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Figure 1: UFM (Unified Flow & Matching) unifies dense pixel correspondence tasks such as optical
flow and wide-baseline matching. We visualize sets of 2×2 grids, where the top 2 images are the
input, and the bottom 2 are images warped with forward & backward flow. UFM is able to match
across a wide range of baselines, including extreme ones with little co-visible overlap.

Abstract

Dense image correspondence is central to many applications, such as visual odome-
try, 3D reconstruction, object association, and re-identification. Historically, dense
correspondence has been tackled separately for wide-baseline scenarios and optical
flow estimation, despite the common goal of matching content between two images.
In this paper, we develop a Unified Flow & Matching model (UFM), which is
trained on unified data for pixels that are co-visible in both source and target images.
UFM uses a simple, generic transformer architecture that directly regresses the
(u,v) flow. It is easier to train and more accurate for large flows compared to the
typical coarse-to-fine cost volumes in prior work. UFM is 28% more accurate
than state-of-the-art flow methods (Unimatch), while also having 62% less error
and 6.7x faster than dense wide-baseline matchers (RoMa). UFM is the first to
demonstrate that unified training can outperform specialized approaches across
both domains. This result enables fast, general-purpose correspondence and opens
new directions for multi-modal, long-range, and real-time correspondence tasks.
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1 Introduction
Dense correspondence estimation, which determines where each pixel in one image appears in another,
is a core task in computer vision with wide-ranging applications, including visual odometry [45, 47,
58], 3D reconstruction [13, 34, 53], object association [36], place recognition [30, 32, 49], and image
warping [71]. Despite its importance, existing methods are typically developed for two separate
domains: optical flow, which addresses small displacements between temporally adjacent frames,
and wide-baseline matching, which handles large viewpoint or scene changes. This division has
led to task-specific models that perform well in one domain but fail to generalize to the other. As a
result, these models often break down in real-world scenarios where both small and large motion may
co-occur, highlighting the need for unified approaches that bridge this gap.

Existing dense correspondence estimations algorithms have been separated into different tasks. For
example, optical flow typically assumes small baselines between the two images, but allows for a
dynamic scene, and so often relies on motion priors for temporal consistency. In contrast, wide-
baseline matching assumes a static scene but allows for significant changes in viewpoint [37] and
time [59], and often require invariant geometric and semantic cues [72]. Despite these differences,
both tasks fundamentally aim to establish correspondences between images. This shared objective
suggests that they are not inherently separate problems, but rather variations of the same challenge
that can be approached within a unified framework.

We are inspired by prior attempts at unifying such correspondence tasks [60, 78], but thus far, none
provide a generic solution that outperforms or is on par with specialized solutions. Our experiments
suggest that existing work in optical flow and dense wide-baseline matching suffers from biased
architectures that are either inefficient when learning from large data or do not have their output
format trained/designed for dense, high-resolution output. We aim to answer the question - can
we develop a unified model that benefits from shared training on both optical flow and wide-
baseline matching data? Specifically, what architecture, data, loss, and training scheme do we need
to unify flow & matching?

In this work, we scaled a transformer-based regression model over a comprehensive training set of
12 datasets spannning both optical flow and wide-baseline matching. We sample image pairs from
our dataset based on covisible content and train exclusively on these regions. We designed a custom
geometric sampler with explicit control over viewpoint differences and a filtering pipeline to ensure
co-visibility. By restricting supervision to co-visible regions, we discourage the network from relying
on global 3D structure alone and encourage correspondence estimation grounded in visual evidence.
We found that this simple approach leads to a generalizable and efficient model for both optical
flow and wide-baseline matching that surpasses most SoTA on its own, achieving further gains with
standard refinement techniques.

Finally, to spur further research on correspondence in challenging wide-baseline scenarios, we build
a novel dataset for evaluation by holding out environments from the TartanAir-Visual Odometry
benchmark [68], using our custom geometric sampler to curate challenging image pairs. Our
TartanAir-Wide Baseline (TA-WB) benchmark is a challenging and well-controlled dataset for
evaluating dense wide-baseline correspondence.

In summary, our contributions are:

1. For the first time, we demonstrate that unifying the training of both optical flow and wide-
baseline estimation can benefits both domains. Our Unified Flow & Matching model (UFM)
achieves state-of-the-art performance on benchmarks from both tasks.

2. We find that a generic transformer architecture models unified data better. The simplicity
and efficiency of our architecture allows adding existing refinement techniques for further
improvement.

3. We introduce a new benchmark, TartanAir Wide-baseline (TA-WB), which evaluates dense
correspondence at challenging viewpoint changes.

2 Related Works
Optical Flow Methods Optical flow prediction aims to establish dense, pixel-wise motion vectors
between temporally adjacent frames. Except for early exploration of optimization-based formulations,
current methods are mostly learning-based. Most work has evolved around specialized architectures
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including cost volumes [20, 23, 54, 55, 57], coarse-to-fine paradigms [4, 5, 9, 19, 55, 75], and
recurrent structures [20–23, 55, 57, 75]. RAFT [57] is one of the most representative works along
these ideas. It employs a multi-resolution cost volume between all pairs of patches and a recurrent
structure to update the flow prediction iteratively. It has many derivative works [20, 54, 69, 79].
SEA-RAFT [69] is the current state-of-the-art (SoTA) that simplifies RAFT with a regressed initial
hypothesis and a multi-modal training objective. Other approaches tried to move beyond these
paradigms. FlowFormer [20] uses the transformer architecture to aggregate the cost volume into
compact latent tokens for efficient processing. GMFlow [73] casts optical flow into a global matching
problem [73, 74, 79] and replaced the costly iterative refinement with a global correlation layer.

In developing a foundation model for generic correspondence prediction, we observed that the
specialized architectures of classical optical flow methods struggle with diverse, wide-baseline data,
even when trained on it. In contrast, we show that a generic transformer-based regression architecture
with sufficient data serves as a robust and generalizable prior. Moreover, it can be effectively
combined with these refinement techniques to improve performance further.

Dense Wide Baseline Methods Dense wide-baseline matchers suppress their sparse counterparts
since DKM [14], which first obtains a robust, coarse match from patch features and uses regressive
warp-refiners to upsample the prediction resolution. RoMa [15] builds upon DKM by using a frozen
image foundation model (DINOv2 [46]) for its coarse matching and uses separate convolution-based
encoders to provide fine details to warp-refiners. Despite being robust and accurate, both methods
have a heavy architecture that limits their application to compute-limited scenarios. We show that our
method can achieve similar robustness and accuracy while being about 6× faster.

These methods [14, 15, 41, 61, 62] also include a covisibility mask estimator (some call it “certainty”
or “matchability”) that helps to exclude matches in occluded or out-of-view regions. This mask
is usually directly trained with the ground truth target. We extended this paradigm by computing
co-visibility masks for dynamic datasets.

Unifying Correspondence Several work exists in treating correspondence as a unified task.
GLUNet [60] is the first work showing that geometric, optical flow, and semantic correspondence
tasks can be solved by a unified network. RGM [78] is the most recent work that scaled a RAFT-like
architecture on a comprehensive dataset and obtained SoTA zero-shot performance. However, they
failed to show that the generalist model, trained on all data, outperforms the specialized model,
trained on in-domain data only. Alternative to modeling correspondence densely, COTR [27] took a
formulation that predicts one pixel location over each query point, and tested on both optical flow and
pose estimation tasks. This formulation is prohibitively expensive for dense flow, and while sparse
matches can be interpolated, the resulting performance degrades significantly. In contrast, our work
trained a transformer-based architecture that directly regresses dense optical flow and shows mutual
benefit between optical flow and wide baseline data.

Scaling Correspondence Recent works have also tried to expand the training dataset for correspon-
dence. Besides the standard optical flow datasets [6, 12, 33, 39, 42, 43], we see a trend in using static
wide-baseline matching datasets to pretrain optical flow networks. For example, MatchFlow [11]
pretrained on GIM [52], an auto-annotation pipeline that extracts matches from distant frames in
real-world videos. Similarly, SEA-RAFT [69] pretrains on TartanAir [68] and observed improved
generalization. Existing work in wide-baseline matching [18, 28, 64] has also expanded the dataset
towards more modalities such as satellite, IR, depth, event, and medical. Although they have shown
successful matching between challenging modalities, they do not show that scaling with additional
data helps improve the original RGB-RGB matching.

Recent advancements in end-to-end learning have also encouraged scaling a generic architecture for
3D reconstruction and correspondence [26, 29, 31, 45, 65, 67]. Perceiver IO [24] shows its architec-
ture can solve diverse vision tasks, including optical flow. CroCoV2 [70] also shows that optical flow
can be directly regressed from its backbone pre-trained on the cross-image-completion task. However,
CrocoV2 stopped at low resolution and both methods required a sliding window method to infer at
high resolution, which failed to capture correspondences across windows. Furthermore, CroCov2
doesn’t train the two-view transformer from scratch to directly regress flow. More recent follow-up
MASt3R [34] finetuned DUSt3R [67] to output pixel-wise feature descriptors and proposed a fast
reciprocal matching to decode sparse matches efficiently. However, this paradigm does not provide
dense matches and is prohibitively slow without subsampling.
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Figure 2: The UFM Architecture: Two images are encoded by a shared DINOv2 encoder into
patch features, concatenated, and then processed by 12 self-attention transformer layers. Intermediate
tokens are decoded by separate DPT heads to regress pixel displacement and covisibility maps,
representing correspondence and visibility across views.

3 Unified Flow & Matching Model

3.1. UFM Architecture. Given two images I1, I2 ∈R3×H×W as input, our Unified Flow and Match-
ing (UFM) model (Fig. 2) predicts the visually grounded dense correspondences and covisibility:

{φ1,C1}= fUFM(I1, I2) (1)

where φ1 ∈R2×H×W is a forward pixel displacement map (flow) which maps each [u,v] position in I1
to a continuous position in I2 and C1 ∈ R1×H×W is a binary mask, where each value indicates if the
[u,v] position in I1 is visible in I2.

In particular, UFM employs a simple end-to-end transformer with a CNN head to directly regress
the flow value, unlike prior methods [15, 69, 74] that first construct an initial solution at the patch
level and then progressively upsample to the pixel level. We empirically find the paradigm used in
prior methods to yield suboptimal accuracy, as shown in Appendix F. Beyond accuracy, direct flow
regression offers additional advantages: (1) Performing attention at the patch level is fast for flow
prediction, while the DPT [48] enables predictions directly at the pixel level. (2) Structural simplicity
enables easy optimization and potential for additional simple pixel-level refinements without a huge
impact on efficiency. We elaborate on the end-to-end transformer further below.

Feature Encoding: Amongst various image encoders, we find DINOv2 ViT-L [46] to be the most
optimal. DINOv2 takes as input images and predicts patch tokens FE ∈ R1024×H/14×W/14. Given
the two sets of patch tokens, we fuse them with a view index positional encoding unique to each
view and then apply 12 successive layers of self-attention. While other prior methods [34, 67, 70]
employ cross-attention blocks, which in theory have the same compute requirement as our design, we
find that the self-attention transformer is better accelerated by Flash-Attention [8] due to its longer
sequence length. This leads to better training and inference efficiency. Also, we empirically find that
both types of transformers have similar performance in terms of flow regression.

Predicting Flow & Covisibility: After the self-attention transformer is applied, we employ two
separate DPT heads which take as input the encoded patch tokens from I1 and respectively predict
the flow φ1 and logits for the covisibility mask Clogits

1 . We empirically find that employing a single
DPT head for both flow and covisibility prediction leads to degraded performance. The DPT inputs
the output features from the DINOv2 image encoder and the self-attention transformer’s 6th, 9th, and
12th layer features. The final predicted covisibility is obtained by C1 = sigmoid(Clogits

1 ).

Refinement by Classification: While we find that the regression of dense correspondence (flow)
is robust, it is not always precise (e.g., see average EPE & outlier numbers for UFM 560 in Table 2).
Hence, we designed a simple classification-based local refinement technique to improve the accuracy
of UFM’s inlier predictions. We take inspiration from MASt3R [34]’s design to regress pixel-wise
matching features based on transformer backbone features. Additionally, to capture fine details for
the refinement, we added a U-Net encoder following RoMa [15]. As shown in Fig. 3, we differ from
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Figure 3: Refinement of Correspondence by Classification: We compute a per-pixel feature map by
combining (1) globally aligned features from the UFM backbone and (2) local fine features encoded
by a separate U-Net. For each pixel in the source image, we first use the regression flow target to
interpolate features around a local neighborhood. We then compute the attention between the source
features and the features from the local neighborhood, and use it to weight-add the coordinates as a
refinement value. b is a constant attention bias.

MASt3R [34] in how we leverage the refinement features for correspondence: as opposed to matching
dense features across the entire image (global search), we use the regressed flow from UFM’s DPT to
guide the feature matching around a small 7×7 neighborhood, thereby leading to 60× efficiency over
MASt3R (Table 2), or about 24× considering the follow-up acceleration Speedy MASt3R [35]. In
particular, we compute the attention between each pixel and its local 7×7 neighborhood determined
by the regressed flow and use the weighted sum of coordinates by the softmax attention as the residual
to update the initially regressed flow.

3.2. Training Objective. To train UFM, we supervise the predicted pixel displacement map φ1
and the covisibility mask C1. Importantly, supervision of the correspondence is restricted to covisible
pixels. This design encourages the model to ground correspondence in visual evidence, rather than
inferring 3D geometry from a single view and extrapolating into occluded or out-of-view regions.

We trained with a robust regression loss [1], following the approach in RoMa [15], which focuses its
gradient on inlier predictions with small errors—typically around 1 to 2 pixels. We selected this loss
for two main reasons. First, it encourages precise learning from reliable matches by emphasizing
small residuals. Second, it reduces the impact of incorrect data during training, as robust losses
exhibit vanishing gradients for large flow errors, which are commonly caused by unmatchable
pairs. Specifically, we used the generalized Charbonnier loss with parameters α = 0.5 and c = 0.24.
See Appendix H for more visualization and discussion.

LEPE(φ1,φ
gt
1 ) =

1
∑i∈I C[i]gt ∑

i∈I
C[i]gt lrobust(∥φ1 −φ

gt
1 ∥2) (2)

As we supervise the network only on covisible pixels, the network can have an arbitrary output in the
non-covisble pixels during usage. Hence, we also predict a covisible mask to exclude outputs from
these regions during usage. To train this mask, we used the standard binary cross-entropy loss.

LBCE =
1

H ∗W ∑
i∈I

[
−C[i]gt log(Clogits

1 )− (1−C[i]gt) log(1−Clogits
1 )

]
(3)

We find that upweighting the covisibility loss by a factor of 10 is optimal for the prediction of good
covisibility and doesn’t impact flow estimation quality. Thus, our final loss is L = LEPE +10×LBCE.

3.3. Combining Flow and Matching Datasets. We compiled a unified dataset consisting of
12 datasets spanning diverse sources, motion patterns, and environments from both wide-baseline
matching and optical flow domains, as detailed in Tab. 1. The collection of these datasets features
diverse indoor, outdoor, in-the-wild, and dynamic scenes.

Each dataset was carefully vetted for depth consistency and geometric correctness, as not all are
suitable for precise training and evaluation. For example, we found that ARKitScenes [2] contains
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Table 1: Diverse suite of dense correspondence datasets used to train UFM.

Dataset Images Pairs Scenes Source Dynamic Wide
Baseline

Frame to
Frame

Pairs in
Epoch

BlendedMVS [76] 115 k 1.15 M 503 Mesh Reconstruction ✗ ✓ ✗ 100 k
MegaDepth [37] 38.8 k 1.8 M 275 COLMAP MVS ✗ ✓ ✗ 100 k
TartanAirV2 [68] 1.37 M 688 k 55 Synthetic ✗ ✓ ✗ 100 k
Scannet++ V2 [77] 265 k 14.3 M 295 Laser Scan ✗ ✓ ✗ 100 k
Habitat CAD [56] 201 k 175 k 91 CAD Reconstruction ✗ ✓ ✗ 25 k
StaticThings [51] 22.4 k 337 k 2250 Synthetic ✗ ✓ ✓ 10 k

Kubric4d [17, 63] 2.4 M 9 M 2800 Synthetic ✓ ✓ ✓ 50 k
FlyingThings [39] 22.4 k 20.2 k 2239 Synthetic ✓ ✗ ✓ 50 k
FlyingChairs [12] 44.4 k 22.2 k 964 Synthetic ✓ ✗ ✓ 25 k
Spring [40] 10 k 9.9 k 30 Synthetic ✓ ✗ ✓ 25 k
Monkaa [39] 8.6 k 8.6 k 24 Synthetic ✓ ✗ ✓ 5 k
HD1K [42] 1081 1046 35 Real ✓ ✗ ✓ 5 k

inconsistent depth estimates, leading to flow errors of up to 5 pixels, which is unacceptable in the
matching domain where methods aim for sub-pixel accuracy.

In general, we paired the data for a well-distributed range of covisibility and optical center difference.
For most of the static wide-baseline datasets, we followed the pairing scheme in DUSt3R [67] and
CUT3R [66] and used adjacent frames for optical flow datasets. We selected the ratio from each
dataset largely based on the number and quality of the scenes. We further provide details on sampling
pairs for ScanNet++ V2 [77] & Kubric4D [17] in the supplementary. Notably, we mined new pairs
from Kubric4D across both time and viewpoint, making it the only dataset in our collection that is
both dynamic and wide-baseline.

Because we aim to develop a unified model that generalizes concurrently to both optical flow and
wide-baseline matching domains, we train on both types of data simultaneously. This allows examples
from both domains to appear within a single gradient update, promoting cross-domain generalization.
We computed covisibility and correspondence for all pairs of images to support this unified training.

We compute correspondence targets and covisibility mask differently depending on the dataset type,
accounting for the specific characteristics of posed image collections and optical flow labels in static
scene data and synthetic data such as Kubric. This process is detailed in the supplementary.

TA-WB Training & Benchmarking Dataset: We developed a special geometric sampler for the
TartanAirV2 [68] dataset to sample geometrically challenging yet covisible pairs (further described
and samples provided in the supplementary). Since TartanAirV2 provides images covering all six
sides around each camera center, all visual information is preserved, and we can resample virtual
cameras with arbitrary orientations. Our sampler utilizes this freedom to control the viewpoint
difference explicitly. We check all sampled pairs for matchability and reject occluded or textureless
pairs (for e.g., two cameras facing white walls). We made the final samples to equally distribute the
camera optical center angle difference between 0◦ and 120◦.

3.4. Training Details. We train the network with a longest side resolution of 560 (with aspect
ratios varying from 3:1 to 1:1) for 48 epochs with data as specified in Table 1. All our datasets permit
academic research, and the publicly released UFM model weights will be licensed following this. We
use a peak learning rate of 1 ·10−4 for the global attention transformer and DPT heads and 5 ·10−6

for the encoder to preserve DINOv2 pre-training. This contrasts with the frozen DINOv2 used by
RoMA [15] (which we find suboptimal), and we provide further insights in the supplementary. We
use AdamW optimizer with a cosine decay learning rate schedule using 10% linear warmup, 0.05
weight decay, and β = {0.9,0.95}. Since most of our data has bidirectional correspondence, we
symmetrize the batches. This leads to an effective batch size of 96 pairs, where half of them are
unique. The training takes 4 days on 8 H100 GPUs. We name this checkpoint as UFM 560.

Some downstream tasks, like visual odometry [47], require sub-pixel accuracy, making high-
resolution images essential. However, training at high resolution is computationally expensive.
To address this, we bootstrap a high-resolution model, UFM 980, from UFM 560. The wide-baseline
datasets do not have depth annotations at a high resolution (1K), and upsampling the pre-computed
flow at lower resolutions would be sub-optimal for sub-pixel training. Hence, we train with 10×
lower learning rates than the 560 training on all optical flow data for 15 epochs. Furthermore, we
change the supervision range to all pixels to follow the standard evaluation protocol in optical flow.
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Table 2: Wide Baseline Dense Correspondence: Zero-shot dense correspondence evaluation at
all covisible pixels. We report the AEPE and outlier rates at thresholds of 1, 2, and 5 pixels. UFM
outperforms all dense methods by a large margin and matches MASt3R’s performance, despite
MASt3R’s advantage in selecting its confident pixels, while being 60× faster (24× considering
follow up [35]).

Method Eval Range ETH3D DTU TA-WB Runtime
EPE ↓ 1 px ↓ 2 px ↓ 5 px ↓ EPE ↓ 1 px ↓ 2 px ↓ 5 px ↓ EPE ↓ 1 px ↓ 2 px ↓ 5 px ↓ ms ↓

SEA-RAFT

Covisible
Pixels

113.13 80.4 71.8 63.6 58.91 72.4 60.4 50.3 172.12 90.0 84.6 80.1 13.6
FlowFormer 74.83 80.4 69.1 58.4 41.14 77.1 62.2 47.4 126.65 88.0 78.8 70.8 46.5
UniMatch 91.21 73.1 64.5 56.7 48.98 69.2 57.0 46.9 144.54 87.2 80.5 75.0 28.2
RoMa 7.94 51.1 33.4 19.9 9.69 52.1 33.8 19.9 48.10 63.7 47.7 39.8 387.4
UFM 560 2.64 46.5 23.9 8.7 5.56 58.4 33.6 13.2 12.87 53.5 31.8 17.0 42.9
UFM 560 - refine 2.60 44.2 22.8 8.7 5.55 55.5 32.9 13.8 12.84 51.4 30.6 17.0 70.1

MASt3R MASt3R’s
Output

1.31 33.4 11.6 2.0 2.23 50.1 20.6 5.3 6.21 54.8 22.5 6.2 2517.8
UFM 560 1.34 31.7 12.1 3.1 2.30 49.2 23.5 6.3 6.19 42.1 19.5 7.4 41.0
UFM 560 - refine 1.29 29.0 11.1 3.1 2.18 42.6 20.8 6.2 6.13 38.7 17.8 7.4 56.1

Table 3: Relative Pose Estimation: Area Under the Curve results for pose estimation on zero-shot
datasets (ETH3D, Scannet 1500) and our proposed benchmark TA-WB (zero-shot scene assets,
appearance & geometry). Gray text indicates results where the evaluation dataset is in the training set.

Method ETH3D Scannet-1500 TA-WB
AUC @ 5◦ ↑ @ 10◦ ↑ @ 15◦ ↑ AUC @ 5◦ ↑ @ 10◦ ↑ @ 15◦ ↑ AUC @ 10◦ ↑ @ 20◦ ↑ @ 30◦ ↑

RoMa 63.7 74.2 78.6 29.2 50.0 60.9 2.2 11.4 23.2
MASt3R 65.7 77.0 81.5 34.2 57.2 68.0 2.5 13.3 27.9
UFM 560 61.6 74.1 79.3 30.7 53.5 64.8 2.3 13.3 28.6
UFM 560 - refine 66.7 77.1 81.6 31.6 54.1 65.3 2.5 13.5 28.6

4 Benchmarking Unified Dense Correspondence

4.1. Zero-Shot Wide-Baseline Correspondence. We perform direct evaluation via dense corre-
spondences and indirect evaluation via pose estimation. We compare all covisible correspondence to
the ground truth and report Average End-Point-Error (AEPE) and outlier rates. We use exhaustively
sampled covisible pairs from ETH3D [50], DTU [25], and TA-WB. For pose estimation, we evaluated
on ETH3D, TA-WB, and Scannet-1500 [7]. While pose estimation benchmarking is the standard
practice, we believe that dense wide-baseline EPE provides a more direct and stable measure of
matching quality by eliminating the influence of confidence prediction and sampling.

Baselines We benchmark against SoTA, including RoMa [15] (indoor, for better performance)
and MASt3R [34]. MASt3R is a sparse method that only provides correspondence passing its
cycle-consistency check. We adjusted its subsampling to get the most dense output and evaluated
UFM on the same set of reported pixels. While this setup favors MASt3R by restricting evaluation to
it’s confident matches, it enables comparison with one of the most robust sparse matches. We include
optical flow methods for completeness, comparing against SEA-RAFT [69], FlowFormer [20], and
GMFlow [73], using their checkpoints trained on all available data.

Dense Wide Baseline Results In Table 2, despite giving MASt3R an advantage, we showcase
that UFM significantly outperforms all dense methods in precision, while achieving nearly 60×
lower runtime (24× considering follow up [35]) than MASt3R — the only method with comparable
precision. Furthermore, UFM significantly outperforms all dense methods, achieving on average
62% less EPE and 6.7× better runtime compared to the best dense baseline, RoMa.

Pose Estimation Results We follow DKM [14] and evaluate UFM for pose estimation. As shown
in Table 3, UFM achieves the best accuracy on ETH3D and TA-WB benchmark, and second place
on Scannet-1500 (despite not being trained on this dataset). This performance shows that UFM’s
correspondence is well-balanced and suitable for 3D geometric tasks. Moreover, we observe a notable
improvement by adding refinement on top of UFM, highlighting the potential for integrating other
refinement techniques on top of the base model for further improvement.

4.2. Optical Flow Correspondence. We evaluate zero-shot optical flow performance on Sintel and
KITTI-2015 training set. We evaluate on both covisible pixels and all pixels which is the standard
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Table 4: Optical Flow Estimation: Zero-shot evaluation across covisible ([covis]) and all pixels
([all]) on the Sintel and KITTI training sets. Each method is inferred at different resolutions, and the
metrics are computed at the dataset’s original resolution (1K) and on an A6000 Ada GPU.

Method Inference
Resolution

Sintel Clean Sintel Final KITTI Runtime
EPE ↓ EPE ↓ 1px ↓ 3px 5px EPE ↓ EPE ↓ 1px ↓ 3px 5px F1 EPE ↓ F1 EPE ↓ F1 % ↓ ms ↓
[covis] [all] [covis] [all] [covis] [all]

SEA-RAFT

1K

0.49 1.27 7.4 3.4 2.5 2.28 3.86 13.1 7.7 6.1 2.10 4.29 14.3 20.7
FlowFormer 0.47 1.01 8.7 3.6 2.5 1.43 2.38 14.0 7.4 5.5 3.75 6.03 15.8 155.1
Unimatch 0.43 0.96 7.4 3.4 2.4 1.63 2.70 13.4 7.4 5.6 2.38 4.92 17.5 76.7
UFM 980 0.61 1.16 11.7 4.5 3.0 1.28 2.04 14.9 7.1 5.1 2.05 2.94 11.0 122.9
UFM 980 - refine 0.56 1.15 10.2 4.6 3.3 1.25 2.01 15.0 7.2 5.1 2.05 2.96 11.0 213.9

SEA-RAFT

560

0.65 1.47 10.5 4.5 3.2 2.24 3.69 15.5 8.5 6.6 2.36 4.21 15.5 14.7
FlowFormer 1.88 2.92 23.6 10.1 7.2 7.39 8.92 35.1 21.5 17.5 4.64 7.89 29.3 77.5
Unimatch 0.60 1.20 10.3 4.2 2.9 1.73 2.76 16.0 8.0 5.9 2.43 4.66 17.7 30.0
RoMa 1.18 Trained on

covisible pixels only

2.13 Trained on
covisible pixels only

2.30 Trained on
covisible pixels only

390.3
UFM 560 0.79 1.44 1.87 44.0
UFM 560 - refine 0.72 1.40 1.69 57.0

Source Image Target Image Warped Image
UFM (ours)

Warped Image
RoMa

Flow Details

UFM

RoMa

UFM

RoMa

Figure 4: UFM on Ego-Exo 4D [16]: UFM succeeds in matching out-of-distribution environments,
camera models, and challenging viewpoint shifts, showcasing its strong generalization.

protocol that includes occluded and out-of-bound pixels. On Sintel, we report the AEPE for both
cases and the ratio of pixels with EPE above 1, 3, and 5 pixels for all pixels.

Baselines We compare our approach to all optical flow methods in Section 4.1 and RoMa, using
the checkpoint trained on FlyingChairs, FlyingThings, and TartanAir (SEA-RAFT only)—i.e., the
best trained model before violating the zero-shot setting.

Results Table 4 shows that UFM, without any refinement, achieves state-of-the-art zero-shot
performance on Sintel-Final and KITTI in terms of both EPE and most pixel outlier metrics, while also
delivering competitive performance on Sintel-Clean. These results demonstrate that the UFM base
model has strong generalization and precision to be combined with existing refinement techniques.

4.3. Generalizable Matching on Ego-Exo 4D. We ran UFM on images from the Ego-Exo4D [16],
which features videos captured in first and third person view across diverse scenes. As shown in
Fig. 4, compared to RoMA, UFM achieves strong generalization & robust matching.

4.4. Insights towards Unified Correspondence.

Data: We conduct an ablation study to see if UFM benefits from unified training on merged data
as opposed to training on specialized data only. Specifically, we train UFM only on optical, wide
baseline, and the combination for 100+20 epochs at 224 & 560 resolutions. Across the different
variants, UFM sees each data point the same number of times. Although the total number of gradient
steps differs, the number of epochs is large enough for the training to have effectively converged. We
then evaluate optical flow and dense wide-baseline performance as in the previous sections.
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Table 5: Unified optical flow (OF) and wide-baseline (WB) training leads to mutual improvement.

Pretrain
Data

Optical Flow Tasks Wide Baseline Tasks
Sintel-C Sintel-F KITTI DTU ETH3D TA-WB

EPE EPE EPE 1px 2px 1px 2px 1px 2px

OF 1.27 1.81 15.57 91.4 80.4 96.4 91.6 98.4 94.9
WB 1.66 2.24 3.13 70.5 42.8 54.5 28.4 61.5 35.3
OF + WB 1.02 1.48 2.62 69.0 41.4 52.4 27.0 59.2 34.2

Compute 
Bound

D
at

a 
Bo

un
d

UFM (ours)
RoMa
SEA-RAFT
UniMatch (GMFlow)

UFM (ours)
RoMa
SEA-RAFT
UniMatch (GMFlow)

Data 
Bound

Compute 
Bound

(a) (b)

Figure 5: Architecture Ablation: Validation EPE for various architectures trained on the same
224×224 resolution data as UFM. We report performance on different val sets at Data Bound (22.5
M pairs) or Compute Bound (at 32 hours on 8 H100 GPU) (a) Validation Set Performance: When
trained on more difficult data (such as TartanAir), UFM significantly outperforms alternatives for
both bounded data and compute. (b) Training Speed Comparison: We plot the number of pairs seen
during training as a function of compute, and label the number of pairs that each architecture can
train on at compute bound. UFM is far more efficient than most methods (except SEA-RAFT).

In Table 5, UFM outperforms it’s own specialized variants, thereby indicating a mutual improvement
when merging the two data types. For optical flow, we observe that adding wide-baseline data brings
a 20%−80% decrease in EPE, especially on the KITTI dataset. For wide-baseline, we observe that
adding optical flow data brings a 3.2% relative decrease in 1, 2 pixel outlier rates.

Architecture: To test the scalability of existing architectures, we trained SEA-RAFT, UniMatch,
RoMa, and UFM on the same unified data (Table 1). Each architecture is trained with its original
loss functions as specified in the respective papers. We recorded the validation set EPE at data bound
(35 epochs, 22.5 M pairs) and compute bound (32 hours on 8 H100 GPU) to measure scalability.
Fig. 5 shows that UFM performs best on all datasets at both data and compute bound. This indicates
the benefits of using a simple architecture to scale on large amounts of data, where UFM shows
significantly increasing performance with compute on harder datasets like ScanNet++ and TartanAir.
We believe UFM’s effectiveness in scaling to the unified dataset is crucial for achieving mutual benefit
across opticalflow and wide-baseline matching.

5 Limitations
While UFM represents an exciting development in constructing models for unified dense image
correspondence, some limitations remain with semantic matching capabilities. As shown in Fig. 6, on
WxBS [44], we find that UFM works on challenging image pairs that demonstrate scale, viewpoint,
texture, and illumination and tends to struggle with extreme seasonal changes and matching across
spectrums, i.e., visual to very dark infrared (thermal). RoMA [15] is robust to such semantic changes
due to the coarse patch correlation provided by frozen DINOv2 [46] features, with the help of
additional fine features from ConvNet in its upsampling process. We find that freezing the encoder
does not benefit an end-to-end transformer architecture such as UFM. As shown in Appendix E,
we find that freezing the pre-trained DINOv2 image encoder leads to a significant drop in dense
correspondence performance. Opportunities may lie in complementing frozen DINOv2 features from
other sources. Furthermore, although we constrain the learning rate to remain relatively small to
preserve DINOv2’s pretraining, we find that DINOv2 can still deviate significantly during extensive
training and lose some of its semantic matching abilities. Through preliminary exploration, we find
that this can be mitigated by incorporating semantic matching data, semantic preservation losses, or
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Figure 6: WxBS Benchmarking [44]: We find that UFM: (a) outperforms MASt3R [34], another end-
to-end transformer trained on large-scale data for correspondence; (b-f) performs well on images with
scale, viewpoint, illumination, and seasonal changes, and (g-i) struggles with pairs showing extreme
coupled season, illumination, and scale changes or captured across different imaging spectrums,
where RoMA [15] is more robust. We provide further insights in Section 5 and believe the primary
reason to be the preservation of semantic matching capabilities in the pre-trained image encoder.

specialized fine-tuning that limits the extent of deviation from the pre-trained weights. We aim to
address this in future releases of UFM.

We also acknowledge that although our training set and the TA-WB evaluation is geometrically
challenging, they are biased toward static objects, potentially reducing the accuracy on dynamic ones,
as shown in Appendix G. Future work may include more sceneflow datasets, such as ParallelDomain-
4D [63], to balance the distribution.

6 Conclusion
We present UFM, a Unified Flow and Matching model that predicts visually grounded dense cor-
respondences and covisibility. Using a simple transformer-based design, UFM directly regresses
high-resolution correspondence and covisibility maps, enabling it to learn from a unified dataset
effectively. Extensive Experiments show that UFM, trained on optical flow and wide-baseline match-
ing data, benefits from mutual improvement and outperforms specialized methods in each domain.
Looking ahead, combining UFM with semantic matching and refinement techniques would further
improve its robustness and accuracy, paving the way to general-purpose correspondence prediction.
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Table S.1: Underlying data sources used for generating correspondence and covisibility ground
truth, along with the reprojection error threshold used when using depth and pose for covisibility.

Category Dataset Source of Correspondence Source of Covisible Mask Abs. Depth Threshold Rel. Depth Threshold
τd τr

Static Scene BlendedMVS [76]

Unproject depthmap
across cameras

Threshold depth
reprojection error

0.1 0.005
MegaDepth [37] 0.1 0.005
TartanAir V2 [68] 0.1 0.01
ScanNet++ V2 [77] 0.1 0.005
Habitat CAD [56] 0.1 0.005

Optical Flow Spring [40] Dataset-provided Dataset-providedHD1K [42]

FlyingThings [39] Dataset-provided Scene flow +
reprojection threshold

0.01 0.001
Monkaa [39] 0.01 0.001

FlyingChairs [12] Dataset-provided FoV mask (approximate)

Rigid Posed Objects Kubric4D [17, 63] Depthmap &
object pose

Depthmap & object pose
+ reprojection threshold 0.1 0.005

A Computing Covisibility Mask
Computing the covisibility mask for all datasets in Table 1 is a key step to support unified training. In
this section, we detail the exact protocol and parameters we used to compute the covisibility mask
for all datasets, summarized in Table S.1. We will begin with a general principle of using depth
reprojection error to compute covisibility, and then detail its application to three data categories: (1)
Static Scenes, (2) Optical Flow, and (3) Rigid Posed Objects.

A.1. Covisibility from Depth Reprojection Error. Given two corresponding pixels in the source
and target images, we determine their covisibility by checking 3D consistency - that is, whether
their depths unproject to the same 3D point. We compute the Euclidean distance between the points,
and consider the pixels covisible if their distance is below a threshold. We refer to this approach as
thresholding depth reprojection error.

Formally, given a source pixel is ∈ I1 and a target pixel it ∈ I2, we compute their 3D coordinates
ps, pt and the depth reprojection error e, defined as e = ∥ps − pt∥2. Then, the pixels are determined
to be covisible if ∥ps − pt∥2 is less than an absolute threshold τd .

While this metric captures the fundamental idea of computing 3D consistency, it implies a fixed
3D tolerance regardless of the scene distance from the camera. We found this is suboptimal when
handling both near and far objects, as far objects are described with less pixels, thus having larger
uncertainty in depth and geometry. To address this, we introduce a relative threshold that increases
linearly with the distance between the source 3D point ps and the target camera center O2. Thus, the
final thresholding scheme we use is:

e = ∥ps − pt∥2 < τd + τr · ∥ps −O2∥2 (S.1)

All dataset categories use the same covisibility thresholding scheme, with dataset-specific parameters
summarized in Table S.1. They only differ in how the 3D points ps and pt , and ultimately the error e,
are computed. We describe these procedures in the following subsections.

A.2. Computing Correspondence and Covisibility. We begin by specifying the relevant informa-
tion required from each dataset category, followed by an explanation of how the corresponding 2D
pixel it , the 3D points ps and pt , and the reprojection error e are computed given a source pixel is.

Static Scenes For static scenes, the fixed geometry allows us to compute covisibility by comparing
unprojected depths directly. Specifically, given depthmaps D1,D2 ∈ RH×W , poses T1,T2 ∈ SE(3),
and camera projection functions πs,πt , we compute the corresponding projected pixel by:

ps = T1π
−1
1 (is)D1(is), it = π2(T−1

2 ps), pt = T2π
−1
2 (it)D2(it) (S.2)

Since is and it are corresponding pixel locations, ps, pt and target camera center O2 are collinear.
Note that we filter out-of-view or points behind the target camera when computing it as non-covisible.
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∥ps − pt∥2 = |∥ps −O2∥2 −∥pt −O2∥2|= |∥ps −O2∥2 −D2(it)| (S.3)

is the difference between the expected depth ∥ps−O2∥2 of the projected 3D point ps and the perceived
depth D2(it) of the corresponding 2D pixel it in the target camera.

Interpolating D2(it) from the discrete depthmap D2 is vital to obtain a realistic covisibility mask.
While is is typically pixel-aligned — since we compute covisibility for source pixels in the target
image — it is derived from continuous depth and camera transformations, and thus almost always
lies at a fractional pixel coordinate. We empirically found that bilinear interpolation yields better
results than nearest-neighbor, as it provides a first-order approximation of the local depth geometry.
In contrast, nearest-neighbor interpolation introduces heavy aliasing, especially on inclined surfaces.
Although bilinear interpolation may produce ghosting artifacts, it is unlikely that a non-covisible
pixel will match the expected depth closely enough to be mistakenly classified as covisible.

Optical (Scene) Flow Unlike static scenes, optical flow datasets usually contain dynamic scenes
and pairs in these datasets come from different timesteps. As the scene changes over time, deter-
mining covisibility requires scene-flow information to account for object motion. We build upon the
formulation for static scenes and adjust the expected position with scene dynamics.

Formally, we use uniform camera projection model π and all information as described in static scenes,
optical flow ground truth φ gt ∈ R2×H×W , and depth (disparity) change D1→2 ∈ RH×W . As optical
flow describes how a source pixel is moves to the target pixel it in the image space, depth change
details how the underlying 3D point changes in its depth. Specifically, the 3D point refered by is at
the source image with depth D1(is) would move to pixel it = is +φ gt(is) in the target image, with an
updated depth of D1(is)+D1→2(is). Thus, we can compute the source point in the target time and
the projection error (similar to Eq. (S.3)) as:

ps,1→2 = T2π
−1(it)(D1(is)+D1→2(is)), e = |∥ps,1→2 −O2∥−D2(it)| (S.4)

Then, we use the same interpolation and thresholding logic as the static datasets.

FlyingChairs is the only exception in this category, lacking both precomputed covisibility masks and
scene flow information. Nonetheless, we include it during training to balance the relatively limited
optical flow data compared to wide-baseline datasets. This does not pose a significant deviation
from our covisibility-only training scheme due to the dataset’s limited motion and relatively simple
backgrounds. For correspondence training, we use the FoV mask as a proxy for the covisibility mask.
We excluded FlyingChairs when supervising covisibility as explained in Sec. A.3.

Rigid Posed Objects Rigid posed objects refer to scenes composed entirely of rigid objects whose
poses are known at all timesteps. This setting can be seen as a special case of the scene-flow dataset
where motion is fully defined between all pairs of timesteps. We adjust the expected position with the
object movement information, similar to the formulation for optical flow.

Specifically, we assume all information in static scenes, the set of object poses {τ
(k)
1,2}K

k=1 at both time
steps, K being the number of objects, and S : I →{1, · · · ,K}, the segmentation map that assign each
pixel to the corresponding object ID. Given a source pixel is, we can obtain its object assignment
k = S[is] and its coordinate on this object as τ

(k)−1
1 (T1π

−1
1 (is)D1(is)). Since the object is rigid, the

point will stay at the same object coordinate between source and target and be transposed to pose τ
(k)
2

at the target frame. Combining them, we have:

ps,1→2 = τ
(k)
2 τ

(k)−1
1 (T1π

−1
1 (is)D1(is)), it = π2(T−1

2 ps,1→2), e = |∥ps,1→2−O2∥−D2(it)| (S.5)

We threshold the error e for covisibility as in the previous paragraphs.

A.3. Covisibility Supervision Range. In addition to the covisibility mask, we compute a covisi-
bility supervision mask that excludes regions where covisibility cannot be evaluated due to missing
or invalid depth values. We apply supervision only within this mask to ensure accurate, though
incomplete, training targets.
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Formally, given depth validity masks V1 and V2 for the source and target images respectively, we first
evaluate the validity of the target depth at the ground-truth flow locations as Vother[i] =V2(i+φgt [i])
and we obtain the covisibility supervision mask as

Vcovis = (V1 ∩¬F1)∪ (F1 ∩Vother) (S.6)

where F1 is the FoV mask, which is true for pixels in the source image whose corresponding 3D
points have a valid projection into the image space of the second camera, regardless of occlusion.
The first term captures the region that is out of view, while the second term captures the region that
projects to the target’s FoV and has valid depth at the target for confirming covisibility.

We used an all-zero covisibility supervision mask on the FlyingChairs dataset to avoid its approxi-
mated covisibility (actually FoV mask) from being used to train covisibility prediction.

B Sampling Strategy
We explain our custom pair sampling strategy for the Scannet++V2 and Kubric4D datasets.

ScanNet++ V2: We compute all possible image pairs within each scene and retain those with
sufficient covisibility. Specifically, following the procedure in Sec. A.2, we evaluate covisibility for
all pairs of DSLR images in each scene and keep those with mutual covisibility greater than 25%.

Kubric4D: Kubric4D is the only dataset that enables sampling across both viewpoints and time.
Accordingly, we bias our sampling toward pairs that involve changes in both dimensions. Specifically,
Kubric4D has 2800 scenes with 16 fixed cameras in each scene and 60 frames per scene. We sampled
3600 pairs per scene with viewpoints and time change independently:

We aim for 60◦−90◦ angle difference for viewpoints. To achieve this, we first computed the rotation
angle between all pairs of camera and assigned weight as

w(α) =


1+α, α ∈ [0,π/3)
1+π/3, α ∈ [π/3,π/2)
0, α ≥ π/2

(S.7)

We sample frame differences to bias toward large difference since motion in Kubric4D is small.
Specifically, we sample frame difference between 0 and 40, with probabilities increasing linearly
such that the largest frame difference has twice the probability of being selected compared to the
smallest. Given a sampled difference, we then uniformly choose a valid start and end frame.

C TA-WB Training & Testing Dataset
TartanAir provides images covering all six directions around each scene, enabling us to design a
geometric sampler that explicitly controls viewpoint differences when sampling covisible pairs.

Geometric Sampler The geometric sampler generates pairs of rendering directions and
source–target cameras based on geometric constraints for viewpoint difference and coarse covisibility
check. An overview is presented in Fig. S.1.

We first voxelize the scene and compute the set of visible voxels for each camera. The sampling
process begins by randomly selecting a source camera center and a visible voxel nearby, establishing
the viewing direction for the source. Based on this direction, we identify candidate target cameras
whose viewing angles differ by the desired amount. Then, we filter out candidates that cannot see the
selected voxel based on pre-computed covisibility. In this way, we are able to sample covisible yet
geometrically controlled viewing directions. Finally, we sample a random roll angle from N (0,0.1)
to complement the viewing direction into a rotation, and apply a random perturbation to all axes from
N (0,0.1I3). These perturbations prevent the sampled viewing direction from always focusing on
the voxel center, adding diversity to the sampling.

After rendering the images, we do additional filtering to ensure their quality. We filter out pairs with
any of their images containing more than 10% of over- or under-exposed pixels, and if any of the
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(a) Voxelize & Compute Covisibility (b) Given Source Camera and Voxel, Find all Candidate Cameras

(c) Filter by Covisibility & Sample

Camera 
Center

Candidate Target
Camera Centers

Target
Voxel

Source
Camera

Source
Camera

Target 
Cameras

Figure S.1: The Geometric Sampler: (a) From the pointcloud of a scene, we voxelize it and compute
the covisibility between all camera centers and all voxels. (b) We randomly select a camera location
as the source camera and a target voxel for the source camera to center at. We filter out all candidate
camera position that forms a required viewpoint difference when looking at the same target voxel. (c)
We filter out candidate cameras by covisibility.

forward/backward covisibility is less than 20%. We further check if the pair is solvable, i.e., does
the pair provide enough visual evidence to establish a match? To do this, we warp the target image
according to the ground-truth label (similar to Fig. 1, 4) and try to match it to the source image with
Superpoint + Lightglue [10, 38, 49]. Since warping is done with ground truth, the matcher should
ideally return near-zero pixel displacement in covisible regions. If it does not, the pair lacks enough
information to support matching. We retain only pairs with an average matching error below 6 pixels.

TA-WB Benchmark We use the geometric sampler to select pairs from the OldScandinavia,
Sewerage, Supermarket, DesertGasStation, and PolarSciFi environments in Tar-
tanAirV2 [68]. We sample approximately equal numbers of pairs from the angular bins [0◦,30◦],
[30◦,60◦], and [60◦,90◦], and allocate roughly half as many pairs to the [90◦,120◦] bin. Samples of
the dataset are provided in Fig. S.2.

D Training the Refinement
We trained the refinement module separately, using a frozen base model obtained from the initial
training stage. Since the refinement value is computed via attention between the source pixel feature
and features in a local neighborhood around the regressed flow target, it can be interpreted as a
multi-modal distribution centered around the base model’s predicted flow. We use the cross-entropy
loss to supervise the distribution at the ground-truth location. Importantly, we limit supervision to
pixels whose ground-truth flow falls within the 7×7 neighborhood and use a softened target. Rather
than having the nearest pixel that is closest to the flow target as a classification target, we distribute
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(a) Source Image (b) Target Image (c) Forward Flow (d) Forward Covisibility

Figure S.2: Example Images from TA-WB Benchmark: The benchmark contains dense correspon-
dence annotation and accurate covisibility for challenging viewpoint shifts.

Regressed 
Flow target

GT Flow
Target

Figure S.3: Refinement Target Weights: Given an inlier ground-truth flow target, we obtain its
adjacent pixels and assign a continuous weight based on the sub-pixel location (α,β ) of the target.

smooth weights across the four adjacent pixels, with values that change continuously based on the
flow target. We found that such a target is easier to train and enables sub-pixel refinement. The
weights are shown in Fig. S.3.

We trained the refinement module on the BlendedMVS, MegaDepth, Habitat, and ScanNet++V2
datasets using image pairs as listed in Table 1. We selected these datasets due to their relatively high
sub-pixel accuracy. The base model was frozen during this stage, and the refinement module was
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Source/Target Image Source Image Refinement 
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Target Image Refinement 
Features (PCA)

Figure S.4: Example of Refinement Features: We visualized the refinement features for a pair of
images with PCA. The features exhibit emergent high-frequency and edge-following behavior.
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Figure S.5: Freezing DINOv2 encoder is suboptimal when training UFM on FlyingChairs: We
show the validation EPE of FlyingChairs using features from different layers of a frozen pre-trained
encoder (left) and finetuning the pre-trained encoder truncated to a specific layer (right).

trained for 30 epochs with a learning rate of 1 ·10−4. All other optimizer settings are the same as
the 560 base model training, as detailed in Section 3.4. Fig. S.4 shows a visualization of the trained
features, where we see high-frequency and edge-following behavior that encodes the local details.

E Effect of Freezing the Encoder
We found that freezing the DINOv2 encoder and using its last-layer features was suboptimal for UFM.
Specifically, when training UFM on the FlyingChairs dataset, we observed a significant validation
EPE gap between using features from the last layer versus intermediate layers of the frozen DINOv2
encoder. As shown in Fig. S.5, UFM trained with the last layer features from frozen DINOv2 obtained
near 3 EPE, whereas features from layer 10 yielded sub-pixel performance. This gap is not observed
in the finetuned setting, given sufficient training.

E.1. Hypothesis for Performance Gap with Frozen Features:. The task of predicting the dense
correspondence can be roughly divided into 3 steps. For a patch in the source image, it would need to:
(1) understand the content in its own patch, (2) find the corresponding patch(es) in the other image,
and (3) copy its coordinate difference. While one may argue that step (2) is unnecessary because the
network can leverage structural priors or surrounding context to fill in the gap, it remains the most
direct and reliable route to accurate correspondence due to the causal nature of the task.

Step (2), i.e., finding the corresponding patch(es) in the other image, is achieved in only one structure
of UFM - the global attention. This is because all other components either project patch features
independently or operate solely on tokens from a single image, lacking direct cross-image interaction.
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Figure S.6: Setup for the Probing Experiment: For each layer in a frozen image encoder, we
extract patch features for a pair of images and apply a shared linear projection. Softmax attention is
computed between source and target features, and the resulting similarity distribution is compared to
ground-truth correspondences via cross-entropy loss. The final training loss serves as a proxy for
correspondence information encoded at each layer.

In the global attention module, (2) is realized by the attention computing, which depends on the
dot-product similarity of the patch feature after a learnable linear projection.

This implies a key requirement: Patch features must encode information that reveals their correspon-
dence, or “corresponding features”, such that they attend selectively to their corresponding patches
in the other image after a simple linear projection. We designed a probing experiment to quantify the
upper bound of the corresponding features in each layer of a frozen encoder, and later establish its
correlation to UFM’s performance experimentally.

E.2. Probing Experiment:. We overfit a simple network on top of a trained backbone to a specific
dataset, using the converged training loss as a proxy for the presence of relevant information in the
backbone representations. It was used as an analysis strategy in NLP as training “probing classifiers”
to associate the internal representation of the model with explicit properties [3]. We use a similar
probing experiment to test the presence of corresponding features from layers in a frozen DINOv2.

The outline of our probing experiment is shown in Fig. S.6. We select a relatively small dataset and
disable all augmentation to ensure that training will converge. We infer each pair of images through
the frozen DINOv2 encoder and project the source and target features through a layer-specific linear
layer. We then compute softmax dot-product similarity to mimic the global attention mechanism.
Each layer’s probe is trained independently, and its performance reflects how well the layer encodes
corresponding features that can be revealed during the global attention. Patch-wise similarity is
defined as the proportion of pixel-wise correspondences between patches, weighted by covisibility.
Formally, given correspondence and covisibility labels φ gt ,Cgt , the ground-truth patch similarity
s(Ps,Pt) between a source patch Ps ⊂ I1 and target patch Pt ⊂ I2 is defined as:

s(Ps,Pt) =
∑i∈Ps 1(i+φ gt [i] ∈ Pt) ·Cgt [i]

|Ps|
(S.8)

Given a fixed dataset, we infer a pair of images through the frozen image encoder and obtain the
patch features at all layers. For each layer, we project the source and target features using a shared
linear layer and compute their softmax attention, resulting in a binary distribution of pair-wise
patch similarity. This predicted distribution is then compared to the ground-truth similarity using a
cross-entropy loss. We train only the projection layers on this dataset and use the final training loss as
an indicator of how well the features at each layer encode correspondence information.
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Figure S.7: Correlation between probing and val. EPE: We plotted the probing performance (blue)
and the EPE of UFM on FlyingChairs when using frozen DINOv2 features from different layers.
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Figure S.8: Consistent probing results on other datasets, resolutions, and encoder sizes showing
that the last layer from DINOv2 does not provide the best corresponding features and performance.

E.3. Probing Results using Correlation:. To test whether the cross-entropy loss from probing
correlates with EPE performance, we trained UFM using different frozen layers of DINOv2 on the
FlyingChairs dataset and collected their loss in the probing experiment. We normalized the cross-
entropy loss value into probing performance between [0,1]. According to Fig. S.7, we found a strong
correlation between the loss in the probing experiment and the final validation EPE, and the peaks
differ only by 2 of the total 24 layers. This suggests that, for UFM, probing performance may serve
as a reliable indicator for selecting effective feature layers. Furthermore, this supports the hypothesis
that the last layer of DINO does not provide the strongest corresponding feature, thus leading to
suboptimal performance. We further show additional probing results on other datasets, resolutions,
and DINOv2 encoder sizes in Fig. S.8. We found a consistent trend where the intermediate layers
encode stronger correlating features and perform better.
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Table S.2: Matching Head Ablation: With identical backbone and training data, a regression-based
flow head (UFM design) using DPT achieved higher precision than a patch-wise matching head from
UniMatch.

Head Type Sintel-C Sintel-F KITTI DTU ETH3D TA-WB
EPE [covis]

Patch Matching + Upsample 0.91 1.49 2.05 5.36 5.47 13.85
Regression (ours) 0.79 1.44 1.87 2.64 5.56 12.87

F Discussion on the use of Matching in UFM Architecture
As many prior works have shown the benefits of using matching for correspondence prediction, we
would like to further discuss and ablate our choice to regress the initial flow combined with applying
matching only at pixel resolution, not patch resolution.

Matching at the patch level Matching in patch-level aggregates subsets of pixels as a patch, then
matches them with other patches to produce an initial flow hypothesis at low resolution. The initial
coarse flow will be upsampled and refined later, following the “coarse-to-fine” paradigm. To better
present our findings, we would first like to clarify two possible meanings of the term “coarse-to-fine”:
(1) the predicted flow is upsampled from a coarse to a fine spatial resolution, or (2) a rough prediction
is progressively refined for higher accuracy. While prior methods often combine both, our approach
uses (2) but not (1).

To support our choice, we replaced the DPT head of UFM 560 with the UniMatch matching head and
trained with the same protocol as described in Section 3.4. We adopt this head as a representative
of patch-scale matching methods. Hence, the matching head now benefits from the same backbone
capacity and unified dataset as UFM 560. The only differences are the final flow prediction head and
how the flow loss is applied. To maintain equivalence in supervision, we modified the UFM robust
loss to match how UniMatch applies its loss - supervising on both the final flow and the bilinearly
upsampled coarse flow. Essentially, the UniMatch head first performs patch-level (coarse) matching,
which is then convex upsampled to pixel-wise correspondence. We follow their original codebase
and refer to formulas (1) - (7) from GMFlow [73] for the exact definition of the UniMatch head.

We evaluated them on covisible end-point-errors and report the results in Table S.2, where we
observed that the UniMatch Head yields a 22% increase in EPE on average. Hence, we conclude that
the regression head is more accurate in predicting correspondence and scales better to the combined
dataset, corroborated by evidence in Fig. 5.

Matching at the pixel level Direct global matching of pixel descriptors allows MASt3R to achieve
high precision even for large motions. Using a similar architecture and dataset scale, we show that the
regression paradigm in UFM 560 achieves competitive EPE performance on challenging wide-baseline
datasets, where the average flow reaches about 90 - 200 pixels. We attribute this to UFM’s superior
supervision efficiency compared to MASt3R. While MASt3R trains with at most 4096 correspondence
pairs per frame, UFM leverages supervision from all covisible pixels. This dense supervision is a key
factor that allows UFM to achieve similar or better accuracy with much higher speed than MASt3R.

Matching and Regression are not mutually exclusive Through UFM-Refine, we demonstrate
that matching-based local refinement can be effectively combined with a regressed initial hypothesis
to further enhance accuracy. This forms a key distinction between UFM-Refine and previous dense
correspondence approaches. Only with an efficient and accurate regressed initialization can one
confidently narrow the search range for pixel-wise matching, thereby achieving both the efficiency of
regression and the precision of pixel-wise matching.

G Additional Evaluations
We provide additional zero-shot evaluations of UFM on Sintel and KITTI test sets in Table S.3, S.4.
While we still observe UFM outperforms UniMatch under zero-shot settings (neither method was
trained on Sintel or KITTI), we observed UFM is biased towards static objects. As in Table S.4,
UFM is significantly better in the background than in the foreground objects, which are mostly
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Table S.3: Zero-Shot Performance on Sintel Test Set: UFM outperforms UniMatch in the overall
metric and most sub-items, except for sub-items on Sintrel-Clean.

Dataset Method EPE
all

EPE
matched

EPE
unmatched d0-10 d10-60 d60-140 s0-10 s10-40 s40+

UFM 980 - refine 3.28 1.75 15.80 3.28 1.27 1.21 0.69 2.07 19.07
Sintel-Final UniMatch-CT 4.14 1.97 21.86 3.77 1.59 1.28 0.89 2.43 24.40

UFM 980 - refine 1.68 0.72 9.52 1.54 0.67 0.43 0.48 1.23 8.71
Sintel-Clean UniMatch-CT 1.80 0.57 11.85 1.18 0.45 0.40 0.37 0.93 11.03

Table S.4: Zero-Shot Performance on KITTI Test Set: UFM outperforms UniMatch in the overall
metric and background objects, but not foregrond objects, which are mostly dynamic.

Method Range F1-bg F1-fg F1-all

UFM 980 - refine All 8.67 22.08 10.9
UniMatch-CT All 18.01 17.27 17.89
UFM 980 - refine Not occluded 4.93 19.6 7.59
UniMatch-CT Not occluded 9.75 14.61 10.63

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Error / px

3

2

1

0

1

2

3

G
ra

di
en

t

(0.42, 3.17)

Gradient of the robust loss v.s. L1 loss (Inliers)
Lrobust

L1

10 1 100 101 102

Error / px

10 2

10 1

100

101

G
ra

di
en

t

(500, 0.12)

(0.42, 3.17)

Gradient of the robust loss v.s. L1 loss (Outliers)
Lrobust

L1

Figure S.9: Gradient of the Robust Charbonnier Loss: Compared to L1 loss, the robust loss
used by UFM puts higher gradient to the inliers (peaks at error of 0.42 pixel), while maintaining
non-negligible (0.12 at 500 pixel error) gradient for even the largest outliers to slowly correct them.

dynamic. Future work may include more sceneflow datasets, such as ParallelDomain [63], to balance
the distribution.

H Visualization on the Robust Charbonnier Loss
We provide an additional visualization of the robust Charbonnier loss. The loss is defined as:

Lrobust (x;α,c) =
|α −2|

α

( ( x
c

)2

|α −2|
+1

) α
2

−1

 (S.9)

We followed RoMa’s choice of α = 0.5, c = 0.24. As shown in Fig. S.9, this combination of α and c
puts a high gradient on inliers while maintaining non-negligible gradient for even the largest outliers
to slowly correct them.
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