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Fig. 1: We present VAMOS, a general-purpose hierarchical VLA for navigation. Our key idea is to decouple semantic planning from
embodiment grounding. We achieve this by training a high-level VLM planner with diverse, heterogeneous real-world data that proposes
trajectory candidates as 2D paths, which are then re-ranked by an embodiment-specific affordance model trained cheaply and safely in
simulation. This yields robust, cross-embodied and steerable open-world navigation controllers.

Abstract— A fundamental challenge in robot navigation lies
in learning policies that generalize across diverse environ-
ments while conforming to the unique physical constraints
and capabilities of a specific embodiment (e.g., quadrupeds
can walk up stairs, but rovers cannot). We propose VAMOS,
a hierarchical VLA that decouples semantic planning from
embodiment grounding: a generalist planner learns from di-
verse, open-world data, while a specialist affordance model
learns the robot’s physical constraints and capabilities in safe,
low-cost simulation. We enabled this separation by carefully
designing an interface that lets a high-level planner propose
candidate paths directly in image space that the affordance
model then evaluates and re-ranks. Our real-world experiments
show that VAMOS achieves higher success rates in both indoor
and complex outdoor navigation than state-of-the-art model-
based and end-to-end learning methods. We also show that our
hierarchical design enables cross-embodied navigation across
legged and wheeled robots and is easily steerable using natural
language. Real-world ablations confirm that the specialist model
is key to embodiment grounding, enabling a single high-level
planner to be deployed across physically distinct wheeled and
legged robots. Finally, this model significantly enhances single-
robot reliability, achieving 3× higher success rates by rejecting
physically infeasible plans. Website: https://vamos-vla.
github.io/

I. INTRODUCTION

A core problem in robotics is determining how robots
can navigate to a goal location while traversing non-trivial
terrain and obstacles. The promise of general-purpose robot
navigation— i.e., performing well across diverse environ-
ments, different embodiments, and being easy to steer during
deployment—has motivated a shift from hand-designed mod-

ular stacks to learning-based approaches that leverage large-
scale data. Recent advances in robotic foundation models
have shown that performance scales with the amount of
diverse data provided [1], [2], [3], [4]. However, as datasets
scale, so does their heterogeneity. This becomes a critical
challenge when a downstream robot is physically incapable
of achieving the entirety of behaviors recorded in a pooled,
multi-robot dataset. For instance, data from a quadruped nav-
igating stairs is of limited use to a wheeled robot. This creates
a bottleneck that prevents us from naively combining all
available data and achieving reliable navigation performance.
In this work, we tackle the problem of effectively leveraging
large-scale, combined datasets of heterogeneous locomotion
capabilities for learning general-purpose cross-embodiment
and steerable navigation policies.

To this end, we propose VAMOS, a hierarchical vision-
language-action (VLA) model. Our key insight is that naviga-
tion can be decomposed: high-level heuristics (e.g., reaching
a goal, avoiding large obstacles) are generalizable across em-
bodiments, while low-level traversability is strictly dependent
on the robot’s physical capabilities. VAMOS operationalizes
this insight with two main components, i.e., a high-capacity
vision-language model (VLM) that acts as a generalist high-
level planner, and a lightweight, per-embodiment affordance
model that evaluates the feasibility of the planner’s proposed
actions. We train the VLM planner on diverse, real-world
datasets to instill broad semantic understanding, and we
train each embodiment’s affordance model in simulation
for efficiency and safety (Fig. 1). The interface between
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Fig. 2: The high-level planner is a VLM trained to take an image and a goal coordinate (encoded as text) as input, optionally appending
natural language preferences, and to output a set of candidate paths in pixel space. These paths are encoded as strings of location token
pairs, then decoded and projected from 2D pixel space to the 3D ground plane. Finally, a capability-aware affordance function evaluates and
re-ranks the 3D candidate paths to determine which path the robot should execute in the real world based on low-level policy capabilities.

these models is a predicted 2D path. This path provides
a structured yet flexible representation that enables our
planner to leverage heterogeneous data while allowing the
affordance model to modulate plans based on embodiment-
specific constraints.

Through extensive real-world experiments, we demon-
strate that our hierarchical approach, VAMOS, yields a new
state-of-the-art in general-purpose robot navigation. We show
for the first time that a structured VLA can outperform
both heavily tuned modular stacks and monolithic foundation
models on challenging indoor and outdoor courses. The
key to this superior performance is the hierarchical design
choices that successfully disentangle general planning from
specific physical affordances to enable cross-embodiment
transfer: we achieve high performance on both wheeled and
legged robots by reusing the same high-level planner and
swapping only a lightweight, specialized affordance model.
Our use of a VLM also permits intuitive, natural language
steerability at test time. Further, our ablations validate our
core design choices, confirming that training with heteroge-
neous data provides significant positive transfer and that our
affordance model is crucial for robust navigation.

II. RELATED WORK

Our work builds upon three key areas of research: classical
modular navigation, end-to-end learning for navigation, and
hierarchical vision-language models.

Classical Modular Navigation. Navigation has tradition-
ally been approached using modular systems with distinct
components, e.g., state-estimation, perception, planning, and
control [5], [6]. These methods have become the estab-
lished standard in complex real-world systems due to their
reliability and interpretability [7], [8]. To improve their
generalization, recent efforts have incorporated learning-
based components, e.g., in perception [9], [10], traversability
estimation [11], [12], [13], [14], or planning [15], [16].

However, traditional modularity introduces significant lim-
itations. First, these systems are typically heavily tuned for
a specific robot embodiment and a bounded set of operating

scenarios, making them brittle when deployed in new envi-
ronments. Second, the intermediate representations, such as
2.5D costmaps, can abstract away valuable information and
create performance bottlenecks between modules. Most im-
portantly for our work, these systems lack cross-embodiment
generalizability; transferring them to a new robot often
requires re-training learned components and extensive re-
tuning of the entire stack [11], [16]. Our work aims to
achieve the robustness of these systems while overcoming
their reliance on hand-tuning and their inability to generalize
across embodiments.

End-to-End Learned Navigation and Foundation Mod-
els. To address the limitations of modular stacks, a domi-
nant paradigm in recent years has been end-to-end learned
navigation. This approach seeks to learn a direct mapping
from sensor inputs to control actions, shifting the burden
from manual system design to large-scale data provision. The
success of foundation models in other domains has inspired
similar efforts in robotics [1], [2], [3], [4], [17], which
have demonstrated that policy performance scales effectively
with the size and diversity of the training dataset. However,
without any additional structure, these methods can be brittle
during real-world deployment, e.g., they often struggle to
train across widely heterogeneous datasets due to individual
dataset variations in the action space.

Hierarchical Architectures and Vision-Language Mod-
els. To achieve a better balance, our work builds upon
the paradigm of hierarchical models, which separate high-
level planning from low-level control, the latter of which is
often treated as an open-loop black box. This structure is
well-established in both manipulation [18], [19] and navi-
gation [20], [4], [3]. However, the choice of representation
and the division of responsibility between the modules are
critical. As our experiments later demonstrate, many prior
hierarchical models underperform even traditional modu-
lar baselines in complex settings. Bidirectional influence
between the VLM planner and the affordance module is
necessary for robust performance.

One line of work [20], [4], [3] uses a generalist model that



takes a goal image as input and outputs a sequence of low-
level velocity commands. This approach places an immense
burden on a single model to both learn high-level navigation
semantics and infer the specific low-level capabilities of the
robot directly from observations. This conflation of tasks
compromises performance on anything beyond simple, flat
terrain. Moreover, it introduces a practical limitation by
requiring a prior demonstration to obtain the goal image and
often relies on a pre-built map for long-range navigation,
limiting its applicability in unseen environments.

More recently, these hierarchical systems have been in-
stantiated as VLAs, leveraging the semantic reasoning of
pre-trained VLMs [21], [18], [22]. The method most relevant
to ours is NaVILA [21], which finetunes a VLM to map a
natural language command to a sequence of textual low-level
actions (e.g., ”Move forward 25 cm”). This approach has two
key drawbacks. First, specifying precise goals via text can
be tedious and ambiguous for non-object-centric navigation.
Second, discrete, short-horizon textual output commands are
not well-suited for long-range planning and, crucially, do not
provide a natural interface for downstream modulation by an
embodiment-aware module.

We designed VAMOS to overcome these limitations. By
predicting a continuous 2D path as our interface, we (1) en-
able precise, long-range spatial reasoning, (2) do not require
prior demonstrations or maps, and (3) create a representation
that can be explicitly modulated by our per-embodiment af-
fordance model. This lets our high-level planner focus solely
on generalizable navigation strategy, while the affordance
model assumes sole responsibility for grounding the plan
in the specific robot’s physical capabilities.

III. VAMOS: VLA FOR HIERARCHICAL NAVIGATION,
AFFORDANCE-MODULATED AND STEERABLE

We propose a learning-based navigation algorithm, VA-
MOS, that can learn from large, heterogeneous datasets while
maintaining awareness of embodiment-specific capabilities.
To do this, we combine a high-level VLM planner with
embodiment-specific, low-level locomotion affordance mod-
els, which re-rank the high-level predictions to align with
robot capabilities at test time (Fig. 2). In the following
subsections, we outline our high-level generalist model ar-
chitecture and training paradigm (Section III-A) and describe
the low-level affordance modulation (Section III-C).

A. High-Level VLM Planners from Large-Scale Datasets

A high-level generalist navigation model must be able to
incorporate a variety of large-scale data sources, benefiting
from their union. To this end, we build on recent advances
in vision-language modeling by parameterizing our high-
level generalist navigation model as a VLM. Our key design
decision then became: What choice of interface between
the high- and low-level models facilitates generic training
across heterogeneous datasets while effectively interfacing
with embodiment-specific, low-level control?

We cast high-level navigation as a trajectory prediction
problem, leveraging 2D point prediction as a unifying inter-

face for general-purpose navigation. Specifically, we train
a VLM planner Pφ (τ|I,gl) to go from a monocular RGB
image I ∈ I and target goal coordinates encoded in text gl
to predict a coarse 2D path τ ∈ T in pixel space. The 2D
path τ is a sequence of points that describes a trajectory of
where the robot should move in future time-steps, projected
onto the image plane for simplicity. Formally, the 2D path
is defined as τ : (x,y)t , where (x,y) are normalized pixel
locations of the robot’s position in the frame at step t.

Our choice of parameterization has several advantages.
First, it facilitates general-purpose training from a variety
of data sources, with variable action spaces, unified via
point prediction. Second, as noted in prior work [18], [23],
training on point-level predictions helps VLMs retain much
of their pre-trained generalization capabilities. The high-
level VLM navigation module interfaces with a low-level
controller π bidirectionally (see Section III-C); it provides
waypoints for the low-level controller to track, while the low-
level controller modulates the high-level predictions via its
affordance function Fπ .

To train our steerable VLM planner, we first assemble
a diverse navigation dataset mix that spans 29.8 hours
and contains odometry-labeled data from 4 different robotic
navigation datasets taken from 3 different embodiments (Fig.
3). We perform a series of data processing and filtering
operations (Section III-B) that let us obtain higher-quality
data for training our navigation generalist. From this dataset,
we easily extract labeled data in the form of tuples of images
and corresponding navigation paths, represented as 2D points
in pixel space. We additionally annotate and augment this
data with text descriptions from a state-of-the-art VLM to
improve model steerability.

Given this training data, we finetune high-level VLMs
to perform path predictions given input images and target
goal coordinates. We perform supervised finetuning over a
pre-trained PaliGemma 2 3B model at 224px2 resolution
[24]. We use low-rank adapters (LoRAs) since training our
models using full-parameter fine-tuning vs LoRA [25] yields
similar performance.

B. Training Data and Preprocessing

a) High-Level Generalist Training Data: We obtain
training data for the high-level navigation module from
diverse robotic navigation datasets. Since different robots
may not share the same low-level action space, we align
predictions across these datasets using pixel-point prediction
as a unifying interface. For all data sources, we label trajec-
tories in hindsight using camera poses at a horizon H into the
future. Importantly, we use poses of the robot on the ground
for all training data; this lets us specify goals in image space
behind occluded points. We use known or estimated intrinsic
and extrinsic matrices to project the 3D poses recorded in
the datasets into 2D image trajectories.

We curate a diverse mix of datasets for navigation that
spans different robot embodiments, camera perspectives,
timing and weather conditions, and, importantly, different
navigation capabilities and affordances. We perform several



(a) SCAND (b) TartanDrive 2 (c) CODa (d) Spot

Fig. 3: We fine-tune a VLM with navigation-specific, real-world
datasets, with heterogeneous embodiments and capabilities, to ob-
tain a general-puropse high-level planner. We use a filtered data mix
from SCAND [26], TartanDrive 2 [27], CODa [28], and a small,
0.3 hour in-domain dataset collected on Spot.

data pre-processing operations on our data that are crucial for
improving model performance to the point of deployability,
i.e., combining both short- and long-horizon trajectories,
filtering data based on curvature, and empirically determining
the right data mix.

b) Steerability Recipe: The textual interface of our
generalist VLM lets us provide preferences expressed as text-
based instructions to steer the model’s predictions at test
time. To train a steerable model, we augment 10% of the
data with state-of-the-art VLM annotations and co-train with
two text-only visual question datasets. First, we generate 4
temporally correlated noisy versions of the ground-truth 2D
trajectory τ plus a mirrored version of τ . Then, we overlay all
paths onto the image I and use chain-of-thought prompting to
ask GPT-5-mini to (1) describe the obstacles and terrain in
the scene, (2) describe the paths, and (3) rank them based on
their quality and diversity. We take the top three 2D paths and
their respective descriptions, and we add them to our dataset.
Finally, we co-train with data from the COCO-QA [29] and
Localized Narratives [30] datasets to prevent forgetting.

C. Affordance Conditional Modulation

Formulation. The high-level VLM predictions are modu-
lated by a low-level, capability-aware affordance function,
which ensures that only achievable behavior is executed
on hardware. The high-level navigation policy generates a
set of candidate trajectories that the robot can follow to
reach the goal. To pick the trajectory candidate best suited
to the specific low-level locomotion policy running on the
robot, we predict an affordance score Fπ : M × X ×Y ×
A → [0,1] that jointly maps from an elevation map M :
{1,2, . . . ,W} × {1,2, . . . ,H} → R, normalized query point
x,y ∈ [0,1] position in Euclidean space around the robot,
and heading angle a ∈ {0◦,45◦, . . . ,315◦} to the probability
that the policy π can actually traverse (x,y) in the map M
when heading in direction a. This setup is inspired by the
traversability estimation literature, both in simulation [13],
[14] and from real-world data [11], [12]. An affordance score
of 1 indicates that the point is fully traversable, while 0
indicates that the point is not traversable.

This affordance function Fπ is learned via supervised
learning fully in simulation by rolling out the embodiment-
specific locomotion policy across a diversity of terrains. Fπ

enables test-time modulation of predictions from the VLM
and is of benefit in two situations. First, it helps to find
the candidate trajectory predicted by the VLM that is best
aligned with the actual capabilities of the robot. Second,
it assists with filtering out potentially noisy or infeasible
predictions from the VLM, e.g., if it incorrectly predicts a
path through an obstacle.

Training. Training data for learning affordance function
Fπ is made available by executing trajectories in simula-
tion over a large variety of procedurally generated terrains
using the chosen low-level policy. To collect each data
point, a random elevation map M is spawned; following
this, the agent is reset to a particular position (x,y) in
the simulator, the policy is executed over a short horizon
in a particular direction a, and binary traversal success
(or failure) of the low-level policy is noted. This results
in a set of data points D = {M(n),x(n),y(n),a(n),s(n)}N

n=1,
where M(n) ∈ RW×H is a local elevation map, (x(n),y(n)) is
the queried agent position, a(n) ∈ {0◦,45◦, . . . ,315◦} is the
heading direction, and s(n) ∈ {0,1} is a label representing
success or failure of the trajectory. Given this training data
D , we train an affordance function Fπ , represented as an
MLP by minimizing a standard binary cross-entropy loss ℓ
– L = minFπ

EM,x,y,a,s∼D [ℓ(Fπ(M,x,y,a),s)].

D. Deployment

The navigation missions are defined given a series of
GPS waypoints or 3D coordinates in the world frame,
which are converted to 2D points in the image to be
passed as input to the high-level VLM. During deploy-
ment, the VLM is first queried on the current image I
and a text-encoded 2D goal coordinate gt to obtain a set
of viable paths p1, p2, . . . , pK in pixel space. Each pixel-
space path pi is then projected into world positions of
the robot in the ground plane along each path: τw

i =[
(x0,y0)

i, . . . ,(xH ,yH)
i
]K

i=1 to query affordances. The affor-
dance of each candidate path is then computed using this
sequence of points along with the local elevation map M
to query Fπ , thereby obtaining a pointwise affordance score
for each path:

[
Fπ(M,x0,y0,a0)

i, . . . ,Fπ(M,xH ,yH ,aH)
i
]K

i=1.
Finally, since a path is blocked if even one of its
elements is blocked, a cumulative affordance is com-
puted as the minimum affordance score along each path:
Fc(pw

i ) = min
[
Fπ(M,x0,y0,a0)

i, . . . ,Fπ(M,xH ,yH ,aH)
i
]
. In-

tuitively, paths τw
i with higher affordances are better, while

low-affordance paths are unlikely to be successfully nav-
igated using the low-level policy π . Given this per-path
measure of cumulative affordance Fc(pw

i ), we can select a
single trajectory to execute on the robot greedily by choosing
the trajectory with the highest affordance, or we can sample
with soft sampling to allow for some stochasticity in path
selection: τ̂w ∼ Softmax

(
F(τw

1 )

β
,

F(τw
2 )

β
, . . . ,

F(τw
k )

β

)
.

This modulation results in a sample path τ̂w that can
then be executed on the robotic hardware by commanding
waypoints to the low-level policy. During deployment, we as-
sume access to a low-level, velocity- or position-conditioned



(a) Hallway (b) Atrium (c) Lab (d) Campus (e) Forest (f) Down Ramp

Fig. 4: We run real-world navigation experiments indoors and outdoors in unseen scenes with challenging terrain, lighting, and vegetation.
Our results show that VAMOS outperforms state-of-the-art navigation foundation models and model-based baselines.

Indoor Outdoor

Hallway Atrium Lab Campus Forest Down Ramp Avg. SR

Method SR NI T SR NI T SR NI T SR NI T SR NI T SR NI T

Modular Stack 100 0 0 100 0 0 100 0.2 0 0 – 2 0 – 0 20 1 0 53
ViPlanner 100 0 0 100 0 0 0 – 0 100 0 0 100 0 0 0 – 0 67

NoMaD 60 1.3 1 0 – 3 40 2 0 0 0 5 0 – 2 60 0.7 0 27
NaVILA 20 – 1 0 – 1 40 – 0 0 – 0 0 – 1 0 – 5 10
VAMOS (Ours) 100 0.2 0 80 0.25 1 100 0 0 80 0 0 100 0.4 0 80 0.25 0 90

SR: Success Rate over 5 trials (%) ↑, NI: Avg. number of interventions on successful runs [0-2] ↓, T: 3 min. timeouts [0-5] ↓

TABLE I: VAMOS outperforms model-based (above the horizontal line) and end-to-end generalist navigation baselines (below the line)
across a wide variety of conditions. Success Rate (SR) is computed over 5 trials for each robot-environment pair. Notably, we show that
prior navigation generalists struggle to match the performance of a traditional modular stack, while VAMOS outperforms all baselines.

locomotion controller for our real-world platforms. We use
the predictions of the high-level VLM in a receding horizon
control fashion, where it predicts k = 5 waypoints but uses
only the first m waypoints predicted by the high-level con-
troller before replanning, where m< k is a tunable parameter.
If the goal coordinate is not in the image frame, the robot
rotates in place until the goal is back in the image before
replanning.

IV. EXPERIMENT RESULTS

Out experiments evaluate the following research questions.
(1) Is our hierarchical navigation method competitive with
other navigation baselines in unseen environments? (2) Does
our navigation method support cross-embodiment naviga-
tion? (3) Is VAMOS steerable? (4) Do we benefit from
having a high-level generalist VLM compared to having a
robot-specific navigator? (5) Do we benefit from low-level
affordance modulation for single-robot navigation? We first
describe the setup of our experiments and then walk through
results pertaining to each question.

A. Experiment Setup

To validate the claims in this work, we test the methodol-
ogy on two robotic platforms:

1. Legged: Boston Dynamics Spot. We evaluate perfor-
mance on the BD Spot Robot using the built-in locomotion
controller (capable of traversing ramps, stairs, and other
terrains) as the low-level policy.

2. Wheeled: UW Hound Robot. To test transfer across
embodiments, we also consider a second robot, the UW
Hound [31]. Importantly, the Hound uses the same high-level
VLM planner, but we simply vary the low-level affordance
function and controller.

Simulation Environment. We build our simulation en-
vironment to learn the affordance function on Isaac Lab.
We use a perceptive RL policy trained with reinforcement

learning in simulation [32] as a proxy for the built-in
BD Spot policy. To learn perceptive affordance functions
that transfer well to real world, we must provide a wide
diversity of terrains in simulation; during real-world deploy-
ment, there are often more distractors in the environment,
such as furniture or vegetation, that must be modeled for
proper sim-to-real transfer. To add diversity to our simulation
environments, we generated inter-connected structures with
stairs and ramps using wave function collapse. Additionally,
to model irregular patterns, we used cellular automata to
generate smooth, uneven terrains.

B. Is VAMOS a capable navigation system in the real world?

We compare performance between our method and other
state-of-the-art baselines in terms of navigation capabilities
in real-world, unseen, indoor and outdoor environments (Fig.
4). The chosen baselines are (1) a geometric model-based
modular navigation stack similar to [7], (2) ViPlanner [15],
a learned geometric and semantic planner, (3) NoMaD [3],
a navigation foundation model, and (4) NaVILA [21], a
navigation VLA. We focus on a short- to medium-horizon
range for goal navigation, where the goal position is specified
in 3D global coordinates. To reach long-range goals, we
generate waypoints to the goal every ∼ 10 meters (Fig. 5).

The “Hallway” course (∼ 20m) tests the ability to navigate
down narrow corridors with tight turns. The “Atrium” course
(∼ 20m) measures the ability to navigate cluttered open
scenes in low light. The “Lab” (∼ 5m) course tests the
ability to navigate to a point occluded by a large irregular
obstacle. The “Campus” (∼ 40m) course tests the ability
to navigate long distances, including going up a 7-step
staircase. The “Forest” (∼ 20m) course tests the ability to
navigate in vegetated environments that including stairs;
rooted and vegetation-covered terrain; irregular concrete
paths; and paths with overhanging vegetation. Finally, the



Fig. 5: Top-down map showing paths taken by different methods
from start (red) to goal (green) through waypoints (yellow). VA-
MOS achieves long-horizon, precise navigation. Right: predicted
and selected paths when replanning after reaching a waypoint.
Dotted lines show returns to the last completed waypoint after
interventions; X’s mark baseline failures or timeouts.

“Down Ramp” (∼ 15m) course tests the ability to navigate
to a point below the start pose, evading foot-snaring vines.

We present the results in Table I. VAMOS achieves higher
average success rate across all courses, performing well
across all conditions, which no other baseline does.

In indoor environments, VAMOS performs on par with
the modular stack and ViPlanner, with the exception being
the more challenging ”Lab” course, where it outperforms
all baselines. This is because the inferred geometric cost-
maps indoors are clean and easy to plan against. However,
two generalist baselines, NoMaD and NaVILA, struggle to
generalize out-of-distribution, even though they were both
trained using indoor data similar to our data mix, and
mainly navigate in straight lines or bounce off walls. We
credit VAMOS’s superior performance to our usage of 2D
trajectories, which have been shown to maintain more of the
pre-trained VLM’s generalization capabilities [18].

VAMOS also excels in outdoor urban and off-road en-
vironments. Neither the modular stack nor the generalist
baselines perform well outdoors. The geometric modular
stack fails at the interface of perception and planning, where
inaccurate perception leads to downstream failures. The
generalist baselines fail because in more open environments,
they mainly walk in straight lines. ViPlanner performs well
due to its well-tuned geometric and semantic perception
integration. However, in both the “Lab” and “Down Ramp”
environments, which are challenging due to large geometric
obstacles that require long-term planning, ViPlanner fails
to reason about long-term outcomes. These experiments
highlight VAMOS’s rich geometric and semantic reasoning
capabilities, resulting in a significantly higher overall aver-
age success rate (90%) compared to the baselines.

C. Does VAMOS support cross-embodiment navigation?

We evaluate the cross-embodiment capabilities of our
method on a simple test environment consisting of a staircase
and a ramp, side-by-side, leading to an elevated floor, as
shown in Figure 6. We use the same high-level planner
for both Spot and Hound robots, and we swap only the
embodiment-specific affordance module. First, we show that

Fig. 6: We evaluate the cross-embodiment capabilities of VAMOS on
a wheeled robot, Hound, where the goal (red X) is to reach an ele-
vated floor through either a ramp or stairs. We show 10 candidates
predicted by the VLM and their corresponding affordance score. Re-
ranking with the affordance function enables higher success rates
in cross-embodied navigation as shown in Table II.

Spot Hound

Stairs Ramps SR Stairs Ramps SR

No Modulation 4/10 6/10 100% 4/10 6/10 60%
With Modulation 8/10 2/10 100% 1/10 9/10 90%

TABLE II: Affordance modulation maintains Spot’s perfect per-
formance and improves Hound’s overall success rate from 60% to
90%, enabling cross-embodied navigation. Counts show per-terrain
path choices (teal = success, red = failure) over 10 runs.

Method Spot Hound

ViPlanner 100% 0%
VAMOS 100% 90%

TABLE III: VAMOS outperforms the best navigation baseline in
cross-embodiment tasks, selecting ramps vs. stairs aligned with
robot capabilities via its affordance model (N=10).

affordance modulation lets the same VLM predictor be used
effectively with two different robot embodiments, enabling
navigation for both platforms. As we show in Table II,
the same VLM with affordance modulation enables accurate
navigation for both legged and wheeled platforms, taking
specific robot capabilities into account. In this case, the
wheeled robot can only take the ramp, while the legged
robot can succeed on both stairs and ramps. In contrast,
executing VLM predictions without affordance modulation
often results in predictions that are not achievable under the
current low-level embodiment. 1

Compared to the best performing method in Table I,
ViPlanner, we show that our method achieves almost perfect
success rates on both embodiments, while ViPlanner fails
when deployed on Hound, as shown in Table III. By swap-
ping affordance models that are cheap to train and run, we
obtain performant cross-embodiment navigation.

1To improve multimodal generation in this experiment, we collected 50
static images with slight pose variations from each robot in that environment,
labeled each with a path going up stairs and a path going up ramps, and then
generated 10 noisy samples per hand-drawn trajectory to generate the dataset
that we used to finetune the base VAMOSVLM planner. This helped more
clearly illustrate the differentiation provided by the affordance function.



Fig. 7: VAMOS is steerable through natural language preferences
appended to its goal coordinate specification. Different preferences
are indicated by the shown natural language prompts and depicted
using different colors.

D. Is VAMOS steerable via natural language?

We evaluate the steerability of our model qualitatively and
quantitatively. In Figure 7, we show examples of the 2D paths
predicted by VAMOS with and without preferences appended
to the text input that encodes the goal coordinate. As shown
in Figure 7, we can adapt the output trajectories to follow
a particular direction (left or right) or to take a particular
terrain (stairs, ramps, or grass planters). Using VLM-as-a-
judge (ChatGPT 5) on the bottom-right image in Figure 7 ,
we obtain 20/20 preference alignment when specifying which
path to take for both the ramps and the stairs compared to
the original trajectories without pre-specified preferences.

E. Does the high-level VLM generalist provide benefits over
a robot-specific navigator?

To understand whether training a generalist VLM policy is
actually beneficial, we perform an analysis of offline model
performance. Specifically, we aim to answer whether pooling
data from the heterogeneous datasets in Figure 3 is beneficial
compared to simply training the model on single, robot-
specific datasets. We compare the performance of the high-
level VLM predictor on path prediction across mean L2
prediction error as a metric. Specifically, we compare the
performance of a model trained on a pooled dataset across
all the datasets mentioned in Figure 3 to the performance
of a model trained on each individual dataset. The results
in Figure 8 indicate that pooling data results in better
performance than training on specific datasets.

Fig. 8: Pooling data across all robot datasets (red) improves model
performance compared to training specialist navigation models
on individual robot datasets (teal). We evaluate over the entire
validation set. Error bars represent 95% CI.

Fig. 9: The affordance function also helps with filtering out
noisy VLM predictions in single-embodiment OOD settings. In
this example, it filters out the paths predicted by the VLM that
go through obstacles to reach the goal (red X), leading to higher
success rate (Table IV).

Condition Success Rate

No Modulation 20.0%
With Modulation 60.0%

TABLE IV: Affordance modulation reduces high-level VLM pre-
diction errors in cases where the VLM predicts paths that violate
the robot’s capabilities or physics. Success rate is over 10 runs.

F. Do we benefit from low-level affordance modulation for
single-robot navigation?

Next, we evaluate whether modulation with the affordance
function can improve model performance with a single
embodiment by correcting for VLM errors. We show quan-
titatively in Table IV that the VLM performance without
modulation can make mistakes in OOD settings, such as
going through obstacles, that are corrected by the affordance
function modulation. The same can be seen qualitatively in
Figure 9, where affordance modulation prevents the execu-
tion of catastrophic paths suggested by the VLM.

Finally, we visualize the affordance function in Figure 10.
We see that it naturally captures the geometry of the en-
vironment and the particular agent’s capabilities. Projecting
this affordance function onto the VLM predictions prevents
mistakes like navigating directly into obstacles.



(a) Scene Geometry (b) Spot Affordance (c) Hound Affordance

Fig. 10: The affordance function indicates that the Spot robot can
ascend stairs, but the wheeled Hound cannot (yellow signifies high-
affordance score). Both robots cannot traverse tall obstacles (e.g.,
the wall has a low-affordance score).

V. CONCLUSION

We presented VAMOS, a technique for general-purpose
navigation using vision-language models. The central idea
in this work is to combine diverse, heterogeneous datasets
for training a hierarchical VLA model. The high-level VLM
planner predicts candidate navigation paths as 2D pixel paths.
This output is modulated by a low-level affordance model
that enables capability- and embodiment-aware navigation
on deployment. We show significantly improved perfor-
mance over both model- and learning-based baselines in our
extensive real-world navigation experiments. The resulting
methodology provides a step towards open-world, general-
purpose navigation agents that can reason both geometrically
and semantically about how to act in the world.
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APPENDIX I
HIGH-LEVEL TRAINING DETAILS

A. Hyperparameters and Compute

We present all our training hyperparameters for the high-
level VLM in Table V. We find that training for multiple
epochs lends to rapid overfitting, so we train our model for
1 epoch using an Nvidia L40 node of 8 GPUs with a per-
device batch size of 8 for about 5 hours. Notably, we find
that it is possible to fine-tune our model with LoRA on a
consumer-grade Nvidia RTX 4090 GPU, albeit with a much
smaller per-GPU batch size of 2. We take advantage of state-
of-the-art training infrastructure for large language models
(LLMs) by integrating our training with the HuggingFace
ecosystem, using the TRL library [33] with data-parallelism
implemented by the accelerate library [34].

TABLE V: Key Training Hyperparameters

Hyperparameter Value

Base Model google/paligemma2-3b-pt-224
Seed 42
Optimizer adamw
Learning Rate 1e-4
Adam β1 0.9
Adam β2 0.999
Adam ε 1e-8
Weight Decay 1e-5
Max Grad Norm 1.0
LR Scheduler Cosine
Warmup Ratio 0.1
Num Train Epochs 1
Batch Size (per device) 8
Gradient Accumulation Steps 1
Num GPUs 8
Effective Batch Size 64
Precision bfloat16
Max Sequence Length 2048
Data Packing True

LoRA Specific Parameters (PEFT)

LoRA R (Rank) 16
LoRA Alpha 16
LoRA Dropout 0.05
LoRA Target Modules q proj, k proj, v proj, o proj,

gate proj, up proj, down proj

B. Dataset Preparation and Mixtures

a) Dataset Processing: We perform several data
pre-processing operations on our data that allows us to
obtain higher-quality data for training. Notably, scaling up
navigation datasets naively leads to a lot of data where
the navigator mostly walks or drive straight. We balance
short and long-range trajectories by sampling from two
different horizons at a 50% ratio, which increases the
diversity in paths while maintaining effective short-range
navigation. Given that much of the data in these datasets is
highly-correlated, we also filter the number of trajectories
to maintain the most salient examples. To do this, we
rank trajectories based on curvature, defined as the ratio
between the ground-truth trajectory length and the straight-

line distance to the goal, i.e., c =
∑

k−1
i=1 ∥wi+1

t −wi
t∥

∥wk
t −w1

t ∥
, where

Dataset Hours Used (%)

SCAND [26] 19.5 351.2K (50%)
CODa [28] 7.8 70.5K (25%)
TartanDrive 2 [27] 2.2 79.1K (100%)
Spot 0.3 11.2K (100%)

Human Sketch (FT) – 2K (100%)

Total 29.8 514K

TABLE VI: Dataset mix used for training high-level navigation.
All datasets include odometry annotations. Human sketch annota-
tions enable few-shot adaptation (Section IV-C).

τt = {w1
t , . . . ,w

k
t }, and we select the top n data points based

on curvature, where n varies based on dataset. The odometry
in these datasets can be noisy, so we also filter out the top
3% of trajectories based on this curvature metric to reject
noisy samples. Finally, we align the 2D image coordinate
representation of the goal to the tokenization scheme
of the pre-trained PaliGemma 2 model – in particular,
location tokens are represented using 1024 discrete location
tokens (<loc0000> to <loc1023>) corresponding
to binned normalized image coordinates. We convert
the goal to a text instruction of the form "Navigate
to x=<locXXXX>, y=<locYYYY>", which then
gets tokenized and passed into the model alongside the
image. If a natural-language preference is specified, we
append this preference to this string, e.g., "Navigate
to x=<locXXXX>, y=<locYYYY>.Stay on the
right of the people."

b) Dataset Mixtures:: In early experiments, we found
training with all the data, or training with a uniformly
subsampled percentage of all the data performed worse than
our data mix detailed in Table VI. We arrived to this mix
heuristically: we found that the SCAND dataset [26] contains
high-quality, diverse data, so we keep a high proportion of it,
whereas the CODa dataset [28] is very repetitive, covering
very similar scenes throughout the dataset, although at higher
variations of weather and lighting conditions, so we down-
weight it. We keep the full datasets for the TartanDrive [27]
and in-domain Spot datasets given their relatively-small size,
although we filter out trajectories with noisy odometry from
the TartanDrive dataset. Finally, we consider only the Spot
subset of data from the SCAND dataset [26] given that we
could not obtain accurate camera parameters for the Jackal
subset.

We also experimented with two additional sources of
non-robot data: videos processed with monocular tracking
[35] or structure-from-motion algorithms [36], [37], and data
collected with paired odometry using an iPhone and its built-
in odometry estimation through ARKit, similar to [38]. For
unlabeled egocentric videos, we obtain estimated camera
poses using the CoTracker video tracker model [35], similar
to [16], which tracks a grid of 2D points on a video. To
obtain trajectories using CoTracker, we run egocentric videos
in reverse and track a subset of the grid of points sampled
on the ground in front of the camera to obtain a sequence
of traversed points. We collected a dataset of 3.7 hours,



with 133K data points, of in-domain walking data collected
with an Insta360 fisheye camera. We found that adding this
data to our data mix hurt performance. CoTracker struggles
with maintaining trajectories behind occlusions, which leads
to shorter ground-truth trajectories, noisy data, and mostly
straight paths. We also experimented with Mast3r-SLAM
[36], and while it handled occlusions better, processing long-
horizon trajectories was too computationally inefficient.

The second source of data we experimented with was
odometry-labeled videos collected with an iPhone and la-
beled with ARKit. This allowed us to collect data at a much
higher speed than through robot data collection. Most of our
efforts focused on collecting data to improve the multi-modal
capabilities of the robot, by starting at similar positions
but taking different paths to reach the goal. We focused
on collecting data going up stairs and ramps to support
our experiment in Section IV-C. We collected a dataset of
81K data points (about 2.3 hours). However, we found that
using the entirety of this data lead to more twisty predicted
trajectories throughout, and hurt quantitative metrics. We
believe this data collection approach to be quite promising,
both due to its ease of scalability and potential for collecting
targeted data beyond what is usually found in internet and
existing robotic datasets. We leave finding better ways to
select data mixes from diverse sources such as the ones
described in this section [39] for future work.

APPENDIX II
QUALITATIVE RESULTS

We show a visualization and top-down map ofall real-
world navigation courses in Figure 11. We also show some
examples of the predicted and ground truth trajectories in
each dataset in Figure 12. Our model is good at following
paths and trails, going behind obstacles and occlusions, and
reaching the goal. Given that the ground-truth trajectories are
long-horizon, sometimes these paths take roundabout ways to
reach the goal. Our high-level VLM often takes direct paths
to the goal. We show some of the VLM’s failure modes in
Figure 13. Two salient failure modes are dynamic obstacles
and over/under-shooting turns. Given the staticness of the
training data, the model does not capture close-by dynamic
obstacles, such as walking people, very well. Additionally,
the model sometimes overshoots or undershoots turns behind
obstacles and occlusions. Sometimes this occurs due to the
way in which we subsample trajectories uniformly, causing
clipping at important points of the trajectories. However, our
experiments with other subsampling methods that aim to
capture salient points, such as the Ramer-Douglas-Peucker
algorithm [40], [41] (as is done in [18]) showed that this
type of sampling hurt performance.

APPENDIX III
TRAVERSABILITY FUNCTION DETAILS

A. Terrain Generation

For adequate sim to real transfer we found that it was
important to generate a varied set of terrains(Figure 14) to
simulate the diversity of the real world. We chose to use

5 different terrain types: irregular stairs, smooth mounds,
procedurally generates stair and ramp environments, simple
ramp, and simple stairs.
Simple Stairs: For the simple stairs terrain we have a 2m
long by 10m wide flat area on both sides of the terrain, then
a 6m long by 10m wide staircase connecting the two flat
areas. The step width is set to 0.4m and the step height is
drawn from a uniform distribution from 0.05m to 0.15m.
Simple Ramp: The simple ramp is similar to the simple
stairs except the two flat regions are connected by a ramp.
The slope of this ramp is drawn from a uniform distribution
from 0.01m to 0.3m.
Procedural Terrain: The procedural terrain is composed of
25 two by two square tiles. Each tile in the terrain can either
be a box, ramp, stairs, or flat. Then we use wave function
collapse to populate all of the tiles and ensure they adhere to
certain rules. We want stairs to either connect to other stairs
or a flat area, and we want the area at the top of the stairs to
be at the same height as the top of the stairs. Additionally,
we randomize the heights of each stair or ramp and the sizes
and heights of the boxes.
Smooth Mounds: To generate smooth mounds we use
cellular automaton. We first choose n random cells in our
height map to serve as seeds. Each of these positions is set to
some height drawn from a uniform distribution between 1m
and 3m. Then we set the value of every cell in the heightmap
to the value of the closest seed. Finally, to smooth everything
out, for each cell in the height map if the difference between
the minimum and maximum neighbor is greater than some
threshold, then we set the height at the cell to the mean of
those two neighbors. In practice, we have found that this
algorithm is able to generate irregular terrains similar to
uneven ground outdoors.
Irregular Stairs: To generate a irregular terraced pattern,
we first use the cellular automaton to generate the smooth
mounds. Then given some step height, we round the heights
of each cell to the nearest whole number multiple of the step
height. This terrain is meant to make our value function more
robust to sharp local changes in elevation.

B. Dataset Generation

We first generate 1000 different 10m by 10m terrains using
the methods outlined above, with all of the terrain types
being equally represented. Then we depending on the robot
type we have slightly different methods for data collection.

Spot: For spot we select a uniformly random unit vector
as our velocity target. Then we roll out the policy until it
terminates or times out. We terminate the roll-outs when the
robot hits the wall which we compute by Equation 1 where
vr is the robot velocity vector, vc is the command velocity
vector, and τ is some threshold.

1
{

vr · vc

∥vc∥
< τ

}
(1)

In practice, we use τ = 0.3. Additionally, we only compute
this termination after the first 0.5 seconds to allow the robot
to initially accelerate. The other termination that we use is a



(a) Hallway (b) Atrium

(c) Lab (d) Campus

(e) Forest (f) Down Ramp

Fig. 11: We show a top-down map for all navigation courses of the paths taken by different methods to navigate from the start of the course
(red circle) to the goal (green circle), through each waypoint (yellow circles). VAMOS is capable of long-horizon, precise navigation. To
the right, we visualize the paths predicted and selected by VAMOS when replanning after reaching a waypoint. Dotted lines correspond to
taking the robot back to the last previously-completed waypoint after interventions, and X’s correspond to the positions where baselines
failed or timed-out.

penalty for falling when either the velocity in the z direction
is less than −1 or the robot is tilted more than 45◦ degrees
on the roll or pitch axes. The rewards for each timestep
correspond to the terminations. We have a reward of −1
when we terminate.

The policy we roll out in simulation is trained with PPO
[42] in rough terrains using Isaac Lab [32] with proprio-
ceptive and perceptive observations consisting of geometric
height samples, following a terrain curriculum, similar to
[43]. Even though this is a different policy than the built-in



(a) SCAND (b) CODa

(c) TartanDrive (d) Spot

Fig. 12: Examples of high-level trajectory predictor. The high-level navigator consistently gets to the goal, is good at following paths,
going around obstacles, and taking turns behind occlusions such as walls, people, poles, etc.

(a) Dynamic Obstacles (b) Overshooting

Fig. 13: Examples of failure modes. The high-level navigator sometimes struggles with dynamic obstacles, as in the training data dynamic
obstacles usually move out of the way and their motion is not captured in the training data. It also sometimes overshoots or undershoots
turns.

Spot locomotion policy we use during deployment, it acts as
a good surrogate for learning the capabilities of a performant
all-terrain navigation policy.

Hound: For Hound we collect all trajectories by driving
in a straight line because the affordances of the car over a
small distance tend to be the same while driving strait and
turning. We use the same terminations and rewards as Spot.

Instead of using a learned or default low-level controller,
we use a pure-pursuit based controller with a kinematic
bicycle model to reach various waypoints.

C. Qualitative Comparison to Regression-based Value Func-
tion

Rather than training the model to classify local elevation
maps as failures or successes, we can compute the discounted
sum of rewards for each rollout and train the model to regress
this value given the local elevation map (see Figure 15).
However, in practice we observe that classifying faliure or
success of a trajectory works better than regressing reward
to go. We believe that the reason for this is that we can
easily balance the classification dataset to include an equal



Fig. 14: We generate terrains in simulation to train the affordance
function using a combination of procedurally generated stairs- and
ramp-like terrains with different parameterizations.

(a) Regression on Returns (b) Classification on Labels

Fig. 15: Computing the affordance function as a classification task
rather than a regression on returns, as is common in reinforcement
learning, yields more discriminative affordance scores. Here, we
show two examples from two different scenes, where each row
represents a scene.

proportion of successes and failures. Additionally, we believe
the classification problem better represents the task because
avoids coupling the labels of unrelated observations.

APPENDIX IV
DEPLOYMENT

A. Compute and Sensors

We deploy our fine-tuned PaliGemma 2 high-level navi-
gation generalist on an external laptop with an Nvidia RTX
3080 Laptop GPU, while the low-level low-level traversabil-
ity function runs onboard a Jetson Orin AGX. High-level
inference runs at 1 Hz when the laptop is connected to
external power, and around 0.5 Hz otherwise. For Spot
experiments, the laptop is connected to the robot’s network
through ethernet for increased reliabilty. For HOUND exper-
iments, the laptop is connected to the robot through a 5 GHz
Wi-Fi hotspot running on the laptop. We found 5GHz Wi-Fi
to provide much better capacity and latency over 2.4 GHz
Wi-Fi, albeit less reliable outdoors.

As sensor readings for the traversability function, we use
an Ouster OS-1 LiDAR and Spot’s built-in depth cameras

on all sides of the robot to construct a square 16x16 meter
elevation map using [44], from which we crop smaller local
grids for the traversability function observations. We use
a Zed2i camera for the Spot robot and a Realsense D455
camera for the HOUND robot.

B. VLM Sampling

For the navigation experiments outlined in Section IV-
B, we sample the VLM with temperature = 0.1,
num beams = 1, and no top k nor top p sampling. For
the traversability function experiments outlined in Section
IV-F, the only difference is that we sample the VLM with
temperature = 1.0 for the obstacle avoidance experi-
ments and temperature = 0.3 for the embodiment ex-
periments.

C. State Machine

We deploy VAMOS in the real world within a simple state
machine. First, the robot either plans with the VLM and then
tracks the first m out of 5 predicted waypoints, or it rotates
in place until the goal is within the image frame and then
plans with the high-level VLM. Then, after either reaching
the first m waypoints, or after a timeout set to 20 seconds,
whichever happens first, we repeat the loop and re-plan or
rotate to put the goal within the image frame. We find that
m = 3 works well for shorter courses, and m = 4 works well
for longer courses.

APPENDIX V
MODULAR STACK BASELINE DETAILS

For completeness, we provide a detailed description of
our “Modular stack” baseline, which is highly performant
and serves as a comparison point in our experiments. This
baseline includes robust state estimation, global and local
path planning, terrain analysis, and a strong low-level control
module:

• State Estimation: We use Spot’s built-in visual odome-
try, a production-level odometry system deployed across
all Spot robots.

• Traversability Analysis: The geometric costmap from
Multi-Modal Elevation Mapping (MEM, [10]) is em-
ployed for terrain assessment. This is the same costmap
utilized in prior works such as [12].

• Global Planning: Using the MEM costmap, we employ
ARA* [45], an incremental, anytime variant of A*, for
efficient global path planning.

• Local Planning: A pure-pursuit controller is used lo-
cally. This approach achieves performance comparable
to MPPI with a kinematic bicycle model while being
simpler and computationally cheaper.

• Low-Level Control: Spot’s built-in RL-MPC locomotion
controller handles low-level control, providing a robust,
production-ready policy for navigating challenging ter-
rains.



APPENDIX VI
ADDITIONAL QUANTITATIVE RESULTS

We compare our high-level generalist with robot-specific
models using additional metrics to measure offline per-
formance as mentioned in Section IV-E. We consider the
following metrics, as shown in Figure 17:

• Mean L2 Error: (Fig. 8) Measures the error for all
5 points in a predicted trajectory, averaged across each
trajectory, across all trajectories in the validation dataset.

• Max L2 Error: (Fig. 16a) Measures the maximum
error between all 5 points in a predicted trajectory,
averaged across all trajectories in the validation dataset.

• Fréchet Distance on Subsampled Trajectories: (Fig.
16c) Measures the Fréchet distance between the sub-
sampled ground-truth trajectory (i.e. the 5 points used
as labels during training) and the predictions. Similar to
a max function.

• Fréchet Distance on Full Trajectories: (Fig. 16d)
Measures the Fréchet distance between the full, dense,
ground-truth trajectory (i.e. the original trajectories of
hundreds of datapoints, depending on the horizon, sub-
sampled at 10 Hz) and the 5-point predictions. Similar
to a max function.

• Dynamic Time Warping Distance on Subsampled
Trajectories: (Fig. 16e) Measures the normalized Dy-
namic Time Warping distance between the subsampled
ground-truth trajectory (i.e. the 5 points used as labels
during training) and the predictions. Similar to a mean
function.

• Dynamic Time Warping Distance on Full Trajec-
tories: (Fig. 16f) Measures the normalized Dynamic
Time Warping distance between the full, dense, ground-
truth trajectory (i.e. the original trajectories of hundreds
of datapoints, depending on the horizon, subsampled at
10 Hz) and the 5-point predictions. Similar to a mean
function.

Additionally, we run statistical significance tests for all
metrics on a per-dataset basis. Across these four datasets,
the generalist model consistently yields small statistically
significant improvements in trajectory accuracy. In Tartan-
Drive, mean L2 and sub-sampled Fréchet distances improve
at p < 0.05, while full-trajectory Fréchet and normalized
DTW show highly significant gains (***). CODA exhibits
highly significant reductions (p< 10−5) in mean and max L2,
sub-sampled Fréchet, and sub-sampled DTW, with endpoint
and full-trajectory Fréchet errors remaining comparable. In
SCAND, the general model outperforms on mean L2 (*),
max L2 (**), sub-sampled Fréchet (**), and full-trajectory
DTW (*), with other metrics not significant. On Spot,
nearly all metrics except endpoint error and full-Fréchet
errors achieve *** significance. Overall, these results suggest
the general model produces smoother, more accurate paths
across varied environments, even when terminal or peak
deviations remain similar.



(a) Max L2 Error (b) Last Point Error

(c) Fréchet Distance on Subsampled Trajectories (d) Fréchet Distance on Full Trajectories

(e) DTW Distance on Subsampled Trajectories (f) DTW Distance on Full Trajectories

Fig. 16: Offline metrics comparing high-level generalist vs robot-specific navigators. In all metrics, we benefit from training on the pooled
data compared to robot-specific datasets.



(a) SCAND (b) CODa

(c) TartanDrive (d) Spot

Fig. 17: Statistical significance of paired t-tests comparing generalist and robot-specific models on four datasets (Tartandrive, CODA,
SCAND, Spot) across seven trajectory-error metrics. Bars show − log10(p-value); green indicates the general model is better, orange the
specific model, and gray cases where means are equal. ‘*’ means p < 0.05, ‘**’ means p < 0.01, ‘***’ means p < 0.001, and ”ns” means
p ≥ 0.05; the dashed line marks p = 0.05 (− log10(0.05)≃ 1.3).
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