamical systems, while [6] introduces structured sparsity
constraints over graphs to model slowly evolving regression
coefficients. A related line of research by [23] proposes a
sparsity-controlled VAR framework, allowing users to tune
multiple dimensions of sparsity for enhanced interpretabil-
ity of causal discovery. While this approach offers flexibil-
ity and shows improved predictive accuracy over LASSO-
based alternatives, it lacks scalability and does not provide
exact solutions with guaranteed optimality.

These advances move beyond classical LASSO by incor-
porating domain-specific sparsity structures. However, ex-
isting methods typically do not enforce structured sparsity
across time and space simultaneously, nor do they leverage
exact combinatorial optimization. Our work bridges this gap
by introducing a framework for structured sparse AR with
exact support set control over spatiotemporal dimensions.

2.3 Exact Sparse Regression via Mixed-Integer Opti-
mization

Sparse regression via ℓ0-norm regularization—also known
as best subset selection—has long been recognized for its
statistical optimality and interpretability, but was histori-
cally limited by its combinatorial complexity. Early heuristic
methods include Orthogonal Matching Pursuit (OMP) and
CoSaMP [24], [25], [26], while convex relaxations such as
the LASSO [17] and non-convex penalties such as SCAD
and MCP offered tractable alternatives [27], [28]. The solu-
tion quality of these methods often negatively impact the
interpretability of sparse structures. Recent breakthroughs
in optimization have made it practically feasible to solve ℓ0-
norm regularized problems exactly using MIO. Following
the seminal work of [29], several studies have scaled MIO-
based sparse regression to large datasets [30], [31], [32].
These methods retain the interpretability of exact sparse
models while achieving near-LASSO speed.

Our work builds directly on this line, leveraging the MIO
machinery developed in [6] to solve structured sparse re-
gression with controlled support set consistency. However,
unlike prior work which focused on static or graph-based
regression, we apply these methods to time series with
dynamic and spatial variation, developing the first exact
sparse AR framework for periodicity quantification in real-
world large-scale systems.
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3 PRELIMINARIES

3.1 Notation

In Table 1, we summarize the basic symbols and notation
used throughout the paper. Notably, R denotes the set of
real numbers, and Z+ denotes the set of positive integers.

TABLE 1: Summary of basic notation.

Notation Description

x ∈ R Scalar
x ∈ Rn Vector of length n
X ∈ Rm×n Matrix of size m× n
[i] Integer set {1, 2, . . . , i}, i ∈ Z+

[i, j] Integer set {i, i+ 1, . . . , j}, i < j
∥ · ∥0 ℓ0-norm (number of nonzero entries)
∥ · ∥1 ℓ1-norm (sum of absolute values)
∥ · ∥2 ℓ2-norm (Euclidean norm)
tr(·) Trace of a square matrix
supp(·) Support set (indices of nonzero entries)
N (·) Gaussian distribution
E[·] Expectation
∪,∩ Union and intersection of sets, respectively

3.2 Time Series Autoregression

AR is a widely used technique for modeling temporal de-
pendencies in univariate time series [4], [5]. It expresses each
observation as a linear combination of its past values, plus
noise. For a univariate time series x = (x1, x2, . . . , xT )

⊤ ∈
RT , the order-d AR model is written as:

xt =
d∑

k=1

wkxt−k + ϵt, ∀t ∈ [d+ 1, T ], (1)

where d ∈ Z+ is the AR order, leading to the notion as
AR(d), and w = (w1, w2, . . . , wd)

⊤ ∈ Rd is the coefficient
vector. As the residual, ϵt denotes noise, typically modeled
by a Gaussian assumption: ϵt ∼ N (0, σ2) for the variance
σ2 > 0. The coefficient wk captures the linear dependence
between xt and its k-lagged value xt−k. To estimate the
coefficients, we minimize the sum of squared residuals:

ŵ = argmin
w

T∑
t=d+1

(
xt −

d∑
k=1

wkxt−k

)2

. (2)

By defining the design matrix A ∈ R(T−d)×d and target
vector x̃ ∈ RT−d as:

A ≜ [x̃1, x̃2, · · · , x̃d], x̃ ≜ {xt}Tt=d+1, (3)

respectively. Here, we let x̃k ≜ {xt−k}Tt=d+1 for any k ∈ [d].
Then, Problem (2) becomes ŵ = argminw ∥x̃ − Aw∥22.
This leads to the standard least squares solution: ŵ =
(A⊤A)−1A⊤x̃, assuming A⊤A is invertible. In more gen-
eral settings, this solution can also be expressed using the
Moore-Penrose pseudoinverse as ŵ = A†x̃.

A time series x is said to exhibit periodicity with period
∆t ∈ Z+ if xt ≈ xt+∆t for many t, typically reflected by
high auto-correlation at lag ∆t, i.e., Cov(xt, xt+∆t) ≫ 0.
Seasonality refers to periodic patterns tied to calendar cycles
(e.g., daily, weekly, and yearly) and can be modeled as a
component st satisfying st = st+∆t. In the AR framework,
strong periodicity at lag ∆t manifests as a large positive

coefficient w∆t, allowing us to infer dominant cycles directly
from the estimated sparse coefficient vector w.

Figure 1(a) shows the periodicity of ridesharing activity
in Chicago, highlighting its weekly mobility patterns. On
the given time series, Figure 1(b) illustrates the coefficient
vector w estimated using standard least squares. The result-
ing vector is dense, with both positive and negative coeffi-
cients. A large positive wk at lag k = 168 reflects the strong
weekly periodicity of the time series. However, this dense
representation makes it difficult to identify which lags are
most important and to quantify periodic structure precisely.
This motivates the need for sparse and interpretable AR
models.
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(b) Estimated AR coefficients w ∈ Rd with order d = 168

Fig. 1: Hourly time series and AR coefficients of aggregated
ridesharing trip counts in Chicago during the first two
weeks (336 hours) starting April 1, 2024. The data exhibits
strong periodicity with a weekly cycle ∆t = 7× 24 = 168.

4 SPARSE AUTOREGRESSION

This section introduces Sparse Autoregression (SAR) with
ℓ0-norm induced sparsity constraints for identifying dom-
inant auto-correlations in time series. We first describe the
modeling framework; then, we present an MIO formulation
for solving the resulting optimization problem exactly and
compare solution quality across algorithms.

4.1 Model Description

The ℓ0-norm of a vector w ∈ Rd is defined as ∥w∥0 =
| supp(w)| ≤ d, i.e., the number of nonzero entries. In
particular, | supp(w)| = ∑d

k=1 1{wk ̸= 0} is the cardinality
of supp(w). While the least squares estimator in Eq. (2)
produces dense solutions, it does not highlight dominant
auto-correlations, making it difficult to quantify periodicity
or seasonality. To address this, we impose sparsity and non-
negativity constraints on the coefficient vector w, yielding
the following optimization problem:

min
w

∥x̃−Aw∥22
s.t. 0 ≤ w ≤M, ∥w∥0 ≤ τ,

(4)
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where M ∈ Rd is a vector as the upper bound of AR
coefficients, and τ ∈ Z+ controls the maximum num-
ber of nonzero coefficients. The non-negativity constraint
encourages interpretability by focusing on positive auto-
correlations, as is typical for periodicity in time series.

Remark 1. The general form of SAR on the time series x,
with a constructed data pair {x̃,A} as mentioned above, is
given by minw∈F 1

2∥x̃ −Aw∥22 + ρλ(w) where F denotes
the feasible set. The use of ℓ0-norm results in the penalty
ρλ(w) = λ2

2 1{w ̸= 0} [27]. The penalty ρλ(w) = λ∥w∥1
refers to the LASSO [17], [18], allowing a direct exten-
sion from univariate autoregression to vector autoregression
with group Lasso [33], [34]. Other penalties such as SCAD
and MCP have also been leveraged to time series [27], [35].

To ensure statistical validity and numerical stability, we
select the constant M in Eq. (4) so that the underlying AR(d)
model is stationary. Stationarity requires all roots of the
characteristic polynomial ϕ(ζ) = 1−w1ζ−w2ζ

2−· · ·−wdζ
d

to lie strictly outside the unit circle, i.e., |ri| > 1 for all
i ∈ [d]. Under the non-negativity constraint wk ≥ 0, this
already imposes a useful necessary condition: plugging in
ζ = 1, we obtain ϕ(1) = 1−∑d

k=1 wk. Hence, to avoid unit
roots, it is necessary that

∑d
k=1 wk < 1, so we set M = 1.

For low-order models, we can derive more refined co-
efficient bounds using classical results on polynomial root
geometry. To do so, we consider the reciprocal polynomial
ϕ̃(ζ) = wd + wd−1ζ + · · · + w1ζ

d−1 − ζd, whose roots are
the reciprocals of those of ϕ(ζ). Thus, the condition |ri| > 1
on the original polynomial is equivalent to |r̃i| < 1 for all
roots r̃i of ϕ̃. To ensure this, we apply Fujiwara’s bound [36],
which provides an upper bound on the absolute values of
the roots of a degree-d polynomial:

|r̃i| ≤ 2 max
1≤k≤d

|wk|1/k.

To ensure |r̃i| < 1, it suffices that maxk |wk|1/k < 2−1, or
equivalently: |wk| < 2−k, for all k ∈ [d]. We therefore
set M = (2−1, 2−2, . . . , 2−d)⊤ ∈ Rd, which guarantees
that all estimated models satisfy the stationarity condi-
tion. However, such bounds—derived from worst-case root
behavior—can be overly conservative, especially for high-
order AR models.

In the next section, we relax the global stationarity
assumption by segmenting non-stationary time series into
locally stationary phases, thereby enabling more flexible and
data-adaptive modeling.

4.2 MIO Reformulation

Due to the combinatorial nature of the ℓ0-norm induced
constraint, Problem (4) cannot be directly solved by MIO
solvers. However, we can equivalently express the problem
as a mixed-integer quadratic optimization problem by in-
troducing binary variables that encode the support set of
w. Let z ∈ {0, 1}d be a vector of binary variables, where
zk = 1 indicates that wk is allowed to be nonzero. We
rewrite Problem (4) as:

min
w,z∈C

∥x̃−Aw∥22
s.t. 0 ≤ wk ≤M · zk, ∀k ∈ [d],

(5)

where we define

C =
{
z ∈ {0, 1}d : ∥z∥1 =

d∑
k=1

zk ≤ τ
}
⊆ Rd, (6)

as the feasible set. The binary support constraint ∥z∥1 ≤ τ
ensures that at most τ coefficients in w are nonzero.

Problem (5) is nonconvex due to the ℓ0-norm induced
sparsity constraint and is generally NP-hard to solve exactly.
In principle, enumerating all support sets of cardinality τ
would incur a combinatorial cost of O(dτ ), making exact
search infeasible for large d or τ . Modern MIO solvers by-
pass this challenge using branch-and-bound techniques and
cutting-plane methods (e.g., [6]), which allow them to find
globally optimal solutions efficiently in practice. Compared
to greedy methods such as subspace pursuit, MIO yields
higher-quality solutions with provable optimality guaran-
tees. The use of binary variables enables precise support
set control, which is essential for model interpretability in
settings where dominant lag selection matters.

Remark 2 (SAR with Group Sparsity). On the time series
x ∈ RT , we can consider the candidate lags {1, 2, . . . , d} are
partitioned by J predefined groups such that

G = {G1, G2, . . . , GJ}, Gj ⊆ {1, 2, . . . , d},
representing, for example, short-term lags, daily seasonal
lags, weekly seasonal lags, or any other physically mean-
ingful seasonal cycles. For each Gj , let wGj = {wk}k∈Gj

denote the subvector of w on that group. The group sparsity
can be integrated into SAR in Eq. (5) as follows,

min
w, z∈C

∥x̃−Aw∥22
s.t. 0 ≤ wk ≤M · zk, ∀k ∈ [d],∑

k∈Gj

zk ≤ τj , ∀j ∈ [J ],

(7)

where τj ∈ Z+, j ∈ [J ] are the per-group sparsity budgets.
The group sparsity constraint prevents unrelated season-
ality cycles from directly competing for the global spar-
sity. It also ensures that whole sets of related lags (e.g.,
{23, 24, 25, 26} for daily cycle or {167, 168} for weekly cy-
cle) are selected or excluded together, yielding interpretable
seasonal patterns.

4.3 Empirical Comparison of Solution Quality
The estimation method has a significant impact on the
interpretability and fidelity of SAR models. To highlight
this, we compare two approaches for solving Problem (4): (i)
a greedy non-negative subspace pursuit (NNSP) algorithm
[7], and (ii) the exact MIO formulation from Eq. (5). We use
the time series from Figure 1(a), with AR order d = 168 (one
week of hourly lags) and sparsity level τ = 2. The solution
returned by NNSP is:

w = (0, . . . , 0, 0.02︸︷︷︸
k=53

, 0, . . . , 0, 0.96︸︷︷︸
k=168

)⊤ ∈ Rd,

with objective value f(w) = 8.32×107. In contrast, the MIO
solver yields:

w = (0.22︸︷︷︸
k=1

, 0, . . . , 0, 0.77︸︷︷︸
k=168

)⊤ ∈ Rd,
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with objective value f(w) = 6.25×107. The MIO solution is
both quantitatively superior (lower error) and qualitatively
more interpretable: it identifies lag k = 1 (local auto-
correlation) and lag k = 168 (weekly periodicity), consistent
with domain knowledge. The NNSP solution, by contrast,
includes a spurious lag at k = 53 with negligible weight.
As can be seen, the choice of solution algorithms affect not
only the objective function of optimization problem but the
interpretability of sparse coefficient vector as well.

When increasing the sparsity level to τ = 3, both solvers
return the coefficient vector such that

w = (0.33︸︷︷︸
k=1

, 0, . . . , 0, 0.20︸︷︷︸
k=167

, 0.46︸︷︷︸
k=168

)⊤ ∈ Rd,

highlighting strong lags near a weekly cycle.
Figure 2 summarizes how the selected support sets and

coefficient magnitudes evolve as a function of τ . These
results confirm that high-quality solutions are critical for in-
terpretability and that MIO offers robust, principled support
recovery even when greedy methods fail.
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Fig. 2: Illustration of the dominant coefficients of SAR on
the Chicago ridesharing trip time series (see Figure 1(a)) at
different sparsity levels. The support set and the number of
nonzero coefficients are denoted by Ω and |Ω|, respectively.

5 TEMPORALLY-VARYING SPARSE AUTOREGRES-
SION

In this section, we extend the SAR formulation to cap-
ture non-stationary dynamics by allowing the coefficients
to vary across prescribed time segments. This yields
the Temporally-Varying Sparse Autoregression (TV-SAR)
model. To solve the associated MIO problem efficiently, we
also introduce a decomposition-based DVP strategy.

5.1 Model Description
Temporally-varying AR models allow the AR coefficients to
evolve across time, capturing structural shifts in the data-
generating process. We partition the time series into Γ ∈
Z+ time segments, where each segment γ ∈ [Γ] contains
Tγ ∈ Z+ time steps. Let xγ = (xγ,1, xγ,2, . . . , xγ,Tγ )

⊤ ∈ RTγ

denote the time series corresponding to time segment γ. We
model each time series with an independent AR(d) process,
with potentially different coefficient vectors wγ ∈ Rd:

xγ,t =
d∑

k=1

wγ,kxγ,t−k + ϵγ,t, ∀t ∈ [d+ 1, Tγ ], γ ∈ [Γ],

where ϵγ,t ∼ N (0, σ2). To ensure interpretability and
temporal consistency, we impose the following structural
constraints: (i) each wγ is sparse and non-negative, and
(ii) all wγ share the same support set. Formally, we let
Φ = {wγ}Γγ=1 represent the set of coefficient vectors, refer-
ring to the decision variables in the optimization problem of
TV-SAR such that

min
Φ

Γ∑
γ=1

∥x̃γ −Aγwγ∥22

s.t. 0 ≤ wγ ≤M, ∥wγ∥0 ≤ τ, ∀γ ∈ [Γ],

supp(wγ) = supp(wγ+1), ∀γ ∈ [Γ− 1],

(8)

where Aγ ∈ R(Tγ−d)×d is the design matrix, x̃γ ∈ RTγ−d is
the response vector for time segment γ, M ∈ Rd consists of
all sufficiently large constant M > 0, and τ ∈ Z+ controls
global sparsity. Here, supp(·) denotes the support set of
vector, namely, the index set of nonzero entries in the vector.

Remark 3. Imposing a common support set across all Γ time
segments, supp(w1) = supp(w2) = · · · = supp(wΓ), intro-
duces temporal smoothness by ensuring that the dominant
lag structure remains invariant over time. This corresponds
to a zero-variation instance of the sparsely varying support
model proposed in [6], in which consecutive support sets
are allowed to differ only within a bounded symmetric
difference:

| supp(wγ)∆ supp(wγ+1)|
=| supp(wγ) ∪ supp(wγ+1)|
− | supp(wγ) ∩ supp(wγ+1)| ≤ τ̃ , ∀γ ∈ [Γ− 1],

(9)

where ∆ denotes the symmetric set difference. Setting τ̃ = 0
recovers the shared-support formulation used in this work.
In this sense, our temporal regularity assumption corre-
sponds to the most restrictive and interpretable form of the
general slowly-varying sparsity framework.

To encode Eq. (8) as an MIO problem, we again introduce
binary variables z ∈ {0, 1}d to represent the global support
set. The resulting MIO formulation is given by

min
Φ, z∈C

Γ∑
γ=1

∥x̃γ −Aγwγ∥22

s.t. 0 ≤ wγ ≤M · z, ∀γ ∈ [Γ].

(10)

Here, the binary variable zk = 1 if lag k is selected for
any γ, enforcing a common support set across all time seg-
ments. TV-SAR thus extends SAR to non-stationary settings,
allowing the autoregressive weights to vary across time
segments while preserving interpretability through global
sparsity and support set consistency.

5.2 Acceleration with Decision Variable Pruning
The computational cost of solving TV-SAR with MIO in-
creases with the AR order d, due to the total number of
decision variables (Γ + 1)d, which includes Γd real-valued
variables for the AR coefficients wγ and d binary variables
in z. When the sparsity level τ is much smaller than d, most
of these variables are expected to be zero. We exploit this
by introducing a Decision Variable Pruning (DVP) strategy,
which leverages subspace pursuit to preselect a reduced



6

candidate set of variables before solving the MIO. The
strategy proceeds in three steps (illustrated in Figure 3):

• Step 1: Relax and Decompose TV-SAR. We relax the
TV-SAR formulation in Eq. (8), keeping only non-
negativity and a looser sparsity constraint τ0 > τ .
This yields Γ decomposable subproblems:

min
wγ

∥x̃γ −Aγwγ∥22
s.t. wγ ≥ 0, ∥wγ∥0 ≤ τ0.

(11)

• Step 2: Implement Subspace Pursuit. We first solve
each subproblem using NNSP. Let Sγ denote the
support set of the resulting solution for time segment
γ ∈ [Γ], see Algorithm 1. We then form the global
candidate set

S̃ =
Γ⋃

γ=1

Sγ .

• Step 3: Solve the Reduced MIO. We solve the orig-
inal MIO problem in Eq. (10), restricting all decision
variables to the reduced index set S̃. This results
in a significantly smaller problem with (Γ + 1) · |S̃|
variables.

Decision variables {wγ ,wγ+1}

wγ

wγ+1

1 2 3 4 5 6 7 8 9

⇒
Subspace pursuit (τ0 = 3)

wγ

wγ+1

1 2 3 4 5 6 7 8 9

⇕
supp(wγ) = {4, 6, 9}

supp(wγ+1) = {3, 6, 7}
S̃ = supp(wγ) ∪ supp(wγ+1)

= {3, 4, 6, 7, 9}

⇐
DVP

Decision variables {wγ,S̃ ,wγ+1,S̃}

wγ,S̃

wγ+1,S̃

3 4 6 7 9

Fig. 3: Illustration of the DVP strategy. Subspace pursuit is
used to select an index set S̃ of candidate lags. The final
MIO is then solved on this reduced support set, where the
number of coefficients is reduced from 2d to 2|S̃|.

Algorithm 1 DVP via Non-Negative Subspace Pursuit

1: Input: Time series xγ ∈ RT , γ ∈ [Γ]; AR order d; relaxed
sparsity τ0 > τ .

2: for γ ∈ [Γ] do
3: Construct x̃γ ∈ RT−d and Aγ ∈ R(T−d)×d.
4: Initialize wγ := 0, Sγ := ∅, and residual r := x̃γ .
5: while not converged do
6: Identify ℓ: index set of τ largest entries in |A⊤

γ r|.
7: Update support set: Sγ ← Sγ ∪ ℓ.
8: Solve wγ,Sγ := argmin

v≥0
∥x̃γ −Aγ,Sγv∥22.

9: Keep τ largest entries of wγ , zero out the rest.
10: Update Sγ and wγ,Sγ .
11: Update residual: r ← x̃γ −Aγ,Sγwγ,Sγ .
12: end while
13: end for

14: Return S̃ :=
Γ⋃

γ=1

Sγ .

We integrate the DVP strategy into an MIO solver and
refer to the resulting hybrid method as MIO-DVP, parame-
terized by τ0. The approach significantly reduces the search
space—especially for large d (e.g., d = 168 for weekly
periodicity)—and makes MIO tractable at scale. MIO-DVP
can be viewed as a backbone-type algorithm [37]: an iterative
two-stage method that first screens candidate features and
then solves the final problem over this reduced support set.
Such screening strategies have been developed from both
statistical (e.g., sure screening [38]) and optimization (e.g.,
safe screening [39]) perspectives.

6 SPATIALLY AND TEMPORALLY-VARYING
SPARSE AUTOREGRESSION

In this section, we introduce the Spatially and Temporally-
Varying Sparse Autoregression (STV-SAR) model, a general-
ization of TV-SAR that accounts for both temporal and spa-
tial variations in AR. While TV-SAR captures temporally-
varying dynamics within a single univariate time series,
STV-SAR is designed for settings involving large spatiotem-
poral panels of time series (e.g., satellite-based climate data),
where thousands of spatial locations exhibit their own local
dynamics. This additional spatial dimension leads to a more
expressive but also more complex model. In particular,
when the number of spatial locations (expressed in terms of
their latitudes and longitudes) M×N = 1, STV-SAR reduces
to TV-SAR. Conversely, STV-SAR enables us to model het-
erogeneity across locations while leveraging global sparsity
and seasonality structures. To solve the associated MIO
problem efficiently, we describe a two-stage optimization
scheme that separates the learning processes of the global
support set and individual coefficient vectors.

6.1 Model Description
Considering a collection of time series arranged over an
M × N spatial grid, we let Xγ,t ∈ RM×N denote the
spatial matrix at time t ∈ [Tγ ] in time segment γ ∈ [Γ].
Each grid cell (m,n) contains a multivariate time series
{xm,n,γ,t}t∈[Tγ ],γ∈[Γ], in which any γth univariate time se-
ries is of length Tγ . Following the same logic as in Section
5, we model each time series with an AR(d) process, with
coefficient vectors wm,n,γ ∈ Rd, and impose a shared global
support set across all spatial locations and time segments.
Let x̃m,n,γ and Am,n,γ be the lagged response vector and
design matrix (as in Eq. (3)), respectively, then the MIO
problem with sparsity level τ is formulated as follows,

min
Φ, z∈C

∑
m,n,γ

∥x̃m,n,γ −Am,n,γwm,n,γ∥22

s.t. 0 ≤ wm,n,γ ≤M · z, ∀m,n, γ,

(12)

where Φ = {wm,n,γ}m∈[M ],n∈[N ],γ∈[Γ] denotes the set of
coefficient vectors. The binary vector z ∈ {0, 1}d encodes
the shared support set, andM is the upper bound.

This formulation assumes that only a few autoregressive
lags drive the spatiotemporal dynamics across the entire
system. For instance, in climate systems, monthly time series
such as temperature or precipitation often exhibit strong
seasonal structure. By setting d = 12, the model can select
from lags corresponding to past months in the year. If, for



7

example, z12 = 1 in the optimal solution, it indicates that
the data exhibits strong yearly periodicity, i.e., each month’s
value is relevant to its value one year ago. Other selected
lags (e.g., z1, z3, etc.) can be interpreted as short-term auto-
correlations or sub-seasonal effects.

6.2 Acceleration via Global Support Estimation
When dealing with large spatiotemporal systems—such as
climate datasets covering thousands of grid cells across mul-
tiple decades—estimating a separate SAR model for each
individual time series becomes computationally infeasible.
However, these time series often share common underlying
periodicity and auto-correlation patterns. To exploit this
structure, we first estimate a global SAR structure by fitting
a single sparse coefficient vector w ∈ Rd across M ×N × Γ
time series. The formulation is given by

min
w, z∈C

f(w) ≜
∑

m,n,γ

∥x̃m,n,γ −Am,n,γw∥22

s.t. 0 ≤ w ≤M · z.
(13)

This global sparsity pattern can be reused to simplify
subsequent localized coefficient estimation and identify a
shared support set that generalizes across space and time.
According to the property of matrix trace, we have

f(w) =
∑

m,n,γ

(x̃m,n,γ −Am,n,γw)
⊤
(x̃m,n,γ −Am,n,γw)

=
∑

m,n,γ

(
tr
(
ww⊤A⊤

m,n,γAm,n,γ

)
− 2w⊤A⊤

m,n,γx̃m,n,γ

)
+ C

= tr(ww⊤P )− 2w⊤q + C,
(14)

where C is the constant term. In particular, we define the
matrix P ∈ Rd×d and vector q ∈ Rd such that

P ≜
∑

m,n,γ

A⊤
m,n,γAm,n,γ , q ≜

∑
m,n,γ

A⊤
m,n,γx̃m,n,γ , (15)

to simplify the objective function. Following that form, we
encode the sparsity using binary variables z ∈ {0, 1}d and
rewrite the MIO as follows,

min
w, z∈C

tr(ww⊤P )− 2w⊤q

s.t. 0 ≤ w ≤M · z.
(16)

Thus, the resulting global support set is given by

Ω := {k ∈ [d] | wk > 0} = supp(w) = supp(z). (17)

6.3 Estimating Individual Coefficient Vectors
In practice, learning the global support set is advan-
tageous because (i) the underlying periodicity structure
can be quantified across M × N spatial locations and
Γ time segments, and (ii) the dominant indices of auto-
correlations can be identified and estimated efficiently with-
out having to find them explicitly for each individual
coefficient vector. To learn the sparse coefficient vectors
{wm,n,γ}m∈[M ],n∈[N ],γ∈[Γ] within the given support set Ω
in Eq. (17), the optimization problem now becomes

min
wm,n,γ

∥x̃m,n,γ −Am,n,γwm,n,γ∥22
s.t. PΩ(wm,n,γ) ≥ 0, P⊥

Ω (wm,n,γ) = 0,
(18)

for all m ∈ [M ], n ∈ [N ], γ ∈ [Γ]. Here, PΩ(·) denotes
the orthogonal projection supported on Ω. For any vector
w ∈ Rd with entries {wk}k∈[d], the orthogonal projection
takes [PΩ(w)]k = wk if k ∈ Ω; otherwise, [P⊥

Ω (w)]k = 0 for
any k /∈ Ω in the complement of Ω. That means that the kth
entry of wm,n,γ is zero when satisfying k ∈ [d] and k /∈ Ω
simultaneously. Thus, we only have |Ω| entries in wm,n,γ

to estimate. By doing so, we can solve this optimization
problem by quadratic optimization with linear constraints.

7 EXPERIMENTS

In this section, we evaluate the proposed sparse autore-
gression (SAR) models through a series of experiments on
real-world time series datasets. We consider two distinct
domains: urban mobility and climate science. First, we
analyze a temporally-varying dataset of ridesharing trips in
NYC, which exhibits rich daily and weekly periodicity. This
dataset spans multiple years (2019–2023), enabling us to
detect how temporal patterns evolve across pre-pandemic,
pandemic, and post-pandemic periods. Second, we study
large-scale climate datasets, including North American at-
mospheric variables and global sea surface temperatures.
These datasets are both spatially and temporally structured,
allowing us to reveal the geographical distribution of sea-
sonal effects and track shifts in climate patterns over time.

7.1 Human Mobility Periodicity

This case study focuses on identifying and tracking periodic
patterns in human mobility using ridesharing data in NYC
from 2019 to 2023. Due to daily and weekly commuting
cycles and disruptions such as COVID-19, the underlying
temporal structure is both periodic and non-stationary. We
demonstrate how the proposed TV-SAR model captures
this evolving structure and compare alternative solution
approaches for model estimation.

7.1.1 Dataset and Motivation for TV-SAR
We apply the proposed TV-SAR model to NYC ridesharing
data spanning February 2019 to December 2023, focusing
on mobility patterns at John F. Kennedy (JFK) International
Airport. Airport-related trips are known to follow strong
daily and weekly rhythms due to fixed flight schedules.

Figures 4(a) and 4(b) visualize the weekly evolution
of pickup and dropoff activities, with each heatmap row
corresponding to one week (approximately 260 weeks in
total). Pickup trips show higher variability due to factors
such as flight delays, baggage collection, and access con-
straints to pickup zones; demand peaks in the evening
hours. In contrast, dropoff trips exhibit clearer regularity,
with consistent morning and afternoon peaks aligned with
flight departures. Aggregated time series in Figures 4(c) and
4(d) further confirm that dropoff trips display stronger daily
and weekly periodicity compared to pickup trips.

Furthermore, as shown in Figure 4, the ridesharing
pickup and dropoff time series display long-term temporal
variability. Notably, there is a sharp decline in trip volumes
in 2020 due to the COVID-19 pandemic, followed by a
gradual recovery through the end of 2021. These observa-
tions suggest that the periodic structure of the ridesharing
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time series is not only rich but also subject to external
disruptions. This motivates the use of a temporally-varying
model such as TV-SAR to flexibly capture changes in autore-
gressive patterns across months and years.
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(a) Pickup trips across weeks
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(b) Dropoff trips across weeks
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Fig. 4: Hourly time series of the aggregated ridesharing trip
counts at JFK International Airport from 2019 to 2023. (a-
b) The row of each heatmap refers to the ridesharing trip
time series of each week. (c-d) The time series refers to
the average ridesharing trips of each hour within a week
window, while the standard deviations are also presented.

7.1.2 Model Training: Comparison of Estimation Algorithms
We compare three algorithms for solving Problem (4) on the
ridesharing pickup time series over five years: NNSP, MIO-
DVP, and MIO. All methods are tested at two sparsity levels,
τ = 4 and τ = 6. For MIO-DVP, we additionally conduct
experiments with different pruning thresholds τ0 = 5 and
τ0 = 10, and examine how the preselected support set size
influences solution quality.

Table 2 reports the objective function values under
each setting. As expected, the MIO algorithm consistently
achieves the best performance, finding globally optimal
solutions. NNSP serves as a baseline and exhibits inferior
solution quality, particularly at higher sparsity levels. The
performance of MIO-DVP lies in between: with an effective
pruning threshold (e.g., τ0 = 10), it nearly matches the
performance of full MIO while incurring significantly lower
computational cost.

This highlights an important tradeoff: although MIO
guarantees the best solution, MIO-DVP offers a scalable
alternative with much faster runtimes due to its reduced
search space. The pruning parameter τ0 plays a criti-
cal role—aggressive pruning can degrade performance,
whereas moderate values (e.g., τ0 = 10) enable a favorable
balance between efficiency and accuracy.

7.1.3 Results: Periodicity of Ridesharing Trips
To capture the temporally-varying dynamics present in the
dataset, we apply the proposed TV-SAR model, treating
each month as an independent time segment. In order to
keep stability of sparse coefficients, we use the training data
of each time segment as the incremental set from January to
the current month of each year. The autoregressive order is
set to d = 168, corresponding to one week of hourly lags.
We use a sparsity level of τ = 4 to allow the model to select

TABLE 2: Objective function f(w) in Eq. (4) on the rideshar-
ing pickup trip time series at JFK. The solution algorithms
include NNSP, MIO-DVP, and MIO. The unit of objective
function values is ×107. Note that the lowest objective
function values are emphasized in bold fonts. The last two
rows present the average computational times (in seconds).

Data Sparsity NNSP MIO-DVP MIO-DVP MIO(τ0 = 5) (τ0 = 10)

2019 τ = 4 8.48 8.48 8.24 8.24
τ = 6 8.41 - 8.07 8.07

2020 τ = 4 2.12 2.12 1.90 1.90
τ = 6 2.03 - 1.86 1.86

2021 τ = 4 3.11 3.11 3.06 3.06
τ = 6 3.06 - 2.97 2.97

2022 τ = 4 6.85 6.76 6.49 6.49
τ = 6 6.69 - 6.34 6.34

2023 τ = 4 8.59 8.45 8.14 8.14
τ = 6 8.39 - 7.95 7.95

Cost τ = 4 0.03 s 0.32 s 0.67 s 221 s
τ = 6 0.04 s - 0.66 s 223 s

dominant lags, particularly targeting daily (k = 24) and
weekly (k = 168) periodicity.

Figure 5 shows that the model consistently recovers the
support set supp(wγ) = 1, 24, 167, 168 for all γ ∈ [2, 60],
reflecting the presence of strong local, daily, and weekly
auto-correlations. Figure 5(a) visualizes how the periodic
structure of pickup trips evolves over time. In 2020, the
strength of the weekly component decreases remarkably,
while the daily component grows stronger. This pattern is
similarly observed in the dropoff coefficients (Figure 5(b)),
where we also note a sharp increase in the local coefficient
at k = 1 during 2020—suggesting increased short-term
variability in dropoff behavior.
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(a) Pickup trips
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(b) Dropoff trips

Fig. 5: Sparse coefficient vectors wγ ∈ R168, γ ∈ [2, 60] of
TV-SAR on the ridesharing trip time series from February
2019 to December 2023, i.e., 59 months in total. Since each
time series data corresponds to to one month, there are 59
coefficient vectors that are represented as 59 rows in the
heatmap. Each time series is accumulated from January to
the end of the given month. Three most significant auto-
correlations are revealed at k = 1, 24, 168, referring to local
auto-correlation, daily periodicity, and weekly periodicity,
respectively.

Looking across all years, the weekly periodicity at k =
168 is generally more pronounced in dropoff trips than
in pickup trips. This is consistent with the patterns seen
in Figure 4, where dropoff activity follows more regular
flight schedules, while pickup trips are affected by greater
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uncertainty (e.g., baggage claim, ridesharing wait times).
Although periodicity in 2020 differs substantially from the
adjacent years, the autoregressive patterns in 2019, 2021,
2022, and 2023 show no significant differences. This in-
dicates that by 2021–2023, human mobility behavior had
largely returned to its pre-pandemic structure.

7.2 Seasonality Patterns of North America Climate
Variables

This case study investigates large-scale seasonal patterns
in climate variables across North America using long-term
temperature and precipitation data (1980–2019). These data
exhibit strong yearly seasonality influenced by geography
and climate change, and are structured both spatially and
temporally. Our goal is to quantify the strength and vari-
ability of these seasonal patterns over space and time. We
use the STV-SAR model to uncover the geographical orga-
nization of seasonality, track its evolution over decades, and
assess the robustness of the learned patterns across spatial
resolutions and segmentation schemes.

7.2.1 Dataset and Motivation for STV-SAR
We study the Daymet dataset, which provides monthly
climate variables—including minimum/maximum temper-
ature and precipitation—at a high spatial resolution of
1km×1km across North America [40].1 Our analysis focuses
on data from 1980 to 2019, resulting in long, spatially-
distributed multidimensional time series. Figure 6 illustrates
the minimum temperature data for January over the past
decade. These panels reveal strong seasonal structure and
regional climate variability, suggesting the need for models
that can capture recurring periodic patterns as well as their
changes across space and time.

Given the spatial scale and long-term coverage of this
dataset, we aim to (i) quantify yearly seasonality and its re-
gional variation, and (ii) examine how such patterns evolve
across decades and spatial resolutions. These goals motivate
the use of our proposed STV-SAR model, which is well-
suited for discovering global periodic structures in large-
scale, multidimensional time series.

7.2.2 Global Support Verification
To enable scalable model training on high-resolution spa-
tiotemporal data, we aggregate the original 1 km×1 km
dataset to a coarser resolution of 10 km×10 km. Even at this
level, the STV-SAR model of Eq. (12) must be fit across over
800,000 time series. To manage this computational burden,
we employ the two-stage optimization scheme outlined in
Sections 6.2 and 6.3. As shown in Table 3, our scheme
trains the full model across all time series in under 12
seconds—demonstrating its practical scalability for large-
scale climate datasets.

We apply STV-SAR with a prescribed sparsity level
τ = 3, aiming to capture dominant temporal dependencies
that characterize yearly seasonality. For example, using the
minimum temperature dataset, we construct monthly time
series at each spatial cell over decadal segments (from
1980s to 2010s). Solving the global model yields a common

1. https://daac.ornl.gov/DAYMET

support set Ω = {1, 11, 12}, which includes recent memory
(k = 1), near-annual lags (k = 11, 12), and aligns with
expected seasonal dynamics.

To assess the robustness of this global support set, we
also fit independent SAR models to 204,153 time series at
10 km×10 km resolution using sparsity levels τ ∈ {3, 4, 5}.
As shown in Figure 7, even without enforcing any global
constraint, the most frequently selected lags coincide with
the global support set Ω. For τ = 3, the dominant indices are
{1, 11, 12}; for higher sparsity levels, the support expands
to include nearby lags (e.g., {2, 10}), but {1, 11, 12} remain
consistently prominent. This confirms that the global sup-
port set not only enhances computational efficiency but also
meaningfully captures shared temporal structures across
space.

7.2.3 Results: Seasonality Patterns across Four Decades
Understanding how seasonality patterns evolve over time
allows us to quantify the dynamics of climate systems.
Figure 8 visualizes the yearly seasonality of monthly climate
time series across North America from 1980 to 2019, using
a spatial resolution of 10 km×10 km. Higher coefficients
correspond to regions with stronger yearly periodicity.

We begin by analyzing the seasonality patterns of mini-
mum/maximum temperature. Across the four decades, ar-
eas with stronger yearly seasonality are consistently concen-
trated in high-latitude regions, such as Canada and Alaska.
In contrast, southern regions like Mexico exhibit weaker
and more spatially variable seasonality. A notable expansion
of highly seasonal regions occurs in the 2000s, suggesting
an intensification of temperature-driven seasonal cycles. In
the 2010s, two regions stand out: northern Canada (e.g.,
Nunavut) and the western United States. While the pat-
terns in the 1980s and 1990s are relatively stable, the 2000s
and 2010s show substantial shifts—highlighting evolving
climate dynamics with potential ecological implications.

Next, we compare seasonal structures across different
climate variables. The seasonality of precipitation exhibits
significant spatial heterogeneity throughout the decades,
even across small neighboring regions. Meanwhile, the sea-
sonality of minimum and maximum temperatures remains
relatively stable in the 1980s and 1990s. However, in the
2000s, minimum temperature seasonality intensifies and
expands more broadly than that of maximum temperature.
In the 2010s, Mexico shows higher seasonality in minimum
temperature compared to maximum temperature, whereas
the reverse holds in the western United States and central
North America. Notably, in northern Canada, maximum
temperature is less seasonal than minimum temperature.
These contrasting patterns suggest differing drivers and
sensitivities of seasonal cycles across variables and geogra-
phies.

7.2.4 Sensitivity Analysis: Spatial Resolution
We now investigate the effect of spatial aggregation by
comparing results at three different resolutions: 5 km×5 km,
10 km×10 km, and 20 km×20 km. Figure 9 illustrates that
the spatial distribution of yearly seasonality remains con-
sistent across these resolutions. In particular, the northern
regions of Canada, the western United States, and the
southeastern United States exhibit strong seasonal signals,

https://daac.ornl.gov/DAYMET
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Fig. 6: Monthly aggregated minimum temperature across North America of January from 2010 to 2019. The color scale refers
to the temperature in degrees Celsius, with blue and red tones indicating lower and higher temperatures, respectively.
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Fig. 7: Support sets of independent SAR models with differ-
ent sparsity levels tested on the minimum temperature data
in 2000s and 2010s across 204,153 grids.

while central North America displays substantially weaker
seasonality. Temperature seasonality in Mexico shows high
spatial variability and inconsistency among nearby areas,
as highlighted in Figure 10. Fine-grained resolution (e.g.,
5 km) reveals localized structure that may be smoothed
out at coarser scales. This demonstrates that our STV-SAR
model captures robust patterns across resolutions while still
preserving high-resolution detail where available.

To address the computational challenges of large-scale
training, we employ a two-stage optimization scheme that
efficiently solves the STV-SAR problem across millions of
time series. Table 3 reports runtime statistics at each res-
olution. Remarkably, the model computes over 3 million
time series at 5 km×5 km resolution within one minute,
underscoring the scalability of the proposed method for
real-world geospatial applications.

7.2.5 Sensitivity Analysis: Phase Segmentation

In our main analysis, we segmented the climate time series
into decades to capture long-term trends. We now evaluate
the sensitivity of our findings to the choice of segmenta-
tion granularity by re-estimating seasonality patterns using

TABLE 3: Runtime of STV-SAR on the North America (mini-
mum) temperature dataset with different spatial resolutions.
Note that ν denotes the number of time series.

5 km×5 km 10 km×10 km 20 km×20 km

Number ν 3,343,628 816,612 196,720
Runtime (s) 48.55 11.77 2.88

shorter, 5-year phases on the minimum temperature data
from 2000 to 2019. Figure 11(a) illustrates the spatial dis-
tribution of yearly seasonality from 2000 to 2004, which
closely resembles the 1990s pattern shown in Figure 8(a). In
the 2005–2009 window (Figure 11(b)), seasonality intensifies
in several regions, aligning with the dominant pattern of
the 2000s. From 2010 to 2014 (Figure 11(c)), central North
America shows noticeably weaker seasonal signals, whereas
the period from 2015 to 2019 (Figure 11(d)) marks a rebound
in seasonality strength, particularly in Mexico. These subtle
temporal shifts are less evident in the decade-level summary
(Figure 8), highlighting the value of finer segmentation for
detecting short-term variations in seasonality patterns.

7.3 Seasonality Patterns of Sea Surface Temperature
This case study focuses on identifying and tracking yearly
periodic patterns in global sea surface temperatures from
1982 to 2019. Sea surface temperature is a key indicator
of climate variability, with dynamics influenced by geog-
raphy, ocean circulation, and anthropogenic warming. The
data exhibit both strong seasonality and long-term trends,
making them ideal for evaluating the ability of STV-SAR to
capture structured temporal variation at scale. We use the
model to uncover geographic patterns of seasonal strength
and examine how these patterns evolve across decades and
spatial regions.

7.3.1 Dataset and Motivation for STV-SAR
We study the NOAA Optimum Interpolation Sea Surface
Temperature dataset, which provides monthly average tem-
peratures over a 0.25◦ × 0.25◦ global grid, comprising
720×1440 cells (i.e., 1,036,800 spatial locations).2 The dataset

2. https://www.ncei.noaa.gov/data/sea-surface-temperature-
optimum-interpolation/v2.1/access/avhrr/

https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/
https://www.ncei.noaa.gov/data/sea-surface-temperature-optimum-interpolation/v2.1/access/avhrr/


11

1980s 1990s 2000s 2010s

(a) Minimum temperature

1980s 1990s 2000s 2010s

(b) Maximum temperature

1980s 1990s 2000s 2010s

(c) Precipitation

Fig. 8: Spatial patterns of the strengths of yearly seasonality quantified by STV-SAR on the North America climate data
across the past four decades.

(a) 5 km× 5 km (b) 20 km× 20 km

Fig. 9: Spatial patterns of the strengths of yearly seasonality
quantified by STV-SAR on the minimum temperature data
in 2010s.

spans four decades, from January 1982 to December 2019.
Figure 12 presents both monthly and yearly average sea
surface temperatures across this period. The monthly time
series reveals strong seasonal fluctuations, while the yearly
average trend shows a gradual warming signal consistent
with global climate change. These dynamics highlight the
importance of quantifying yearly seasonality—not only to

(a) 5 km× 5 km (b) 20 km× 20 km

Fig. 10: Spatial patterns of the strengths of yearly seasonality
on the minimum temperature data in 2010s within Mexico.

understand recurring oceanic patterns but also to charac-
terize the variability and potential instability in the climate
system. In particular, stronger seasonality implies more pre-
dictable, cyclic dynamics, whereas weaker seasonality can
indicate structural shifts or increased variability.

7.3.2 Results: Spatial and Temporal Structure of Sea Sur-
face Seasonality
To analyze the temporal structure of sea surface tempera-
tures, we fit the STV-SAR model separately on each decade
of data. We fix the model order at d = 12 and sparsity level
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(a) From 2000 to 2004 (b) From 2005 to 2009 (c) From 2010 to 2014 (d) From 2015 to 2019

Fig. 11: Spatial patterns of the strengths of yearly seasonality quantified by STV-SAR on the minimum temperature data
with a 5-year phase (i.e., Tγ = 60 months).
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Fig. 12: Average values of the monthly sea surface tempera-
ture data from January 1982 to December 2019. The average
temperature values in 1980s, 1990s, 2000s, and 2010s are
13.46◦C, 13.54◦C, 13.69◦C, and 13.83◦C, respectively. The
blue and red curves correspond to yearly and monthly
average temperature values, respectively.

τ = 3, which allows us to isolate and interpret coefficients
corresponding to yearly periodicity. Figure 13 shows the
spatial distribution of the coefficient corresponding to lag
k = 12, which serves as a proxy for yearly seasonal-
ity strength. Higher values (in red) indicate regions with
stronger temperature seasonality—most notably near East-
ern and Central Asia, North America, Europe, and North
Africa. In contrast, equatorial regions such as the Pacific
Ocean around the El Niño zone exhibit lower coefficients,
reflecting weaker seasonality and more irregular variation.

Despite the broad stability of global seasonal patterns
across decades, we observe subtle temporal changes. For
example, as shown in Figure 14, the regions near Canada
and the Arctic Ocean exhibit decreasing seasonality over
time. This decline may signal evolving oceanic dynamics
due to changes in ocean circulation, warming trends, or
atmospheric variability. The Arctic Ocean, in particular,
appears to have become notably less seasonal over the past
two decades, potentially reflecting broader climate-induced
disruptions in polar ocean systems.

8 CONCLUSION

This work introduces a unified SAR framework for quanti-
fying periodicity in real-world spatiotemporal time series.
We develop interpretable extensions—TV-SAR and STV-
SAR—that incorporate temporally and spatially-varying
sparsity constraints to reveal structured periodic compo-
nents. To address the computational challenges posed by
the underlying MIO problems, we propose scalable algo-
rithmic solutions: a DVP-based method for TV-SAR and
a two-stage optimization scheme for STV-SAR. Applied to

both ridesharing mobility data and climate time series, our
models successfully uncover meaningful, interpretable sea-
sonal patterns and periodic structures. The learned spatial
and temporal dynamics illustrate the practical relevance of
periodicity quantification for analyzing complex systems.

We point out the following directions for future im-
provement. The global support estimation strategy used in
STV-SAR is particularly effective when temporal structures
are shared across time series, as in climate datasets (e.g.,
Figure 7). However, for heterogeneous datasets with diverse
or complex dynamics, the approximation introduced by
the two-stage optimization may lead to estimation bias.
Addressing this gap—potentially by integrating adaptive
or hierarchical modeling techniques—could further enhance
the robustness and generality of the framework.
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