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Abstract. Recent advancements in Multimodal Large Language Models
(MLLMs) have revolutionized the field of vision-language understanding
by integrating visual perception capabilities into Large Language Mod-
els (LLMs). The prevailing trend in this field involves the utilization of
a vision encoder derived from vision-language contrastive learning (CL),
showing expertise in capturing overall representations while facing diffi-
culties in capturing detailed local patterns. In this work, we focus on
enhancing the visual representations for MLLMs by combining high-
frequency and detailed visual representations, obtained through masked
image modeling (MIM), with semantically-enriched low-frequency repre-
sentations captured by CL. To achieve this goal, we introduce X-Former
which is a lightweight transformer module designed to exploit the com-
plementary strengths of CL and MIM through an innovative interaction
mechanism. Specifically, X-Former first bootstraps vision-language rep-
resentation learning and multimodal-to-multimodal generative learning
from two frozen vision encoders, i.e., CLIP-ViT (CL-based) and MAE-
ViT (MIM-based). It further bootstraps vision-to-language generative
learning from a frozen LLM to ensure visual features from X-Former
can be interpreted by the LLM. To demonstrate the effectiveness of our
approach, we assess its performance on tasks demanding detailed visual
understanding. Extensive evaluations indicate that X-Former excels in
visual reasoning tasks involving both structural and semantic categories
in the GQA dataset. Assessment on fine-grained visual perception bench-
mark further confirms its superior capabilities in visual understanding.

Keywords: Multi-Modal Learning · Masked Image Modeling · MLLMs

1 Introduction

Recently, Large Language Models (LLMs) have demonstrated remarkable suc-
cess in diverse natural language tasks [3, 38], prompting researchers to explore
the integration of visual understanding capabilities into these models, leading
to multimodal LLMs (MLLMs). MLLMs aim to leverage the vast knowledge
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contained within off-the-shelf LLMs and vision encoders to tackle complex vi-
sual understanding tasks, thereby opening up new possibilities in the domain
of vision-language understanding. Flamingo [2] is one of the early MLLMs to
align frozen visual encoders to LLMs, where it introduces a Perceiver Resampler
module to extract a fixed set of features from image by optimizing image-to-text
generation loss, in order to bridge the modality gap. Improving upon Flamingo,
BLIP-2 [23] proposed a Querying Transformer (Q-Former) that performs vision-
language alignment through cross modality fusion by employing both discrim-
inative (contrastive & classification) and generative (image-to-text generation)
losses to extract a fixed set of most useful visual features for LLM. Other con-
current works [26,43] have explored different strategies to align visual represen-
tations with LLM input space for improving vision-language understanding.

It is noteworthy that all aforementioned MLLMs employ CLIP-ViT [32] as
the vision encoder, hence, inherit its limitations including: (i) poor fine-grained
vision-language alignment [28], and (ii) spatially-invariant global representa-
tions [30]. As a consequence, these models struggle to encode detailed visual
nuances, including object orientation, structural intricacies, spatial relationships,
and multiple object instances [34], thereby hindering the ability of LLMs to com-
prehend local visual patterns. To alleviate this issue, there has been growing in-
terest to learn better visual representations for MLLMs. For instance, Shikra [6]
proposes to learn visual grounding for objects by adding spatial coordinates in
natural language for LLM. However, this requires high-quality curated data with
bounding box annotations referring to the objects in the image.

GVT [36] on the other hand distills features from pre-trained CLIP [32] via
L1 loss and uses the distilled model as the image encoder for extracting visual
tokens. However, this approach relies on instruction tuning utilizing LLaVA-
150k [26] dataset. Most recently, MMVP [34] proposes to leverage self-supervised
pre-trained vision encoder along with CLIP-ViT to learn Mixture of Features
from multiple encoders in LLaVA framework with LLM fine-tuning. However,
they do instruction tuning with LLaVA-150k [26] dataset. Therefore, its not clear
whether such an approach can work on commonly available image-text data with-
out relying on instruction tuning using curated datasets. An additional avenue
of exploration involves constructing a self-supervised vision encoder capable of
capturing both global, semantically enriched, and local, detailed visual features.
The central concept involves linearly combining the training objectives of CL [32]
and MIM [13]. This is motivated by the fact that MIM can effectively capture
local and high-frequency representations, complementing the global and low-
frequency representations captured by CL. However, this hasn’t been explored
for vision-laguage understanding and is also the focus of this work.

In this paper, we present X-Former, a lightweight transformer module de-
signed to achieve effective vision-language alignment from both a global and local
perspective. Particularly, X-Former adopts a two-stage training approach. The
first stage involves vision-language representation learning and multimodal-to-
multimodal generative learning by leveraging two frozen image encoders. Specif-
ically, X-Former utilizes learnable query vectors to extract visual features by
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utilizing both CLIP-ViT [32] and MAE-ViT [13] encoders as well as employ a
dual cross-attention module to dynamically fuse the extracted features. Aimed
at image reconstruction and text generation, X-Former is incentivized to extract
visual features covering both low frequency and high frequency.

Our main technical contributions can be summarized as:

– We propose to leverage vision encoders from CL [32] and MIM [13] to capture
both global and local visual representations from frozen image encoders to
improve vision-language understanding.

– We introduce X-Former with dual cross-attention to bootstrap multimodal-
to-multimodal generative learning using image-text pairs, entirely without
the need for curated or visual instruction data.

Empirical studies showcase the notable enhancement of our model in fine-grained
visual perception tasks that demand a nuanced understanding of visual details.
Specifically, in object counting tasks, X-Former demonstrates substantial im-
provement over BLIP-2 [23] (39.64 vs. 34.3 on COCO and 27.24 vs. 18.9 on VCR).
Further, we perform fine-grained analysis comparing the image-text queries of
our model and BLIP-2 to demonstrate our approach learns more diverse queries
over BLIP-2 indicating the ability to capture detailed visual features. It’s worth
noting that BLIP-2 is pre-trained on a dataset of 129 Million image-text pairs,
approximately 10× larger than the dataset used for training X-Former (14 Mil-
lion). This underscores the effectiveness and efficiency of our approach.

2 Method

In this section, we first briefly recapitulate the preliminaries of Q-Former [23].
Following this, we embark on early endeavors aimed at enhancing its visual learn-
ing capabilities by leveraging off-the-shelf vision encoders, namely CLIP-ViT and
MAE-ViT. Specifically, CLIP-ViT is pre-trained through vision-language con-
trastive learning strategies, whereas MAE-ViT is trained through masked image
modeling mechanisms. Our empirical studies reveal that naively combining these
two encoders fails to yield significant performance improvements, especially in
tasks necessitating detailed visual comprehension. To mitigate this limitation, we
introduce a lightweight transformer module, dubbed X-Former, which extends
Q-Former to encapsulate both global and local information.

2.1 Preliminaries of Q-Former

Q-Former is introduced in BLIP2 [23] as a solution designed to bridge the gap
between a frozen CLIP-ViT and a frozen LLM (Figure 1 (a)). Given a collection
of image-text pairs {(Ik, Tk)}Nk=1, Q-Former operates by taking a predetermined
number of learnable query embeddings z, Tk, and C as input, where C indicates
CLIP image features of Ik. These queries engage in mutual interaction through
self-attention layers and interact with frozen image features C through cross-
attention layers in every alternate layer as shown in Figure 1(a) L1. The resulting
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Fig. 1: (a) Vanilla Q-Former extracts a fixed number of output features Z′ from the
CLIP image encoder, where C and z denotes CLIP-ViT’s image features and the query
input, respectively; (b) Concatenated MAE-ViT (M∗) and CLIP-ViT (C) features are
passed as input to Q-Former, (c) A Cross-Attention layer is added in L2 to enable
MAE-ViT interaction in Q-Former.

query representation is denoted by Z ′, which is anticipated to encapsulate visual
information derived from the frozen CLIP-ViT.

Though Q-Former has exhibited remarkable performance on various down-
stream tasks like VQA and image captioning, it encounters challenges in detailed
visual feature comprehension. This limitation primarily stems from the training
objective of CLIP, which incentivizes ViT to prioritize low-frequency signals and
global visual patterns [30]. Fortunately, MAE-ViT [13], trained to reconstruct
masked image patches, excels in understanding detailed visual features. How-
ever, the integration of CLIP-ViT and MAE-ViT in multimodal understanding
remains unclear, given their inherently divergent perspectives when ‘viewing’ im-
ages. To address this inquiry, we embark on early attempts to combine CLIP-ViT
and MAE-ViT in a straightforward manner as discussed below.

2.2 Simple Combinations of CLIP-ViT and MAE-ViT

Visual Feature Concatenation As shown in Figure 1 (b), our first attempt is
to concatenate the frozen image features from CLIP-ViT and MAE-ViT, which
are denoted by C and M , respectively. To accommodate the discrepancy between
C and M , a linear layer is applied to align M with C, resulting in M∗, which
is subsequently concatenated with C. This combined feature (C,M∗) serves as
input to the Q-Former, which undergoes training in both stages following the
methodology outlined in [23]. Our experiments show that the simple concate-
nation approach performs on par with BLIP-2, as illustrated in Figure 2. This
observation highlights the non-trivial nature of integrating C and M to leverage
their complementary strengths. The distinct information provided by MAE and
CLIP presents challenges for the model in simultaneously learning both global
and local information while preserving visual-text coherence. Moreover, it is
crucial to note that introducing additional vision encoders does not necessarily
guarantee improved performance.
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Fig. 2: Performance comparison of BLIP2, BLIP2+Concatenation, BLIP2+Early
Cross-Attention, and our method on VQAv2 (a), GQA (b), and OKVQA (c) datasets.

Early Cross-Attention Inspired by the observations from the concatena-
tion strategy outlined earlier, we delve into early interactions akin to CLIP-
style cross-attention within Q-Former. To pursue this, we introduce early cross-
attention by integrating new cross-attention layers, alternating with non-CLIP
interaction layers, as depicted in Figure 1 (c). While this approach modestly
improves performance compared to the concatenation strategy (see Figure 2),
it notably escalates the number of parameters in Q-Former, resulting in a total
of 183M trainable parameters (approximately 75M more than BLIP-2). Impor-
tantly, increasing parameters doesn’t inherently enhance performance. While
enhancements are observed for the VQAv2 dataset, there’s a decline in perfor-
mance for the GQA dataset and comparable results for the OKVQA dataset
against BLIP-2. To mitigate this and facilitate the extraction of local informa-
tion from MAE, we advocate for incorporating late-interaction for the Masked
Image Modeling (MIM) objective during training.

2.3 X-Former Overview

In Figure 3, we present an overview of our method, comprising two frozen image
encoders (CLIP-ViT and MAE-ViT), a frozen image decoder, and a trainable X-
Former aimed at bridging the modality gap and extracting interpretable visual
features for the LLM. For MAE-ViT, random masking of patches in the input
image is performed. X-Former processes a set of learnable queries Z along with
the input text Tk and the image features (C,M) as input. Our model extends
the framework of BLIP2 by incorporating Image-Text Matching (ITM), Image-
Text Contrastive (ITC), and Image-Text Generation (ITG) losses, while also
introducing a reconstruction loss for the image decoder.

X-Former To address the limitations of Q-Former, primarily its lack of fine-
grained alignment and its focus on capturing global information, we propose
integrating MAE features (M) into our X-Former module, depicted as an or-
ange block in Figure 3. This addition facilitates the extraction of both local and
global information, optimizing image reconstruction alongside the ITC, ITM,
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Fig. 3: An overview of X-Former which extends Q-Former by introducing a dual cross-
attention module to capture both local and global visual features. First it computes
CLIP visual features (C) and MAE features (M) (with random masking) from the
input image-text pair. Q-Former employs C,Z, Text to generate output queries opti-
mized for three objectives - ITC, ITM and ITG. The proposed block (purple) enriches
Q-Former global representation (Zq) with local information from MAE features (M).
Initially, M is aligned and enriched by Zq resulting in enriched MAE representation
(M ′), optimized for image reconstruction. Then, M ′ enhances Zq with local representa-
tions through cross-attentions, optimized using VL objectives. Jointly optimizing these
four objectives facilitates the learning of both global and local representations.

and ITG objectives, represented by the purple block in Figure 3. The first cross-
attention block employs MAE features (M) as queries and Q-Former output (Zq)
as keys and values to align and enhance M by integrating global semantic infor-
mation from Q-Former, resulting in enriched MAE features (M ′). Subsequently,
these enriched MAE features enhance the Q-Former output (Zq) to Z ′ by inte-
grating both global and local information through cross-attention, as depicted.
The enhanced queries (Z ′) are optimized for ITC, ITM, and ITG, along with a
reconstruction objective applied to M ′. Finally, M ′ is passed to the frozen MAE
decoder to reconstruct the masked patches.

Stage 1: Pre-Training During the pre-training stage, the X-Former learns
to extract both local and global representation by optimizing Reconstruction,
ITC, ITM and ITG losses. The reconstruction loss together with the image-text
alignment objectives enforces to align and capture local representation, while the
VL objectives align it with text representation. The incorporation of MAE and
CLIP features ensures that the queries extract a enhanced visual representation
that is aligned with the accompanying text. We follow BLIP-2 [23] for comput-
ing ITC, ITM and ITG losses. For ITC, we compute similarity between [CLS]
token of the text-embedding and each of the final output query embeddings Z ′,
selecting the highest as the image-text similarity. For this objective, to prevent
data leak a unimodal self-attention mask is employed, ensuring that the queries
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Fig. 4: LLM Alignment. X-Former queries are aligned with a frozen decoder-based
LLM. FC layer adapts the query output(Z′) to LLM embedding space.

and text do not interact with each other. It maximizes the image-text similarity
of positive pairs by contrasting with in-batch negatives.

For ITM, the model is asked to predict whether image-text pair match (pos-
itive) or not (negative). Here, a bi-directional self-attention mask is employed,
allowing all queries and texts to attend to each other. Consequently, the out-
put query embeddings capture multimodal information, which is then fed to a
two-class linear classifier to obtain logits. These logits are averaged across all
the queries to compute the final matching score. To generate negative pairs, a
hard negative mining strategy [24] is employed. In the context of ITG, X-Former
utilizes an input image as a condition to generate text. A multimodal causal self-
attention mask is used, allowing queries to attend to each other while excluding
text tokens, and enabling text tokens to attend to all queries and previous text
tokens. The [CLS] token is substituted with the [DEC] token as the first text
token, serving as an indicator for the decoding task.

Stage 2: LLM Alignment During pre-training, the X-Former acquires the
ability to extract information from both MAE and CLIP, resulting in queries
that capture a blend of global and local information. Subsequently, we align the
features of the X-Former with the frozen LLM, aiming to harness the compre-
hensive visual representations acquired by the X-Former module and integrate
them with the robust language generation capabilities of the LLM. This integra-
tion involves connecting the pre-trained X-Former output (Z ′) to the LLM via
a single fully-connected layer, aligning it with the LLM representation space, as
depicted in Figure 4. Specifically, we experiment with the OPT model, which is
a decoder-based LLM, and train it using a language modeling loss keeping both
image encoders and LLM frozen.

3 Experiments

Pre-Trained Models We employ pre-trained ViT-G model from EVA-CLIP [10]
as CLIP-ViT. For MAE, we utilize the pre-trained ViT-H model [13]. Our choice
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Table 1: Zero-shot Visual Question Answering results on the VQAv2 dataset. Note
that * indicates the result is obtained using the official checkpoint.

#Trainable VQAv2 Accuracy
Method Params Data Overall Other Yes/No Number

Open-ended generation models

FewVLM [19] 740M 9.1M 47.7 - - -
Frozen [35] 40M 29.5 - - -
VLKD [7] 406M 3.7M 42.6 - - -
BLIP-2 OPT6.7B* [23] 108M 129M 55.1 47.3 72.6 34.6
BLIP-2 OPT2.7B [23] 107M 14M 49.9 39.3 71.5 27.3
X-Former (Ours) OPT2.7B 129M 14M 51.3 41.5 71.2 30.9
BLIP-2 OPT6.7B [23] 108M 14M 52.4 43.6 71.5 30.8
X-Former (Ours) OPT6.7B 130M 14M 55.0 45.6 73.3 37.8

for the LLM involves the OPT model [42]. Our model undergoes pre-training for
nine epochs in Stage-1 and one epoch in Stage-2, with OPT employed for Stage-2
alignment. See Supplementary Section 1 for implementation details.

Datasets and Tasks To demonstrate the effectiveness of our approach, we
leverage a standard dataset comprising 14M Image-Text pairs sourced from
COCO [25], Visual Genome [21], SBU [29], CC3M [33], and CC12M [4] for
model pre-training. Our evaluation spans across various benchmarks, including
COCO [25], NoCaps [1], VQAv2 [12], GQA [15], OK-VQA [27], Flickr30k [31],
and VCR [41]. Furthermore, we employ a fine-grained visual perception bench-
mark [36], featuring Object Counting (OC) and Multi-Class Identification (MCI)
tasks, to assess the model’s fine-grained visual understanding capabilities.

3.1 Experimental Results

Zero-Shot Visual Question Answering First, we present the results for
zero-shot visual question answering on the VQAv2-val dataset, which encom-
passes three question types: open-ended (other), Yes/No, and Number questions,
as illustrated in Table 1. We utilize the prompt "Question: Short Answer:" for
the generation process, employing beam search with a beam width of 5. We
set the length-penalty to 0 to encourage short answers. Our results indicate
that our approach surpasses BLIP-2 for both OPT2.7B and OPT6.7B LLMs by
1.4% and 2.6% respectively, highlighting superior visual comprehension. Particu-
larly noteworthy are the significant enhancements observed for the Number task,
which demands precise local understanding for object counting or identification.
Fine-tuning results are reported in Supplementary Section 2, while large-scale
experimental findings are detailed in Supplementary Section 3.

In Table 2, we report zero-shot visual question answering results for the
GQA test-dev dataset. The results demonstrate the superior performance of our
method over BLIP-2. Furthermore, we conducted a comprehensive comparison
to demonstrate the effectiveness of our approach across both structural and se-
mantic categories in the GQA dataset. The structural category encompasses five
question types (verify, open-ended query questions, choose from options, logical
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Table 2: Zero-shot Visual Question Answering Results on GQA and OKVQA datasets.
Note that * indicates the result is obtained using the official checkpoint.

Method Data GQA OKVQA

FewVLM [19] 9.1M 29.3 16.5
Frozen [35] - 5.9
VLKD [7] 3.7M - 13.3
Flamingo3B [2] >2B - 41.2
Flamingo9B [2] >2B - 44.7
Flamingo80B [2] >2B - 50.6
BLIP-2 OPT6.7B* [23] 129M 34.2 35.3
BLIP-2 OPT2.7B [23] 14M 33.6 24.2
X-Former (Ours) OPT2.7B 14M 34.1 27.7
BLIP-2 OPT6.7B [23] 14M 33.1 31.5
X-Former (Ours) OPT6.7B 14M 34.9 34.2
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Fig. 5: Detailed Comparison for both Structural and Semantic categories in GQA.

inference, and object comparison) as depicted in Figure 5. Our results indicate
that we outperform in the majority of these categories. In Figure 5, we provide a
comparison for the semantic categories, which include questions related to object
existence, object attributes, object category, global scene, and object relation-
ships. Across all these categories which includes both global and local reasoning,
our approach consistently demonstrates better performance, highlighting its de-
tailed visual understanding capabilities.

We report zero-shot visual question answering performance on OKVQA test
dataset in Table 2. This dataset poses a significant challenge as it requires meth-
ods to draw upon external knowledge to answer questions effectively. Our method
demonstrates a significant improvement in accuracy over BLIP-2, achieving a
2.7% and 3.5% gain with OPT6.7B and OPT2.7B LLM respectively.This signifies
the robustness of our approach in accurately aligning visual information with
LLM and effectively leveraging external knowledge to answer the questions.

Fine-Grained Visual Perception Evaluation To demonstrate that our ap-
proach has better visual understanding, we evaluate perception abilities at fine-
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Table 3: Zero-shot Fine-Grained Visual Perception evaluation of MLLMs on Object
Counting (OC) & Multi-class Identification (MCI) tasks. For fair comparison, we com-
pare with models trained only on image-text data. *evaluated using official checkpoint.

OC MCI

Method Data COCO VCR COCO VCR

BLIP-2* [23] 129M 34.3 18.9 69.44 74.16
BLIP-2 [23] 14M 25.88 21.12 61.5 65.3
X-Former (Ours) 14M 39.64 27.24 69.44 69.28

Table 4: Zero-shot Image Captioning Results on COCO & NoCaps without fine-tuning
for captioning task. B:BLEU, C: CIDEr, S: SPICE. *evaluated using official checkpoint

COCO NoCaps

Method Data B@4 C S C S

BLIP-2* [23] 129M 39.9 134.3 24.3 113.4 15.2
BLIP-2 [23] 14M 39.2 131.0 23.7 113.1 14.9
X-Former (Ours) 14M 39.3 131.1 23.6 113.2 14.9

grained scale [36], we evaluate our approach for fine-grained visual perception
capabilities OC and MCI task. We use the prompt “Question: {} Short Answer:”.
to evaluate for this task. For generation, we use beam search with a beam width
of 5. We also set the length-penalty to 0 to encourage shorter answers. The ques-
tions for object counting tasks is of the form “How many {objects} are there in
the image?” and for multi-class identification task it is “Does {objects} exist in
the image?”. For fair comparison, we compare with methods that only employ
image-text datasets for training. In Table 3, we show that our model outper-
forms BLIP-2 on both datasets i.e., COCO and VCR. It can be seen that for
Object Counting task our approach improves BLIP-2 by 13% on COCO and
6.1% on VCR datasets respectively. This indicates that X-Former is able to ex-
tract detailed visual features. Please refer to Supplementary Sections 6, 7 for
more fine-grained evaluations.

Zero-shot Image Captioning. In addition to the visual reasoning tasks, we
report results for image captioning without fine-tuning in Table 4 for COCO and
NoCaps dataset. Captioning task requires image-level semantic understanding
as the annotated captions briefly describe the image. We show that our approach
improves on fine-grained visual reasoning tasks without impacting the captioning
performance.

3.2 Qualitative Results

To effectively demonstrate the capabilities of our model, we present qualitative
results that highlight its performance in the object counting task. Accurate ob-
ject counting requires a deep understanding of local contexts within an image.
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Fig. 6: Qualitative Comparison demonstrating Fine-Grained Visual Understanding in
Object Counting and Multi-class Identification Tasks. Our model showcases better
visual understanding by accurately counting objects and effectively identifying them
without confusion based on shape or color.

As shown in Figure 6(a), our method correctly counts six donuts in an image,
while BLIP-2 incorrectly predicts four. This demonstrates the model’s ability
to distinguish individual objects even when they are closely clustered together.
Figure 6(b) presents a more challenging scenario where four airplanes are fly-
ing in close proximity. BLIP-2 struggles with this task, erroneously predicting
six airplanes instead of the correct number of four. Our method, on the other
hand, accurately identifies the four airplanes, showcasing its robustness in han-
dling dense object arrangements. In Figure 6(c), we encounter two cups and
a plate that share a similar color, for which BLIP-2 incorrectly predicts three
cups. Our method, however, correctly identifies the two cups, demonstrating its
ability to handle objects with similar visual properties. Figure 6(d) depicts a
dog that blends into the background due to its similar coloring. BLIP-2 makes
an incorrect prediction. Our method, in contrast, correctly identifies the dog.
These qualitative results collectively demonstrate the effectiveness of our model
in the object counting task, outperforming BLIP-2 in various scenarios that de-
mand robust local understanding and the ability to handle challenging object
arrangements and color similarities.

In the Multi-Class Identification task, BLIP-2’s object recognition capabil-
ities exhibit limitations when presented with Figure 6(e). BLIP-2 mistakenly
interprets the shape of a parking pole as a fire hydrant. Figure 6(f) presents
a challenge where a potted plant is positioned in the background, occupying a
relatively small portion of the image. BLIP-2 fails to detect the presence of the
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Table 5: Ablation study with
early layer features from CLIP-
ViT. Li indicates ith layer of
CLIP-ViT.

Method VQAv2 GQA OKVQA

Ours 55.0 34.9 34.2
L26 53.7 32.6 31.2
L28 52.5 31.9 28.0
L30 52.4 32.8 30.9

Table 6: Ablation for Effect of Reconstruc-
tion (Recon.) Loss. Reconstruction during pre-
training plays an important role in aligning the
MAE to extract meaningful information.

Stage 1 Stage 2 VQAv2 GQA OKVQA
Recon. Recon.

33.1 25.4 12.1
✓ ✓ 52.4 32.2 29.2

Ours ✓ 55.0 34.9 34.2

potted plant, whereas our method successfully identifies it. Figure 6(g) show-
cases image of a bottle whose shape closely resembles that of a baseball bat,
leading BLIP-2 to identify it as a baseball bat. Figure 6(h) presents a challenge
due to the subtle color of an umbrella, making it difficult task. BLIP-2 fails to
recognize the object, while our method accurately identifies it as an umbrella. A
comprehensive qualitative analysis is provided in Supplementary Section 5. We
also present query diversity analysis for fine-grained qualitative comparison and
present them in Supplementary Section 6.

3.3 Ablation Analysis

We perform the following ablations to analyze the various components of our
approach. Please refer to Supplementary Section 4 for more ablation analysis.

Leveraging Early Layer CLIP features To illustrate the efficacy of MAE
embeddings in learning better local representations, we conduct experiments
using features from intermediate layers of CLIP. Specifically, we explore the
utilization of features from layers 26, 28, 30 as substitutes for MAE features in
our proposed approach. It is important to note that for this training, there is
no reconstruction loss since we are employing CLIP features. From Table 5, it
can be seen that employing MAE features leads to best results. We present more
results in Supplementary Section 4.

Impact of Image Reconstruction Loss in Pre-training. We examine the
influence of the reconstruction loss during the pre-training stage. In this pre-
training phase, we employ four objectives: image-text contrastive and matching
loss (for discriminative vision-language alignment), reconstruction loss, and text
generation loss. Our findings demonstrate that combining alignment and recon-
struction objectives during pre-training, the image reconstruction loss becomes
effective in extracting aligned and meaningful representations. To illustrate this,
we conducted an experiment without the MAE decoder and reconstruction objec-
tive during pre-trainingand computed MAE features for the entire image without
any masking. As shown in Table 6, row 1, the significant performance drop high-
lights the crucial role of the reconstruction loss in aligning and extracting useful
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information from MAE. This suggests that network cannot find a shortcut thus
leading to drop in performance while MIM enables extracting meaningful and
aligned representations leading to best performance.

Impact of Image Reconstruction Loss in LLM Alignment We investigate
the influence of reconstruction loss in stage-2. In the context of LLM alignment,
the model undergoes training with language-modeling loss exclusively, without
the inclusion of image-text contrastive and matching losses, and Q-Former does
not receive any text-input. It is evident that combining only language model-
ing loss and reconstruction loss yields suboptimal results, as indicated by the
performance drop shown in Table 6, row 2.

4 Related Works

Multimodal Large Language Models (MLLMs) The success of Large Lan-
guage Models (LLMs) has prompted researchers to delve into the exploration
of integrating visual components into these models, culminating in the develop-
ment of Multimodal LLMs (MLLMs) [22,40]. MLLMs have garnered significant
traction in both academic and industrial spheres due to their remarkable profi-
ciency in comprehension and generation. The key idea is to leverage off-the-shelf
pre-trained vision encoders and LLMs and keep them frozen during the training.
However, the most critical challenge in utilizing a frozen LLM lies in narrowing
down the gap between visual features and the text space. Existing MLLMs can be
broadly divided into three categories according to the modules/components they
used for bridging the modality gap: (i) Perceiver-based [16, 17], (ii) Q-Former-
based [23], and (iii) linear projection layer-based. In Perceiver-based methods
such as Flamingo [2], they employ a Perceiver Resampler to produce a small fixed
number of visual tokens per image, subsequently amalgamating them with text
tokens as input for LLMs. In other words, the Perceiver Resampler relies on the
image-to-text generative learning to bridge the modality gap. Q-Former shares
the similar spirits with the Perceiver Resampler, except that Q-Former relies
on an extra vision-language representation learning stage. Owing to its simplic-
ity and efficiency, Q-Former is widely used in such as BLIP-2 [23], SEED [11],
MiniGPT-4 [43], and InstructBLIP [8]. In linear projection layer-based meth-
ods, the common practice is to align visual features with text features through
a singular linear layer before incorporating them into LLMs. The effectiveness
of this simple strategy is evidenced by recent studies such as LLaVa [26] and
FROMAGe [20]. Our work is inspird by Q-Former but with the following differ-
ences: (i) we extend Q-Former to handle two off-the-shelf vision encoders, i.e.,
CLIP-ViT and MAE-ViT, and (ii) we introduce multimodality-to-multimodality
generative learning to further bridge the modality gap.

Self-Supervised Vision Encoders Self-supervised vision encoders (VEs) play
a crucial role in MLLMs by providing visual features that are understandable
by LLMs. Among them, VEs that are pre-trained by vision-language-based con-
trastive learning (CL) has been the most popular one, where the VE is trained
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to bring representations of matched image-text pair close together and push rep-
resentations of unmatched pairs apart [5, 9, 14, 18, 32, 39]. This encourages the
VE to capture semantic similarities and differences in visual content. However,
recent work reveals that CL mainly focuses on low frequency signals and longer-
range global patterns inheriting from its training objective [30]. In consequence,
CL-based MLLMs suffer from understanding detailed perceptions which are es-
sential for tasks that require fine-grained visual understanding such as object
counting. As a counterpart, masked image modeling (MIM) involves masking
parts of an image and tasking the vision encoder with predicting the masked
image patches [13]. This enhances the VE’s ability to understand detailed visual
features by promoting contextual understanding, encouraging the learning of
spatial relationships, and facilitating the development of transferable represen-
tations. Inspired by these observations, recent work attempt to build VEs that is
able to understand both global semantic and detailed local patterns [30,37]. The
key idea is to leverage the strength of CL and MIM by linearly combining two
training objectives with a shared VE. While simple and effective, these models
are not readily applicable to MLLMs due to their sole pre-training on limited
datasets and modest model sizes, significantly lagging behind their CL and MLM
counterparts. Although scaling up data and model size is possible, it introduces
substantial carbon emissions and fails to capitalize on the advantages offered
by off-the-shelf VEs from both CL and MIM. In contrast, our approach incor-
porates a lightweight transformer that harnesses the benefits of pre-trained CL
and MIM models, showcasing superior performance in fine-grained perception
understanding without imposing a significant computational burden.

5 Conclusion

In this paper, we introduce X-Former, a novel architecture designed to enhance
visual representations for Multimodal Language Models (MLLMs) by integrating
pre-trained MAE and CLIP vision encoders. Our motivation stems from several
observations: (i) existing MLLMs primarily rely on CLIP-ViT, which often fails
to capture fine-grained visual signals; (ii) our empirical studies reveal that sim-
ply combining CLIP-ViT and MAE-ViT does not necessarily yield performance
improvements; and (iii) the efficacy of MLLMs heavily depends on large-scale
image-text pairs for pre-training and meticulously curated instruction tuning
datasets for fine-tuning. X-Former effectively tackles these limitations by inte-
grating CLIP-ViT and MAE-ViT through a dual cross-attention mechanism, all
while keeping computational demands manageable. Our approach is plug-and-
play and can be applied to other models. Our experimental results unequivocally
show that X-Former surpasses BLIP-2 in a variety of visual reasoning tasks
requiring robust visual comprehension. Remarkably, these superior results are
achieved using only one-tenth of the image-text pair dataset, without the need
for any instruction tuning datasets.
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