

VISHNU SASHANK DORBALA

◊ Website: <https://vdorbala.github.io> ◊ Phone: (+1) 202-322-2098 ◊ Email: vdorbala@umd.edu

EDUCATION

University of Maryland, College Park Doctor of Philosophy (PhD), Computer Science	<i>July 2021 - Present</i>
University of Maryland, College Park Masters of Engineering, Robotics	<i>July 2019 - May 2021</i>
Symbiosis International University, Pune, India Bachelor's of Engineering, Electronics and Telecommunication	<i>June 2013 - July 2017</i>

RESEARCH INTERESTS

Foundation Models (LLMs & VLMs), Embodied AI, Robotics, Human-AI Interaction

WORK EXPERIENCE

GAMMA Lab, University of Maryland <i>Advised by Prof. Dinesh Manocha</i>	<i>January 2020 - Present</i>
--	-------------------------------

Generalizing Embodied AI with Foundation Models

- Conducting research on generalizing tasks and approaches in *Embodied AI*, using foundation models (VLMs, LLMs and Diffusion) for **data generation and inference**.
- Developed **LGX**, a novel *LLM-based exploration scheme* that queries LLMs for commonsense knowledge to achieve SOTA zero-shot robot navigation with no training (RA-L 2023).
- Developed an LLM-based pipeline for *synthesizing human-like instructions*, mitigating reliance on user annotated data and empowering researchers to create embodied navigation datasets (NAACL 2023).
- Studied the influence of **VLM-driven conversation** between overhead and ground mobile robots to improve language-guided navigation (ICRA 2025).
- Established the generalizability of various embodied navigation schemes on *dynamic* topological graph environments with **portable household targets** such as watches or phones (Paper Under Review).

Sony AI <i>Applied Scientist Intern at Core AI Research Team (CAIR)</i>	<i>May 2024 - Sept 2024</i>
---	-----------------------------

How good are Vision-Language Models (VLMs) at Question Answering?

- Developed a scalable data generation approach to evaluate *Question Answering* (QA) performance on VLMs. This was used to generate a dataset of *spatial*, existential and compositional queries for images.
- Used LoRA and vLLM to finetune and evaluate this dataset with 15 different VLMs; inferred that **larger VLM models are more sensitive to visual inputs over smaller ones performing QA**.

Amazon Alexa AI <i>Applied Scientist Intern under Dr. Reza Ghanadan</i>	<i>May 2023 - Sept 2023</i>
---	-----------------------------

Large Language Models for Generating Subjective Queries

- Proposed a novel and challenging variant to the *Embodied Question Answering* problem that tackles *situational* queries over simple ones proposed in prior art. Our work highlights the **limitations** of LLM-generation, showing them to be **good at producing queries, but poor at answering them** (Under Rev. at Robotics Conf.).

Amazon Alexa AI <i>Applied Scientist Intern under Prof. Gaurav Sukhatme</i>	<i>May 2022 - Sept 2022</i>
---	-----------------------------

CLIP-Nav: Using CLIP for Zero-Shot Vision-and-Language Navigation

- Developed a novel zero-shot navigation scheme that uses VLM grounding scores to solve **Vision-And-Language Navigation (VLN)** on REVERIE. Our approach showed improved generalizability over dominant supervised learning methods, and established a **zero-shot baseline** for this task. (Published at CoRL, 2022.)

Robust Navigation on an Indoor Robot

- Implemented indoor **Visual SLAM** on a Loomo robot, in a complex office environment.
- Developed a novel SLAM pipeline that utilized landmark information to improve navigation performance in the presence of glass windows and reflections.

Center for Visual Information Technology, IIIT, Hyderabad

Sept 2017 - May 2019

Research Fellow under **Prof. C.V. Jawahar****Visual Navigation for an Assistive Robot**

- Worked on developing SARA, an assistive **robot wheelchair** platform, capable of interacting with people.
- Performed **autonomous corridor following** on SARA via **Visual Servoing** (Published at IROS, 2019).

SELECTED PUBLICATIONS

- **V.S. Dorbala**, et. al, “Improving Zero-Shot ObjectNav with Generative Communication”, Accepted at IEEE Int. Conf. on Robotics and Automation (**ICRA**), 2025 [\(Link to Website\)](#)
- **V.S. Dorbala**, et. al, “Right Place, Right Time! Dynamizing Topological Graphs for Embodied Navigation”, Under Review at Double Blind Computer Vision Conference, 2024 [\(Link to Paper\)](#)
- **V.S. Dorbala**, et al., “Can LLM’s Generate Human-Like Wayfinding Instructions? Towards Platform-Agnostic Embodied Instruction Synthesis”, Published at the Annual Conf. of the North American Chapter of the Association for Computational Linguistics (**NAACL**), 2024 [\(Link to Paper\)](#)
- **V.S. Dorbala**, et al., “Can an Embodied Agent Find Your “Cat-shaped Mug”? LLM-based Zero-Shot Object Navigation.”, IEEE Robots and Automation Letters (**RA-L**), 2023 [\(Link to Paper\)](#)
- **V.S. Dorbala**, et al., “CLIP-Nav: Using CLIP for Zero-Shot Visual-Language Navigation” Conference on Robot Learning (**CoRL**), 2022 [\(Link to Paper\)](#)
- **V.S. Dorbala**, et al., “Can a Robot Trust You? A DRL-Based Approach to Trust-Driven Human-Guided Navigation” IEEE Int. Conf. on Robotics and Automation (**ICRA**), 2021 [\(Link to Paper, Video\)](#)
- **V.S. Dorbala**, et al., “A Deep Learning Approach for Robust Corridor Following” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (**IROS**), 2019 [\(Link to Paper, Video\)](#)

SELECTED PROJECTS

- **Do Face Generation Models Generate Good Faces?** Oct 2023
 - Used GPT-4 to generate queries that *indirectly* ask a person about their facial appearance.
 - **Inference (Report)**: Observed unusual annotations, a beard bias and exaggerated facial markings.
- **Did Subtitles Ruin Your Movie?** Nov 2022
 - Used Neural Machine Translation (NMT) to translate movie subtitles of 58 movies from French to English and vice versa. Correlated translation quality with movie ratings.
 - **Inference (Report)** - In some crucial cases, the NMT subtitles convey scene sentiments far better than human-written ones.
- **Classifying Glucose Levels with EEG Data** Dec 2021
 - Used a Muse headband to capture EEG brain signals non-intrusively for approximating glucose levels.
 - **Inference (Report)**: As the data was incredibly noisy given the sheer temporal volume (collected in milliseconds), training a CNN based classifier did not give favourable results. Classical hand-crafted feature extraction proved superior.

ACHIEVEMENTS

- Research conducted on LLM-based exploration (LGX) is being used by a YC funded robotics startup.
- Co-Chaired at a conference session on Human-Robot Interaction: Robot Navigation at ICRA 2021.
- Received the Dean’s fellowship for PhD students awarded by the University of Maryland, College Park.