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Abstract—In real-world scenarios, objects often require repo-
sitioning and reorientation before they can be grasped, a process
known as pre-grasp manipulation. Learning universal dexterous
functional pre-grasp manipulation requires precise control over
the relative position, orientation, and contact between the hand
and object while generalizing to diverse dynamic scenarios with
varying objects and goal poses. To address this challenge, we
propose a teacher-student learning approach that utilizes a novel
mutual reward, incentivizing agents to optimize three key criteria
jointly. Additionally, we introduce a pipeline that employs a
mixture-of-experts strategy to learn diverse manipulation poli-
cies, followed by a diffusion policy to capture complex action
distributions from these experts. Our method achieves a success
rate of 72.6 % across more than 30 object categories by leveraging
extrinsic dexterity and adjusting from feedback.

I. INTRODUCTION

Objects in human daily life serve various functions, re-
quiring different functional grasp poses. For instance, when
using a spray bottle, one typically positions fingers on the
trigger, whereas when passing the bottle to another person,
one typically grasps the body. Current works [!,2] mainly
focus on training models to predict the functional grasp
pose or further incorporate Reinforcement Learning (RL) for
grasp execution and post-grasp usage [3]. However, these
works assume objects are already in highly graspable poses,
overlooking the fact that objects are often not positioned with
high functional graspability in the real world. For instance,
a spray bottle might be lying flat on a table, making it
challenging to grasp directly for its intended use. Humans
typically manipulate the object into a pre-grasp pose through
continuous reorientation and repositioning, a process known
as pre-grasp manipulation [4,5]. Unlike conventional pre-
grasp manipulation, transitioning objects from ungraspable to
graspable states, dexterous functional pre-grasp manipulation
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further requires both the dexterous hand and the object to
satisfy a specific goal pose for subsequent functional grasping.

Dexterous functional pre-grasp manipulation of diverse ob-
jects involves intricate interactions with objects and environ-
ments, demanding closed-loop dexterous manipulation skills.
Existing methods [6—8] rely on RL to train policies for general
dexterous manipulation, typically focusing on satisfying the
goal orientation and/or position of the objects. However, for
functional use, goals must precisely align with the relative
position, orientation, and contact between the dexterous hand
and the object. This results in an exceedingly small solution
space, making it challenging for RL agents to explore success-
ful policies. In this scenario, conventional approaches, such
as adding distance rewards [7, 9, 10], struggle. Simply adding
multiple distance rewards often makes RL agents trapped in
local minima, failing to devise manipulation policies that meet
all criteria. It is also impossible to design specific rewards
according to each object [11], since we need to generalize to
diverse objects with diverse poses. Such generalization is also
challenging for RL agents to learn from scratch [12—14].

To address the problem, we propose a novel mutual reward
that computes a scale according to the distance of each crite-
rion and uses the lowest scale to restrict all distance rewards,
preventing the agent from getting stuck at a local minimum.
Moreover, to facilitate generalization across diverse objects
and functional grasp poses, we employ the teacher-student
learning framework [7,14] by training Mixture of Experts
(MoE). The MoE generates diverse manipulation behavior,
leading to a complex action distribution, especially for a
dexterous hand with high Degrees of Freedoms (DoFs). Thus,
we propose using a diffusion policy [15], which has shown
great generative modeling ability to capture such complex
action distributions.

Through mutual reward and mixture-of-experts training, we
observe significant improvements in teacher policy learning.
When distilling the teacher policy into a single-student policy
using a diffusion policy, our approach achieves teacher-level
performance even without object geometry. Our learned policy
demonstrates adept use of extrinsic dexterity, such as leverag-
ing tables and inertia to manipulate objects effectively, and also
learns to adjust from feedback. These capabilities enhance the
policy’s ability to generalize across diverse objects.

In summary, our contributions are as follows: (i) We propose
a novel mutual reward to address the local minimum problem,
significantly improving teacher policy learning. (ii) We pro-
pose a pipeline integrating MoE and diffusion policies to learn
complex and general dexterous manipulation policies. (iii)) We
achieve a general dexterous functional pre-grasp manipulation
policy with a 72.6% success rate across 30+ object categories
encompassing 1400+ objects and 10k+ goal poses.
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Fig. 1: Our closed-loop manipulation policy continuously repositions and reorients diverse objects to match the functional grasp
goal poses successfully. (a) The dexterous functional pre-grasp manipulation. (b) The functional grasp goal poses.

II. RELATED WORK
A. Dexterous Functional Grasping

Dexterous functional grasping is crucial for humans due to
the diverse functionalities of objects in real-world scenarios.
This encompasses both functional grasp pose generation and
execution. Since the functionality of the objects is related to
human design, recent frameworks [2, 16] synthesize functional
grasp poses using human-labeled part-level functional infor-
mation. High-quality functional grasping datasets leverage
human priors [!, |7] have also been introduced for learning
these poses. Additionally, functional affordance regions can
be predicted using human functional grasping dataset [18, 19]
or internet data [3] to indicate functionality.

To address execution, current works mainly rely on RL
to learn a closed-loop policy by matching functional grasp
regions [18, 19] or setting to a pre-grasp pose [3] according to
functional grasp region. However, these works often assume
objects are already positioned for easy functional grasping,
ignoring the fact that objects are often not positioned with
high functional graspability in the real world, neglecting the
need for complex dexterous pre-grasp manipulation.

Our work focuses on dexterous functional pre-grasp ma-
nipulation, complementing existing works and serving as a
foundation for achieving functional grasping in the real world.

B. Dexterous Manipulation

Dexterous manipulation presents a significant challenge due
to the need for closed-loop policies for handling complex
and discontinuous contacts, which are notoriously difficult to
model accurately. Model-free RL has emerged as a popular
approach for acquiring dexterous manipulation skills, as it
bypasses the need for explicit contact modeling [7,20-25].

This approach has demonstrated generalization across di-
verse objects and goals by shaping different distance rewards
to enhance exploration. An orientation distance reward has
been used for learning general in-hand reorientation [7, 8],
while a position distance reward is used for learning gen-
eral dynamic handover [6]. Combining both rewards has

achieved general in-hand manipulation of slender cylindrical
objects [23]. For general articulated object manipulation, the
distance reward between the dexterous hand palm and object
part has been applied to enhance reaching the goal part [10].

However, our task involves manipulating both arm and
dexterous hands to achieve precise position, orientation, and
contact goals, resulting in a narrow solution space. Conven-
tional distance rewards can easily trap RL agents in local
minima. Moreover, our work requires generalization to diverse
objects and goals, making it difficult to design specific rewards
for each object.

C. (Dexterous) Pre-grasp Manipulation

Pre-grasp manipulation has been extensively researched to
enhance graspability by leveraging extrinsic dexterity. Most
works focus on designing specific pre-grasp manipulation
strategies to improve graspability. For parallel grippers, RL-
based systems utilize external surfaces like tables and walls
to transform ungraspable objects into graspable states [4].
Support surfaces and secondary arms can also be employed to
achieve power grasps for objects on a table [260]. Additionally,
obstacles can be adjusted to improve graspability [27].

Pre-grasp manipulation using a dexterous hand can develop
more pre-grasp manipulation strategies, such as a push-and-
grasp strategy where a dexterous hand pushes an ungraspable
object occluded by the environment to a graspable state before
grasping [28]. Another framework involves pushing, rotating,
and sliding actions tailored to different objects [29]. For gen-
eralization to diverse scenes, a physics-based method has been
proposed by leveraging tables and other environmental objects
to transform ungraspable objects into graspable ones [5].

Unlike conventional pre-grasp manipulation, our work fo-
cuses on manipulating diverse objects to diverse goal poses for
subsequent functional grasping, rather than solely achieving
graspability.

D. Dexterous Diffusion Models for Grasp and Manipulation

Diffusion models have demonstrated strong generative mod-
eling capabilities in high-dimensional spaces across various
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Fig. 2: Pipeline. (a) An Autoencoder learns latent representations based on the object-hand point cloud. (b) K-Means clusters the training
set into N clusters based on the learned representations. (c) Learning an expert for each cluster based on mutual reward. (d) Distilling
multi-expert knowledge into a single student using diffusion for dexterous functional pre-grasp manipulation of seen and unseen objects.

domains [30-37]. In dexterous hands, previous studies also
show the potential of diffusion models to generate fine-
grained, high-dimensional dexterous grasp poses, whether
given full [36, 38] or partial [39] object point clouds of a single
object. Moreover, diffusion models can handle the complex
kinematics and dynamics involved in generating grasp poses
for grasping multiple objects with one hand [40]. However,
these works mainly focus on pose generation rather than
learning manipulation policies.

In closed-loop manipulation policy learning, leveraging the
scalability of diffusion models to high-dimensional output
space and their ability to express complex action distributions,
diffusion policy has been proposed for parallel grippers to ac-
quire dexterous manipulation skills [15, 41]. Even for complex,
high-DoF dexterous hand manipulation policies, point cloud-
based diffusion policy [42,43] has been introduced, achieving
impressive performance. However, these studies are focused
on limited objects or a single manipulation goal.

Our focus, however, involves generalization across a wide
range of objects and goals, and we leverage diffusion policy
for multi-expert teacher-student learning.

III. DEXTEROUS FUNCTIONAL PRE-GRASP
MANIPULATION

We address the problem of dexterous functional pre-grasp
manipulation. Given a functional grasp goal configuration, a
policy is tasked to control a robotic arm and dexterous hand
to manipulate the object and achieve the specified goal pose.

State and Action Spaces:  We consider a tabletop sce-
nario with a 6-DoF robotic arm J* € R® and a 24-DoF
dexterous hand J* € R?*. The hand’s base pose is defined

s b = [b,, b,], where b, € R? denotes the 3D position and
b, € R?* the 4D quaternion. The hand joints consist of 2-DoF
wrist joints J* € R2, 18-DoF finger joints J/ € R'®, and
4-DoF underactuated finger joints J* € R*. The action space
A < R?® encompasses 6D relative changes for the hand base
a® and 20D relative changes for the actuated hand joints a”

Task Simulation:  For each pre-grasp manipulation trial,
we sample a desired goal pose g from a prior goal distribution.
Each g corresponds to a specific object O, but one O can have
multiple g. The hand’s palm coordinate is denoted as P. The

goal pose g = [gl.. gl gf;]. where gl € R® denotes the
relative 3D goal position of the object’s center of mass with
respect to the hand’s palm, g’ . € R* denotes the relative 4D
goal quaternion of the object’s center of mass with respect
to the hand’s palm, and gy; € R'® denotes the angle of the
hand’s actuated finger joints.

Observations:  The policy 7(al-) needs to adapt to
different g and O. Therefore, it conditions on J% b,J" g,
and o = [0}, 0f], where of’ € R?® denotes the relative 3D

position of the object’s center of mass with respect to the
hand’s palm, and of; € R* denotes the relative 4D quaternion
of the object’s center of mass with respect to the hand’s palm.

Objective:  The objective of this task is to find a policy
n(alb,J*,J" of g) that maximizes the expected pre-grasp
manipulation success rate:

¥ = arg mgx]Eatw,r(_|th?’J?7057g) [L(success)]. (1)

The success is satisfied if qu
¢j <= €5, where ¢, = [0l

P and gpog, ¢p = 2arcsin ((

<= €pos and Py <= €,r; and
g505|2 is the distance between

C )
dlstance between o)’ and g/, and ¢; = |J/ — gg;|, denotes

the distance between J/ and gfj- €pos> €ori» and €y; denote
the distance threshold for position, orientation, and contact.

denotes the

IV. METHOD

In dexterous functional pre-grasp manipulation, the high
dimensionality of the dexterous hand leads to a vast policy
space. Meanwhile, the task itself presents a limited solution
space, as successful manipulation requires achieving precise
goals that satisfy position, orientation, and contact criteria.

Despite the success of model-free RL in various manip-
ulation tasks [6,7], the stringent requirements in dexterous
functional pre-grasp manipulation pose significant challenges
to exploration, especially for agents with limited observations.

To address these challenges, we employ the teacher-student
framework [7] (see Fig. 2), utilizing a pre-trained “teacher”
agent with superior knowledge to guide a “student” agent
during the learning process.



A. Teacher Policy Learning

Teacher policy learning aims to acquire high-performance
experts without restricting access to privileged information [7].
We introduce a novel mutual reward for learning dexterous
functional pre-grasp manipulation policies, followed by an
MOoE to enhance the overall performance of the teacher policy.

Mutual Reward:  Reward shaping is crucial for training
a proficient RL agent. In our task, even with privileged
information, conventional reward shaping approaches, like
adding distance rewards for each goal component [7,9, 10],
can easily trap the RL agent in a local minimum. These
rewards incentivize the agent to prioritize optimizing easily
achievable distance rewards, such as position distance ¢, and
contact distance ¢;, by manipulating the hand base and joints.
However, the agent tends to neglect the orientation distance
¢y, which requires reorienting the object.

To address this, we propose a novel mutual reward. We
first define a normalization function v to standardize different
distance rewards into the range [0,1]:

€

fz?/)(d)ve): ¢+€7

where 7 denotes the normalized distance reward. Given the
challenge of defining the optimization order for three distance
rewards, we use the minimum normalized distance reward 7,
as a scale to regulate all the distance rewards. Thus, the total
distance reward becomes:

2)

Tdist = Tmin (WpTp + WoTy + W;T5) , 3)

where wp,, wg, and w; are hyperparameters. This restriction
term prevents simply minimizing ¢, or ¢; from rapidly
increasing the total reward, as the typically large ¢y results in
a small 7, as illustrated in Fig. 2. This compels the agent to
jointly optimize all three distance rewards, enabling successful
learning of the dexterous functional pre-grasp manipulation

policy.
We also incorporate an action penalty 7, to regulate arm

motion:
rap = [2°2- “

This penalty discourages excessive arm movement and encour-
ages finger utilization for object manipulation. The success
reward 7. is 1 if manipulation is successful. Therefore, the
total reward becomes:

T = Tdist T Wap * Tap + Wsuce * Tsuce) )

where wg, and wg,.. are hyperparameters for the action
penalty and success reward, respectively.

MoE: Given the goal of generalizing across diverse
objects and goal poses, the manipulation process can exhibit
significant diversity. This makes it challenging for RL agents
to learn a good policy for all goal poses. While Unidex-
grasp [13, 14] introduced a framework for learning dexterous
grasping for diverse objects by starting with “GeoCurriculum,”
which gradually increases object instances and categories from
a single object with a single pose, such a curriculum is not suit-
able for our task. Unlike grasping, which involves reaching and
closing fingers, manipulation requires continuous repositioning

and reorienting of the object. Hence, the manipulation policy
for different object geometry can be different. For instance,
manipulating a cylindrical bottle involves rolling it, whereas
manipulating a camera requires different techniques. Thus, if
the agent learns to manipulate a cylindrical bottle first, it may
struggle to learn to manipulate the camera.

Although “GeoCurriculum” is not directly applicable to our
task, the concept of decomposing the task space is valuable.
Therefore, we initially cluster the entire task space into several
clusters. Unidexgrasp++ [13] trains an autoencoder on object
geometry for the reconstruction task and then uses the latent
representation of each object for state-based clustering. In the
case of dexterous functional pre-grasp manipulation, the task
is linked to the goal pose. Given the same object with the same
initial pose, the goal of grasping the handle versus grasping
the body can lead to different manipulation processes. Thus,
we combine the object and hand point cloud to learn a latent
representation.

After clustering, we employ K-Means to partition the entire
task space into N clusters. While prior work [14] suggests
that a generalist can assist specialists in training dexterous
grasping, in dexterous functional pre-grasp manipulation, ma-
nipulation behaviors can vary across different goals, such as
manipulating a cylindrical bottle versus a camera, as described
earlier. Hence, to obtain a specialized high-performance ma-
nipulation policy for each cluster, we directly train an expert
for each cluster from scratch.

B. Distilling With Diffusion Policy

Once we have acquired the MoE, our objective is to distill
the diverse manipulation policies into a single student policy.
The student policy is constrained to only access observations
available in real scenarios, as described in Sec. III. Given the
complexity and diversity of the action distribution resulting
from the intricate manipulation process and the MoE, coupled
with the high dimensionality of the dexterous hand, we opt
to utilize a diffusion policy [15] which has been shown to
have the ability to learn complex high DoF dexterous hand
manipulation behavior [42,43], to model the complex action
distribution of different experts. Diffusion policy formulates
the robot behavior generation as a conditional denoising pro-
cess.

Dataset Generation:  Since the diffusion policy operates
as an offline imitation learning framework, we must gather
demonstrations using our teacher experts. While our teacher
policy necessitates privileged information for inference, the
trajectories we gather for training the diffusion policy solely
comprise limited observations.

By executing the policy of our N teacher experts on the
entire task space, we sample a set of trajectories 7;%,.
However, these trajectories have different episode lengths.
Following Chi et al. [15], for each trajectory 7; with a step size
of L;, we sample every sequence with a length of T, where
T, denotes the prediction horizon. Consequently, we obtain
L; — T, + 1 trajectory data points from 7;. By iterating over
the trajectory set 7;]4,, we can generate the dataset Sj?:l for
diffusion policy training.



Diffusion Policy Training:  The training process involves
sampling data points from the generated dataset. For each
sample S;, we randomly sample a time step t, and then sample
a noise nt. We consider the first T,, steps of observations from
S, as the observation sequence o, and take the T, steps of
actions from S; as the action sequence A?—. We utilize o as

a condition and define the loss function as follows:
L = MSE(n", ng(ojD, A(; +nt)), (6)

where ny is a noise prediction network.

Action Generation with Diffusion Policy: = Upon train-
ing the noise prediction network ng, for each simulation
step s;, the DDPM [44] performs t steps denoising from
the noise action sequence A; sampled from Gaussian noise,
until obtaining the noise-free action sequence Agl Following
equation:

ALt = a(AL —mg(ol, AL t) + N(0,0%1)), (7)

i?

where «, v, and o are parameters for noise scheduler. We then
execute T, steps of the denoised action sequence Agi.

C. Implementation Details

Teacher Policy: Our RL backbone is PPO [45]. We
configure hyperparameters with w, wy = w; = 3,
Wap = —0.01, and wyye. = 800. Privileged information details
for teacher policy training are provided in Table I.

TABLE I: Teacher Observation. The superscript P represents the
variable is w.r.t. the hand-palm coordinate.

Variable Dimension Description
b, 3., hand base positions
by 4, hand base orientations
Ja (6.) arm joint angles
Ja (6,) arm joint velocities
J.h (24,) hand joint angle
Jh (24, hand joint velocities
pr 5, 3) fingertip positions (to Palm)
fqP 5, 4) fingertip orientations (to Palm)
vy 5, 3) fingertip linear velocities
wy 5, 3) fingertip angular velocities
op A3, object position
0q 4,) object orientation
ol 3, object position (to Palm)
02)) 4,) object orientation (to Palm)
Vo A3, object linear velocity
wo 3, object angular velocity
bbox pject 2, 3) object boundingbox
gﬁ,s 3, target object position (to Palm)
bp 3., position distance
gf”- 4, target object orientation (to Palm)
bo 4, orientation distance
g7 (18,) target hand joint angles
b (18,) joint distance
MoE: For each goal pose gy, in the set gk,?:l, we sample

512 points from the corresponding object mesh and 512 points
from the corresponding hand mesh. These point clouds are
concatenated and then encoded using PointNet++ [46], and the
reconstruction loss is computed with Chamfer Distance. The
entire task space is divided into 20 clusters. For each expert,
we train on 12000 parallel environments until convergence.

Diffusion Policy: We configure T, = 4, T, = 2, and
T, = 1, while keeping other parameters the same as [15].
Because we use the relative action for policy learning, we use
the transformer backbone [47] for handling quick and sharp
changes in action sequence [15].

V. EXPERIMENTAL SETUPS
A. Task Simulation

Environment Setup: = We created a simulation environ-
ment based on Isaac Gym [48] using ShadowHand and UR10e
robots. Each environment consists of an object randomly
placed on a table, with its mass randomized from 0.01kg to
0.5kg due to the diversity of object categories. A UR10e robot
is positioned outside the table with the ShadowHand mounted
on the end of the arm, as shown in Fig. 1. The maximum
episode length is 300 steps. Episodes terminate upon reaching
the goal pose or prematurely if the object falls off the table
or the maximum steps are reached.

Goal Pose Generation: We utilize the Oakink
dataset [49], which covers diverse functional intents for a
wide range of objects, to generate a dexterous hand functional
grasp pose dataset. Since the Oakink dataset is based on the
human hand, it differs in structural and shape characteristics
from robotic hands. To adapt the hand poses, we employ a
retargeting algorithm [22] based on task space vectors to map
the mano hand pose to the ShadowHand pose. Next, to refine
poses prone to collision and non-force closure grasp, we utilize
Dexgraspnet [50] for optimization. To enhance grasping, we
optimize the joints by calculating the gradient corresponding to
the movement of the contact point along the normal direction.
Finally, all refined poses undergo validation in a simulated
environment to eliminate those unstable under the influence
of gravity.

Due to the uneven distribution of object instances within
each category in the Oakink dataset, we implement a stratified
splitting approach for training and testing sets. Categories with
a larger number of instances are randomly divided into a 70%
training set and a 30% testing set, while categories with fewer
instances are split evenly into 50% for training and testing.
Overall, our training set comprises 1026 object instances with
a total of 6968 goal poses, while the testing set consists of
443 object instances with a total of 3034 goal poses.

B. Baselines and Metrics

For the teacher policy, we compare our method with the
following: (i) PPO-Sum: This baseline adopts a sum reward
approach, combining three distance rewards for RL training,
while keeping other rewards the same as Ours. (ii) Ours-SE:
Based on our proposed reward, we train a single expert for the
entire training set. (iii) Ours-MoEF: This comparison utilizes
a MoE, but instead of training them from scratch, we fine-tune
them from the Ours-SE model. Due to computational cost, this
comparison is conducted on a subset of our training data.

For comparison based on student observations, we evaluate
our method with: (i) PPO-OS employs PPO as a one-stage
method, using the same mutual reward as Ours but without
teacher-student learning. (ii) Behavior Cloning (BC) serves



as an offline imitation learning framework, learning directly
from expert demonstrations via supervised learning. (iii) Dag-
ger [51] is an online imitation learning framework that tackles
the covariate shift problem through iterative sampling with a
learned policy via online interaction.

We employ the success rate as the metric for all compar-
isons. Our task employs stringent criteria, with €,,, = lem,
€ori = 0.1rad, and €p; = 0.2rad, which are challenging
thresholds to meet.

VI. RESULTS

We conducted extensive experiments to validate our ap-
proach. Section VI-A compares our proposed reward with
a baseline using privileged information. Building upon our
reward, Sec. VI-B explores the challenges of learning gen-
eral dexterous functional pre-grasp manipulation without a
teacher-student framework. Within this framework, Secs. VI-C
and VI-D evaluate the effectiveness of using MoE for teacher
policy training and a diffusion policy for distillation, respec-
tively. To assess our reliance on object pose observation,
Secs. VI-E and VI-F present results concerning different
geometry types and robustness. Finally, Sec. VI-G analyzes
performance across object categories.

A. Reward Comparison

As shown in Tab. II, without a mutual reward, the PPO-
Sum agent fails to learn a successful manipulation policy.
We observed that the agent quickly learns to align positions
and contacts but is stuck at a local minimum, failing to
align orientations. In contrast, Ours-SE with a mutual reward
prevents premature optimization, encouraging simultaneous
optimization of each reward. This leads to a significant im-
provement in the success rate from 0.0% to 58.0%.

B. Challenges in Functional Pre-grasp Manipulation

To demonstrate the difficulty of learning general dexterous
functional pre-grasp manipulation, we conducted experiments
using PPO-OS based on student observation, incorporating our
mutual reward. We trained PPO across varying numbers of
objects, with each PPO model trained until convergence or
reaching the maximum interaction steps (5.76 billion).

As depicted in Tab. III, when trained on a single object, the
RL agent rapidly learns a policy with a nearly 100% success
rate. However, as the number of objects increases, the success
rate declines steeply, highlighting the difficulty of general

TABLE II: Success Rate of Teacher Policy. “All”: trained on the
entire training set; “Sub”: trained on a subset of the training set; “SE”:
single expert; “MoE”: mixture of experts; “Succ (Train)”: success rate
on the training set.

Method Training set Reward Teacher Succ (Train)
PPO-Sum All Sum SE 0.0%
Ours-SE All Mutual SE 58.0%
Ours-SE (sub) Sub Mutual SE 55.2%
Ours-MoEF (sub) Sub Mutual MoE 63.9%
Ours (sub) Sub Mutual MoE 67.4%
Ours All Mutual MoE 75.0%

TABLE III: Success Rate of One-stage PPO under Different Sizes
of Training Set. “Succ (Train)”: success rate on the training set.
As the number of objects increases, finding a general manipulation
policy across diverse objects becomes increasingly challenging for
one-stage PPO.

Obj Num 1 9 100 1026 (AlD)
Succ (Train) 982% 6.2% 21.2% 6.5%

dexterous functional pre-grasp manipulation. Interestingly,
the success rate for 9 objects is lower than for 100 objects.
This is because within the set of 9 objects, the presence
of challenging objects, such as knives, is proportionately
higher, hindering exploration. This underscores the necessity
of employing an MoE.

C. Teacher Policy Comparison

Table II demonstrates that employing multiple experts leads
to a further increase in the success rate from 58.0% to 75.0%
compared to a single expert. This is because multiple experts
allow the agent to learn more tailored policies for each cluster.
Additionally, our experiment shows that training from scratch
outperforms fine-tuning from a generalist. We sampled five
clusters with varying learning difficulty and trained Ours (sub)
from scratch on each cluster, while Ours-MoEF (sub) was fine-
tuned from the pre-trained single expert Ours-SE (sub). As
shown in Tab. II, training from scratch achieves better overall
performance due to the diversity of objects and poses and the
complexity of manipulation, making it challenging to transfer a
general policy to objects and poses with significant variability.

D. Student Policy Comparison

All methods utilizing teacher-student learning outperform
PPO-0OS, which undergoes end-to-end training. As indicated
in Tab. IV, Dagger can achieve performance comparable to the
single-expert teacher policy but struggles to learn an effective
policy under the mixture of expert teacher policy.

Offline imitation learning methods demonstrate superior re-
sults compared to those requiring environment interaction. Due
to the critical role of data quantity, we compare Ours and BC
across various demonstration numbers. Table IV shows that
Ours consistently outperforms BC on both training and testing
sets, especially with limited demonstrations. Notably, Ours can
achieve comparable performance with only half the number

TABLE IV: Success Rate of Student Policy. This table presents the
results of methods that require teachers for training. “SE”: single
expert; “MoE”: mixture of experts; “Demo Num”: the maximum
number of demonstrations collected for each pose in the training set,
used for distilling the student policy; “Succ (Train)”: success rate on
the training set; “Succ (Test)”: success rate on the testing set.

Method Teacher Demo Num Succ (Train) Succ (Test)

Dagger SE - 52.2% 52.3%
Dagger MoE - 17.5% 17.3%
BC MoE 5 57.4% 54.7%
BC MoE 10 67.7% 65.1%
BC MoE 20 70.9% 67.7%
Ours MoE 5 65.7% 63.3%
Ours MoE 10 71.3% 68.4%
Ours MoE 20 73.7% 70.1%




Fig. 3: Adaptability of Our Learned Policy. Although our agent
may initially fail to manipulate objects, it adjusts its policy on the
second attempt, successfully manipulating them. This capability helps
the agent handle diverse dynamics.

of demonstrations required by BC. With a large number of
demonstrations, Ours approaches teacher-level performance.

E. Ablation on Geometry Type

While common sense suggests that object geometry infor-
mation is crucial for manipulation, Tab. V shows that providing
more detailed geometry information does not significantly
impact performance, although it can lead to a better student
policy. Observing the learned policy, we discovered that our
policy utilizes extrinsic dexterity, such as using the table
to roll objects or leveraging inertia, as shown in Fig. I.
Additionally, our policy learns to adjust based on feedback
(Fig. 3). These capabilities enhance the agent’s ability to
generalize to different objects and goal poses.

However, these capabilities also have drawbacks. We ob-
served instances where the agent pushes objects down to better
utilize extrinsic dexterity, which may need improvement in the
future through the design of new reward mechanisms.

FE. Robustness under Noisy Object Pose

As we solely depend on object pose for dexterous functional
pre-grasp manipulation, and object pose is actually hard to be
accurate in the real world due to sensor noise and occlusion,
we further conduct experiments under varying levels of noisy
object pose observations [52].

Table VI shows that injecting 2°, 2cm noise results in a
decrease in success rate. However, given our stringent criteria,

TABLE VI: Success Rate un-
der Different Levels of Ob-

TABLE V: Success Rate of ject Pose Estimation Noise
Different Geometries. “Succ and Success Threshold. “Succ
(Train)”: success rate on the (Test)”: success rate on the
training  set;  “Succ  (Test)”: testing set. The noise level is

success rate on the testing set.
Due to computational cost, this
experiment was conducted using
5 demonstrations per pose.

determined by the standard de-
viation of the specified noise.

Threshold

£ & ¢

Geometry Type Succ (Train) Succ (Test) Noise level

Pose + Point Cloud 66.5% 63.3%

Pose + Bounding Box 65.9% 62.8% Suce (Test)

Pose 65.7% 633% 0°,0cm  70.1% 77.8% 81.2%
2°,2em 38.1% 67.7% 75.2%
5°, S5cm 0.0% 65% 8.7%
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Fig. 4: Success Rate of Different Object Categories.

we also tested with a larger success threshold, which remains
reasonable. Even when doubled, the achieved functional pose
remains meaningful and comparable. By slightly relaxing the
threshold, our method still achieves a high success rate, under-
scoring its robustness and potential for real-world applications.

G. Performance across Object Categories

Figure 4 shows that while our method achieves a high
success rate across the entire dataset, it still struggles with
irregularly shaped objects, particularly thin and slender ones
like knives and pens. Even when trained from scratch, the
experts fail to perform well on these objects, indicating a need
for specific design considerations.

VII. CONCLUSION

This work focuses on general dexterous functional pre-grasp
manipulation, repositioning and reorienting various objects to
precisely match diverse functional grasp poses, crucial for real-
world functional grasping. We adopt a teacher-student learning
framework, introducing a novel mutual reward that greatly
enhances teacher policy learning. Furthermore, we propose
employing a MoE and distillation with a diffusion policy
for learning diverse manipulation behavior. Our experiments
showcase efficacy and robustness, revealing the potential for
real-world applications.

Limitations and Future Works:  Although our teacher
policy shows promising results, it still struggles with objects
of irregular shapes. Integrating human demonstrations could
potentially improve performance. Additionally, our current fo-
cus is solely on pre-grasp manipulation. To achieve functional
grasping in real-world scenarios, it is essential to integrate pre-
grasp manipulation with functional grasp pose generation and
grasping, alongside addressing the sim2real gap.

Acknowledgments: We thank Jiyao Zhang, Haoran
Geng, Zeyuan Chen, Tianyu Wang, Xiangyu Huang, and
Jinghui Zhuang for their insightful discussions.
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