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Abstract—Secure storage of private keys is a long-standing
challenge. While centralized infrastructure commonly relies
on passwords or multi-factor authentication, decentralized
applications rely almost exclusively on mnemonic-based key
recovery schemes, most notably the BIP-39 standard for seed
phrases. Although this approach improves memorability,
users still frequently physically store mnemonics, largely
defeating its intended usability and security benefits.

We introduce Unforgettable — the multifactor fuzzy key
derivation function that utilizes a diverse set of accessible
sources (such as passwords, objects, facial data or finger-
prints) to generate strong cryptographic keys. Since many
of such sources are unstable, we employ fuzzy extractors to
deterministically derive the same key despite small errors in
several factors. Finally, we show that it is possible to achieve
the false rejection rate of 1% with the 100-bit security level
using passwords and two unstable factors.

1. Introduction

The secure and user-friendly key recovery have long
been a major challenge in decentralized applications.
Currently, the de-facto most practical solution is BIP-39
standard [34] introduced back in 2013. In its essence, BIP-
39 proposed a way to convert a high-entropy randomness
into a human-readable transcription of 12 words, which
are surely more memorable and portable than a random
128-bit binary string. Despite its wide usage, the standard
has a list of requirements and drawbacks: (i) the user
cannot choose words from the dictionary as it reduces the
entropy significantly, (ii) checksum detects only random
errors and does not protect from the list of targeted attacks
such as mnemonic substitution [35] or pre-computed by
the malicious wallet seed phrases [28], (iii) key derivation
function (KDF) is strongly defined to be PBKDF2 [24]
with the iteration parameter of 2048, which does not
support the use of more secure KDFs [6] or increasing
the iteration parameter to the level proposed by NIST [8].

The natural solution to improve user experience (UX)
is to derive keys from more memorable data, such as
passwords or biometrics. However, using one of these
factors solely provides too weak security. For instance,
a random password of 20 characters can provide the user
with 128 bits of entropy, but keyword here is “random.”
Users do not generate passwords uniformly randomly, so
to reach the same level of entropy, one needs to increase
the password length to 50-60 characters. Brainwallets [43]
is a similar interesting concept, which proposes selecting
any data (a chapter in a book or a long sentence the user
remembers) and passing it through the KDF function. This

approach is better from the UX perspective, but security
assumptions are much worse than for the randomly gen-
erated key.

What about biometrics, such as facial data, finger-
prints, or voice? From a security perspective, biomet-
ric data is an even worse option: most key derivation
protocols over biometric data can achieve at most 20–
30 bits of security [3]. Moreover, biometric sources are
unstable: upon receiving two biometric samples from
the same person, they will not be precisely equal. This
problem is well-researched in the prior literature: one can
employ fuzzy commitments [22], fuzzy vaults [20], fuzzy
signatures [25], [41], asymetric fuzzy encapsulation [14],
and most notably, fuzzy extractors [11]. While such con-
structions make key derivation deterministic (as long as
two biometric samples are close enough) and allow formal
security analysis, they cannot increase the source entropy
nor prevent a vast list of attacks, such as spoofing for
impersonation [16].

Our Contribution. While passwords of biometrics
solely cannot achieve a sufficient security level, we can
expect to get a high-entropy key by combining several
such factors. In this study, we present Unforgettable –
the fuzzy key derivation function that from the diverse
set of accessible sources (such as passwords, objects, or
biometrics) generates strong cryptographic keys. Unfor-
gettable Fuzzy Extractor is aiming to meet the following
requirements:

✓ Client-Side: the whole recovery process can be con-
ducted by the user without accessing any third-
party services. Any auxilary data needed for recovery
might be stored on blockchain and does not reduce
security of derived keys.

✓ Security: entropy of the derived key should be ap-
proximately the sum of entropies of each individual
source. With enough factors, the derived key is suf-
ficiently strong.

✓ Usability: key generation and recovery flows are
supposed to be much simpler and friendlier, even
compared to the BIP-39 approach.

1.1. Previous Studies

While we have considered some of the single-factor
derivation methods, we shall discuss previous studies on
combining several factors.

MFKDF. Most notable study on this question is the
Multi-Factor Key Derivation Function (MFKDF) [33] by
Nair and Song that introduced the proper formalization
and security analysis of merging multiple factors into a
single key. Their construction defines the factor F as a



two-valued probability distribution (α, κ) with α being
the public component and κ being the secret component.
Each factor is equipped with the factor construction F
that maps a factor witness Wi and public parameters α
to a secret κ and new public parameters α′: that is, F :
(Wi, α) 7→ (κF , α

′). Denote concatenation by ⊙. Given a
set of such factors (Fi)i∈[N ], the MFKDF is constructed
as follows:

(i) one derives individual factor materials (κFi
, α′Fi

)←
F(WFi , αFi) for each factor Fi;

(ii) the resultant key K is derived from (κFi)i∈[N ] (by
essentially applying a KDF to

⊙
i∈[N ] κFi);

(iii) public components αFi
are set to newly created α′Fi

,
if the factor Fi is dynamic (e.g., HOTP or TOTP).

Therefore, it is natural to embed the fuzzy extractor
into such a theoretical framework: each biometric type
would be a factor where α is a helper string that remains
unchanged during the FactorUpdate procedure, while κ is
the secret key derived through the fuzzy extractor. How-
ever, compared to the early draft of MFKDF2 [37], we
claim that the fuzzy extractor scheme is incompatible with
the construction of Nair and Song, since MFKDF requires
impossibility of guessing individual factors. In such case,
given that ith factor’s brute-force time complexity is pro-
portional to 2λi , we expect their combination to be brute-
forced by adversary in time proportional to

∏
i∈[N ] 2

λi .
Fuzzy extractors fail to meet this criterion: given a helper
string, the adversary always knows whether the decoded
secret is valid. That said, instead of deriving the whole
set (κFi)i∈[N ] and passing it to the KDF, one can first
brute-force individual κFi

’s and only after recovering each
of them invoke key derivation. This drastically reduces
brute-force complexity from

∏
i∈[N ] 2

λi to
∑

i∈[N ] 2
λi ,

completely eliminating all the security benefits of merging
several factors. Since this idea is crucial for the subsequent
discussion, we illustrate it using the following example.
Example 1.1. Fix N password factors with λ-bit pass-
words (pi)i∈[N ], secure hash function H0 : {0, 1}λ →
{0, 1}ℓ and key-derivation function KDF : {0, 1}λN →
{0, 1}ℓ (with λN ≤ ℓ). Consider two derivation schemes:
• Case A: Each password factor has a public compo-

nent αi = H0(pi) and the factor material is κi = pi.
The combined key is K := KDF(

⊙
i∈[N ] κi).

• Case B: Each password factor has no public compo-
nent: αi = (⊥), and the factor material is κi = pi.
As before, K = KDF(

⊙
i∈[N ] κi).

Now note that in Case A, the adversary can recover
each κi separately using αi with complexity 2λ, resulting
in the total complexity of N ·2λ. In the Case B, the best ad-
versary can do is to brute-force over tuples (κ1, . . . , κN ),
which lifts up the complexity to 2Nλ. Therefore, Case B
is a significantly stronger derivation scheme than Case A.

The same logic applies for fuzzy extractors, where α
is the helper data while κ is the secret value.

2. Technical Preliminaries

2.1. Basic Notation

Throughout all sections, we are going to work with
various metric spaces. We equip spaces of form Σn over

the finite alphabet Σ with the Hamming metric. Namely,
for x,y ∈ Σn, define the Hamming distance between
x and y as ∆(x,y) ≜ #{i ∈ [n] : xi ̸= yi}, while
δ(x,y) ≜ 1

n∆(x,y) to be the normalized Hamming dis-
tance (here and after, by [n] we denote the set {1, . . . , n}
and by (n) the set {0, . . . , n− 1}). We call the Hamming
distance from x ∈ Σn to the zero string by Hamming
weight of x and denote by ∥x∥0 ≜ ∆(x,0).

In turn, when working over vector spaces of form
Rn, we typically use Lp distance, defined as ∥x − y∥p
with ∥x∥p ≜ (

∑
i∈[n] |xi|p)1/p. When writing d(x,y), we

assume that we equip Rn with the Euclidean metric (i.e.,
we use L2 distance), if not stated otherwise.

Finally, as noted earlier, ⊙ denotes concatenation of
two strings while ⊕ denotes the usual XOR operation.

2.2. Error-Correction Codes

We denote the error correction code (ECC) over finite
alphabet Σ by C and call it an (n, k, d) code if (1) C ⊆ Σn,
(2) messages are elements of Σk, and (3) distance of the
code is d, where the distance of the code is defined as
usual: d(C) ≜ minx,y∈C,x̸=y ∆(x,y). We call C a (q-
ary) linear error-correction code if Σ = Fq and C is a
linear subspace of Fn

q with dim C = k. Finally, we always
assume d = 2t+1 where t is the unique decoding distance.
This allows for the unique correction of up to t errors.

Given the ECC C over alphabet Σ, we denote encoding
of a message m ∈ Σk by C.Enc(m) that outputs the valid
codeword. Similarly, given a word z ∈ {0, 1}n, we denote
the error-correction procedure as C.Dec(z).

An important class of ECCs that yields parameters
(2m, 2m −mt, 2t + 1) and which we further extensively
rely on is the Goppa codes. We select this ECC family
for two reasons: (i) unlike Reed-Solomon codes, which are
inherently non-binary (i.e., defined over Fq with q > 2),
Goppa codes provide a strong and well-suited ECC de-
fined directly over F2, and (ii) parameter t is clearly
determined by code parameters, unlike popular families
like LDPC, where determining the true minimum distance
is computationally infeasible. Let us introduce Goppa
codes formally.

Definition 2.1. Consider the finite field Fqm and a locator
set L = {αi}i∈[n] ⊆ Fqm . Fix an irreducible polynomial
g ∈ Fqm [z] with deg g = t. Goppa code Γ over L and g
is defined as the set of all c ∈ Fn

q such that:∑
i∈[n]

ci
z − αi

= 0 (over Fqm [z]/⟨g⟩)

Further, always assume q = 2, and m is determined
based on the factors size. To see more details on Goppa
codes (such as decoding procedure), refer to Appendix A.

2.3. EMBLEM Error-Tolerant Encryption

As a modification of an existing LWE scheme, the
EMBLEM key encapsulation mechanism is designed to
handle better small secret distribution, while setting large
standard deviation of the discrete Gaussian distribution.
This makes range of possible outcomes from sampling
larger standard deviation, and decreases the probability



of correctly obtaining the result, while using the classic
LWE-based KEM schemes (such as Kyber). For this spe-
cific reason, EMBLEM KEM has it’s own error-tolerant
encryption to work in this setup effectively. We proceed to
use it’s simpler version of the encryption, which captures
the main idea behind the method.

The Emblem error-tolerant encryption with parameters
(d, q) and some message m ∈ {0, 1}n consists of these
two procedures: Encrypt(m) → Zn

q and Decrypt(z ∈
Zn
q )→ {0, 1}n. For the sake of simplicity, we will denote

the usage of this encryption by E .
The encryption procedure is constructed as follows:

for every of bit of the message m append 1||0d, where
d = log2 (q)−2, and obtain the vector of d+2 bit numbers
the size n.

The decryption procedure is the following: For every
element of the encrypted message input z ∈ Zn

q , we
represent the number in bit form. Then find the first
significant bit for every element of z, and from them
construct the message. The decryption will output in the
correct result, iff ∥z∥∞ < 2d.

As we can see, the larger parameter d, the better the
error-tolerance will be. Subsequently, this means that q
must also be larger.

2.4. Image Recognition Neural Networks

Before defining fuzzy extractors, we shall discuss tech-
nical details on how one obtains witness, corresponding to
the biometric data. We demonstrate this using an example
of Face Recognition, but the idea used in other biometric
data (such as fingerprints [13] of voice [2]) is essentially
the same.

2.4.1. Face Recognition Model. The main problem en-
countered in the face recognition research is as follows:
given two facial images, say, x,y ∈ RW×H×C , determine
whether they correspond to the same person. Comparing
two objects in the high-dimensional space (of dimension-
ality W · H · C) is vastly suboptimal. A more sufficient
approach is therefore to train the feature extraction neural
network f : RW×H×C → Rn that projects the high-
dimensional sample into a much lower-dimensional space
Rn, where n typically ranges from 128 to 1024. We further
call the output of f an embedding.

What do we expect from such a projection? We want
to obtain the following two properties: (1) given two
images of the same person, say, x and x′, the distance
between embeddings f(x) and f(x′) is small, while (2)
given two images of two different people, say, x and y,
we expect that distance between f(x) and f(y) would be
large. Of course, due to the probabilistic and continuous
nature of neural networks, we cannot expect that f(x)
and f(x′) will match perfectly. Instead, we define the
threshold ε ∈ R>0 and consider images x and x′ to be of
the same person iff d(f(x), f(x′)) ≤ ε.

So how do we train f? Some early approaches [4],
[42], such as Eigenface or Fisherface, proposed to use
the Principal Component Analysis (PCA) and Linear Dis-
criminant Analysis (LDA) methods to learn the linear
embedding f(x) = Πx + β. However, better results,
obtained e.g. by [9], [29], [38], [44], proposed to represent

f as a neural network that outputs features on the unit d-
dimensional hypersphere Sn−1 ≜ {x ∈ Rn : ∥x∥2 = 1}.
While all the mentioned papers employ different yet
similar methods, the general idea is to construct a loss
function that reduces the intra-class average distance while
increasing the inter-class distance. We drop the specifics
here, so further assume that we have trained the feature
extractor f : RW×H×C → Rn.

2.4.2. Embeddings Quantization. As mentioned in the
previous section, the neural network f outputs the n-
dimensional vector on the hypersphere Sn−1. Unfortu-
nately, in cryptographic applications, operating with real-
valued is troublesome. To resolve this issue, we map
continuous values to the vector of elements from the finite
alphabet Σ using what we call a quantization method. For
simplicity, assume Σ = Zr where r is the alphabet’s size.
Given the output of the neural network v = f(x) ∈ Sn−1,
we map it to q(v) where q : Sn−1 → Zn

r is the quanti-
zation function. Below, we specify functions q(·) used to
quantize the real-valued vector.

Binary Naive Embedding. This approach was used,
in particular, in [27]. Here, the alphabet is binary, so Σ =
Z2. Upon receiving the embedding (v1, . . . , vn) ∈ Sn−1,
the output is the binary vector (b1, . . . , bn) ∈ {0, 1}n
where bi = 1[vi ≥ 0] with 1[·] being the indicator func-
tion. A slight modification of this approach is to estimate
the average values of each embedding component: say,
µ = (µ1, . . . , µn), and form bi as bi := 1[vi ≥ µi].

Equal-probability quantization. This approach was
used, in particular, in [12]. This method partitions the
range of feature values into r bins such that each bin
has approximately an equal probability mass under the
empirical feature distribution. More specifically, assume
that ξi is the random variable representing the ith com-
ponent of the neural network output ξ = (ξ1, . . . , ξn)
with the marginal distribution pi(x). Partition the interval
[−1, 1] into q bins {(τi,j , τi,j+1)}j∈[r] with the property
that

∫
(τi,j ,τi,j+1)

dpi =
1
r for each bin (τi,j , τi,j+1). Upon

receiving the feature vector (v1, . . . , vn) ∈ Sn−1, we
convert it to the quantized vector (v̂1, . . . , v̂n) ∈ Zn

r such
that vi ∈ (τi,v̂i , τi,v̂i+1).

Random Projection. Another prominent approach for
binary quantization (r = 2) thoroughly theoretically ana-
lyzed in [10], [45], [46] is surprisingly simple: quantize
the feature vector v ∈ Sn−1 by computing v̂ := sign(Πv)
where Π ∈ Rm×d is a random projection matrix generated
by sampling each matrix component from the standard
normal distribution: Πi,j ∼ N (0, 1). In particular, [45]
proved the following theorem about such a mapping.

Theorem 2.1. Consider an arbitrary finite set K ⊆ Sn−1

of image recognition model outputs, and let the output
dimensionality m ≥ (c/ε2)|K|. Let ·̂ be the quantized
value using random projection x̂ = sign(Πx). Then, for
all x,y ∈ K, we have:

Pr [|δ(x̂, ŷ)− d(x,y)| ≤ ε] ≥ 1− 2 exp(−ε2m).

During our research, for each chosen face recognition
model, we benchmark each of the quantization methods
and select one that yields the smallest error. Additionally,
to simplify notation, we always assume that the neural



network f outputs the element from Zn
2 as the result of

model inference and the subsequent quantization process.

2.4.3. Neural Network Accuracy Estimation. To further
model the security level of Unforgettable, we estimate the
following parameters:

FRR & FAR (False Rejection Rate & False Accep-
tance Rate). Fix threshold ε ∈ R>0 and the neural network
f . Assume ρsame is the distribution of images of the same
people, while ρdiff is the distribution of images of different
people. Then, we define FRR and FAR as the following
quantities:

FRRf (ε) = Pr(x,x′)∼ρsame [∆(f(x), f(x′)) > ε],

FARf (ε) = Pr(x,y)∼ρdiff [∆(f(x), f(y)) ≤ ε].

Empirically, we estimate these parameters as follows: fix
the set of pairs of the same people from specifically chosen
dataset Psame ⊆ (RW×H×C)2 and similarly of different
people Pdiff. Then,

FRRf (ε) ≈ 1

|Psame|
∑

(x,x′)∈Psame

1[∆(f(x), f(x′)) > ε],

FARf (ε) ≈ 1

|Pdiff|
∑

(x,y)∈Pdiff

1[∆(f(x), f(y)) ≤ ε].

These two parameters are the crucial indicators of the
neural network accuracy and security. The larger values
of FRR result in a worse user experience, while larger
FAR reduces the security level of the neural network. In
fact, regardless of the further fuzzy extractor construction,
the upper bound of the security of the single biometric
source is roughly limited by log2(1/FARf (ε)) bits where
ε is the threshold below which two feature vectors map to
the same secret value. Indeed, the adversary might grind
through approximately log2(1/FARf (ε)) biometric sam-
ples to get the matching feature vector. A slightly more
rigorous justification is given in ??. Based on modern
studies and our experiments, currently it is possible to
achieve up to ≈ 20 bits of FAR while still having a FRR
in the range 0.1–0.2.

Average Separation. To understand how much two
feature vectors differ, given they come from the same or
different people, we introduce average separation values
as follows:

d+(f) := E(x,x′)∼ρsame [∆(f(x), f(x′))],

d−(f) := E(x,y)∼ρdiff [∆(f(x), f(y))].

They are estimated in a similar manner. These two values
will be used to model the likelihood that two individual
elements in the feature vector differ, thereby understand-
ing the robustness and security of the fuzzy extractor.
For an “ideal” neural network, we expect d+ to be as
close as possible to 0 while d− to be approximately 1

2 .
While the latter condition is typically observed in modern
neural networks, the value of d+ is in practice close to
1
4 , as our experiments show. For concrete distribution of
distances, refer to Figure 1. In particular, similar results
were obtained in [27].

Datasets. For benchmarking models, we use
LFW [18] and MS1M-V2 [9], [15], [30] datasets. These
datasets are currently the most widely used in Face

Recognition research and provide a comprehensive list
of more than a million images with varying lighting
conditions, races, or poses.

We provide benchmark results in Table 1.

3. Fuzzy Extractors

3.1. Entropies

Definition 3.1. Let X be the distribution defined over the
set X . The min-entropy of X is defined as

H∞(X ) ≜ − log2

(
max
x∈X

Pr[X = x]

)
.

Given the joint distribution X × Y over X × Y , we
define the average min-entropy of X given Y as:

H∞(X|Y) ≜ − log2

(
Ey←$Y

[
max
x∈X

Pr[X = x|Y = y]

])
3.2. Sources and Factors

As mentioned in § 1.1, the factor notion introduced
in MFKDF cannot be directly implied to fuzzy extractor-
based factors. Specifically, we cannot assume that each
factor is naturally equipped with some factor construction.
For this reason, we introduce the new notion of factors that
we can use for formal security analysis. Further assume
that U is the finite set of all users.

Definition 3.2. Source S over the set of possible sample
values X is a tuple (X,Φ, (ΦU )U∈U ) where:
• (X, dX) is the discrete metric space.
• Φ is the overall population distribution over X .
• ΦU is the probability distribution of the biometric

data of the given user U over X .
We say that ΦU is the factor of user U over S.

Example 3.1. Facial data source SF is defined over quan-
tized embeddings X = {0, 1}n. Then, the factor Φ(SF )

U is
the distribution of embeddings of the person U . Similarly,
we can associate uniform n-bit password data source SP
with Φ(SP ) being a uniform distribution over {0, 1}n, and
Φ

(SP )
U is the distribution with the support of a single

element (corresponding to user’s password). Note that in
practice Φ(SP ) is not uniform as users do not generate
passwords uniformly randomly.

Example 3.1 motivates us to distinguish stable sources
(such as passwords or seed phrases) and unstable sources
(such as biometric data).

Definition 3.3. We say that the source (X,Φ, (ΦU )U∈U )
is stable if supp(ΦU ) = {xU} for some xU ∈ X for each
U ∈ U . Otherwise, the source is called unstable.

Remark. When saying “m-entropy source”, we mean
that the entropy of a global distribution Φ is m. Indeed,
the difficulty of breaking password/biometric lies in how
much entropy we expect from the global distribution. The
entropy of the user distribution ΦU is merely a measure
of variance: e.g., entropy of a user distribution when the
source is stable is always 0.



TABLE 1: Modern neural networks accuracy metrics results based on LFW [18] and MS1MV2 [9], [15], [30].

Random Projection Equal-probability

Recognition Model f Dataset d+(f) d−(f) ε FARS(ε) d+(f) d−(f) ε FARS(ε)

ArcFace [9] LFW 0.2463 0.4969 0.1679 2−22.72 0.2456 0.4970 0.1699 2−22.98

MagFace [32] LFW 0.2230 0.4829 0.1445 2−22.72 0.2202 0.4835 0.1464 2−22.72

AdaFace [26] LFW 0.2423 0.4998 0.1601 2−22.72 0.2526 0.4998 0.1718 2−22.49

CurricularFace [19] LFW 0.2266 0.4988 0.1386 2−22.72 0.2259 0.4979 0.1367 2−22.72

ArcFace [9] MS1MV2 0.2676 0.4932 0.0898 2−28.70 0.2678 0.4938 0.0898 2−28.70

MagFace [32] MS1MV2 0.2393 0.4879 0.0781 2−27.12 0.2379 0.4881 0.0781 2−27.70

AdaFace [26] MS1MV2 0.2715 0.4999 0.0839 2−27.70 0.2705 0.4999 0.0859 2−27.70

CurricularFace [19] MS1MV2 0.2384 0.4996 0.0761 2−27.70 0.2370 0.4996 0.0761 2−28.70

Definition 3.4. We say that two sources (and factors,
respectively) are independent if the corresponding global
and user distributions are independent.

Definition 3.5. With the source S, similarly to § 2.4.2,
we associate false acceptance and false rejection rates
depending on threshold ε ∈ R>0 as follows1:

FARS(ε) = Pr
(w,w′)∼ΦU×ΦU′

[dX(w,w′) ≤ ε],

FRRS(ε) = Pr
w,w′∼ΦU

[dX(w,w′) > ε].

3.3. Fuzzy Extractors

The vast majority of cryptographic authentication al-
gorithms, one way or another, rely on the following rule:
if the user knows (can reproduce) the exact secret value
w, they are granted access to the system. The notion of
fuzzy extractors, first introduced by Dodis [11], allows us
to define less strict rules where the user might know a
close, yet not necessarily identical secret value w′ such
that if ∆(w,w′) is small enough, the user can still access
the system. As discussed previously, the secret value w is
the embedding vector extracted from a source (e.g., a face
or physical identifiers). Now, we define the fuzzy extractor
scheme more formally.

Definition 3.6. The Fuzzy Extractor Scheme ΠFE
over unstable source S = (X,Φ, (ΦU )U∈U ) is a tuple
(Gen,Rep) that satisfies the following properties:
• Gen(1λ,w) → (hs, sk). Upon receiving the user’s

biometric sample w ∈ X , the fuzzy extractor gener-
ates the helper string hs and secret value sk.

• Rep(w′, hs) → sk. Upon receiving the new user’s
biometric sample w′ ∈ X and the helper data hs, the
fuzzy extractor outputs the secret value sk.

We require the (δ, τ)-correctness property: for any bio-
metric samples w,w′ ←$ ΦU sampled from some user’s
distribution, the probability of successfully recovering the
secret key is:

Pr
[
Rep(w′, hs) = sk

∣∣∣∣ (hs, sk)← Gen(1λ,w)
(w,w′)←$ ΦU

]
≥ 1− δ

Additionally, the probability of reproducing the same
key using two biometric samples of different people:

1. Formally, we should additionally write that users U and U ′ are
sampled randomly from U . To shorten the notation, we will not write
this explicitly, but this is always automatically assumed.

(w,w′) ←$ ΦU × ΦU ′ , U ̸= U ′, is bounded above by
another value which we call τ :

Pr

Rep(w′, hs) = sk

∣∣∣∣∣∣
(hs, sk)← Gen(1λ,w)
(w,w′)←$ ΦU × ΦU ′

U ̸= U ′

 ≤ τ

Definition 3.7 (Secure Fuzzy Extractor). For adversary
algorithm A = (A0,A1), define the following advantage
value for any user U :

AdvΠFE,Sec
A (λ) ≜ 2·

∣∣∣∣∣∣∣∣∣Pr

b = b̂

∣∣∣∣∣∣∣∣∣
w←$ ΦU

(hs, sk0)← Gen(1λ,w)

sk1 ←$ {0, 1}ℓ, b←$ {0, 1}
b̂← A1(hs, skb)

− 1

2

∣∣∣∣∣∣∣∣∣
We say that the Fuzzy Extractor Π is ε-secure against

secret value recovery if for any efficient adversary A, one
has SAdv[A,Π] ≤ ε. Intuitively, the helper data hs reveals
a small amount of information (namely, log2

1
ε bits) about

the secret sk. In particular, if ε = µ(λ) is negligible in λ,
the Fuzzy Extractor scheme Π is computationally secure.

Beside mentioned properties, we also need to define
the security of the fuzzy extractor when the secret key
sk is revealed with the helper string hs, and how much
information it will reveal about the secret values that
will be created from the same feature vector source. In
practice, we want the secret keys to be almost uniform
and do not reveal the structure of the feature vector w.

This property called reusability, and we define it in
the terms of the game G, such that: there are the challenger
C and the adversary A, and they interact in the following
way:
• C generates the pair (hs0, sk0) from w0 ←$ Φu, and

sends it to the adversary hs0.
• Then the adversary creates Q adaptive queries and

sends δi ∈ {0, 1}n : ∆(δi, 0) ≤ t to the challenger
to generate Q responses of pairs (hsi, ski)i∈[Q].

• Finally, the challenger C randomly samples the value
b ∈ {0, 1}. If the result is b = 1, then C send to A
the value sk0, or if b = 0, then the challenger outputs
u ∈ {0, 1}µ, which is uniform.

• The adversary uses given values to deduce if the final
key is from the extractor or a random uniform value,
with the guess b′. If b′ = b — the adversary wins.

Then we can define the reusability of the fuzzy extrac-
tor from the game G: the fuzzy extractor is a εr-reusable
if:



∣∣∣∣Pr [b = b′]− 1

2

∣∣∣∣ ≤ εr

Another property used for define the security of the
fuzzy extractor is the robustness. The robustness property
guarantees that the tampering of the helper string will be
detected, and the procedure of restoration will return ⊥. In
the case of KDF, we don’t need the robustness property,
because fuzzy extractor must to output something as the
result of restoration.

Summary. This way, the fuzzy extractor scheme Π
properties are determined by four parameters: (δ, τ, ε, εr),
where the first parameter δ measures the false rejection
rate, the second τ — false acceptance rate, and the rest ε
and εr — security of the scheme ΠFE.

3.4. Threat Model

We shall now discuss how to estimate the aforemen-
tioned Fuzzy Extractor parameters ( (δ, τ)-correctness

and ε-security ) practically. Compared to security analysis
of most classical cryptography primitives, where deriva-
tions are based on certain assumptions (such as the Dis-
crete Log or Computational Diffie-Hellman assumptions),
we will introduce several attack scenarios and test our
definitions against these models. We propose the following
three models:

Threat Model #1. The PPT adversary A1 views the
helper string hs = (I, V ) and tries to derive the correct
secret entropy β corresponding to hs. The probability of
doing this successfully gives the value of ε-security .
However, during attack, A1 does not access neural net-
works or any other input data (e.g., biometric). This is
the weakest assumption for basic protocol testing, and we
typically expect ε to be negligible in this setting (or at
least of the value of FAR).

Threat Model #2. The PPT adversary A2 views the
helper string hs and without knowing the user’s input, tries
to achieve the same goals as in the Threat Model #1, but
they are free to sample images from the distribution (e.g.,
take facial images from the dataset) and run the neural
network over them. This is a quite natural and reasonable
model, which provides one of the most optimal attack
vectors.

Threat Model #3. The PPT adversary A3 is the same
as in Threat Model #2, but they additionally know the
identity of user possessing the helper string hs (e.g., they
know the user’s facial photo).

Finally, we need to model the capabilities of the
adversary to break our system. When working with stable
cryptographic primitives such as digital signatures or hash
functions, we either pass the verification or not. In case of
biometric authentication, we have: (a) different probabili-
ties of achieving proximity to the “correct” feature value,
(b) different probabilities of passing verification with the
given proximity. For that reason, we introduce Assump-
tion 3.1, which states the capabilities of the adversary.

Proposition 3.1. Assume, given the neural network f , the
user’s U biometrics distribution ΦU , and any biometric
sample w ←$ ΦU from this distribution, the adversary
A can output the ε-close biometric sample w′ (for ε =
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Distribution of Normalized Distances

(w,w′) ∼ WU ×WU′ , U = U ′

(w,w′) ∼ WU ×WU′ , U ̸= U ′

Figure 1: Distribution of distances: one distribution ρ+(ε)
(marked in green) corresponds to probability of getting
given distances between same people, while the other
ρ−(ε) (marked in red) corresponds to distances between
different people. As can be seen, proximity parameters
(expected values of each distribution) are approximately
d+(f) ≈ 0.20 and d−(f) ≈ 0.47, respectively.

k/n with 0 ≤ k ≤ n) by calling the oracle Of (·) with
probability ρ−(ε). More concretely,

Pr
[
∆(w,w′) = ε

∣∣∣∣ w←$ ΦU

w′ ← Of (·)

]
= ρ−(ε)

In particular, cumulative distribution function (CDF)
of ρ−(ε) is given by FARf (ε).

This assumption is reasonable: if FARf (ε) of the
neural network f is, say, 2−20 (corresponding to modern
face recognition neural networks), then by sampling 220

biometric samples, the adversary is very likely to sample
w′ such that ∆(w′,w) ≤ ε. In particular, it is reason-
able to expect that the cumulative probability of getting
distance below ε is

∑εn
k=0 ρ

−(k/n) ≈ FARf (ε).
In turn, for the honest user, we have the following

assumption.

Proposition 3.2. Assume, given the neural network f ,
the user’s U biometric distribution ΦU , and any two
biometric samples w,w′ ←$ ΦU from this distribution,
the probability of them being ε-close is determined with
probability ρ+(ε):

Pr[∆(w,w′) = ε | w,w′ ←$ ΦU ] = ρ+(ε).

In particular, CDF of ρ+(ε) is given by TARf (ε) (true
acceptance rate).

These two distributions estimated on the real data are
depicted in Figure 1.

Based on the aforementioned assumptions and propo-
sitions, we show the following property of the original
X-Lock construction.

3.5. Previous Constructions

3.5.1. Code-Based Fuzzy Extractor. Since their intro-
duction, multiple constructions and variations of fuzzy
extractors have been proposed. One interesting class of
fuzzy extractors relies on error-correcting codes [17], [23],
such as Reed-Solomon codes [36], BCH [7], or Goppa



codes considered in § 2.2. As an example of the concrete
fuzzy extractor construction, consider the code-offset con-
struction, originally introduced in [11].

Definition 3.8 (Code-Offset Fuzzy Extractor). Fix
(n, k, d) linear error-correction code C ⊆ {0, 1}n and a
random oracle H : {0, 1}n → {0, 1}µ. Then, the fuzzy
extractor ΠC is constructed as follows:
• Gen(1λ,w ∈ {0, 1}n) → (hs ∈ {0, 1}n, sk ∈
{0, 1}µ). Generate a random message m←$ {0, 1}k
and encode it to get a random codeword c ←
C.Enc(m). Form the helper data as hs := w ⊕ c
while the secret data is sk← H(c). Output (hs, sk).

• Rep(w′ ∈ {0, 1}n, hs ∈ {0, 1}n) → sk. Compute
the corrupted codeword c′ ← hs ⊕ w′. Decode the
codeword to get c and output sk← H(c).

Let us now consider some of the properties of such a
construction. First, it is easy to see that if the biometric
samples w,w′ are close enough (namely, less than t), we
can always reproduce the valid key:

Theorem 3.1. The function ΠC .Rep(w
′) always repro-

duces the valid key if ∆(w,w′) ≤ t.

Reasoning. Notice that c′ = hs⊕w′ = c⊕ (w⊕w′).
Therefore, ∆(c′, c) = ∆(w,w′). Since by the condition
in lemma we have ∆(w,w′) ≤ t, then ∆(c′, c) ≤ t, so a
decoding of c′ would yield c.

However, for (w,w′) > t, the decoding procedure
becomes exponentially difficult. Consider the following
theorem to illustrate this.

Theorem 3.2. Probability that C.Dec(c′) would succeed
in decoding to some valid codeword is negligible (both in
values of t and n)

Proof. The code C contains 2k valid codewords.
The decoding procedure for c′ succeeds if and only if
∆(c, c′) ≤ t for some valid c ∈ C. Since there are 2k

valid codewords, the decoding would succeed only if c′

happens to be in the t-ball of some codeword. The total
volume of these balls is 2k · V (n, t) where V (n, t) is
the volume of the Hamming ball of radius t. Thus, the
searched probability is:

2k · V (n, t)

2n
≈ t · 2k

t!
· 2−nnt = negl(t, n)

Code-offset construction is highly dependent on the
source’s min-entropy. In our case, we require more than
n
2 bits of the min-entropy, but in reality, the upper bound
on min-entropy from the facial features is less than 40 bits.
Moreover, the constructions that use the secure sketch will
inevitably have information leakage, because the parity-
check matrix is public, and consists of n−k equations with
n variables. At first sight, we have the number of solutions
equal to k. However, including the min-entropy of the
source, we have a small number of distinct feature vectors,
which eventually reduces the dimensionality of the system
of equations from the parity-check matrix. The remaining
min-entropy from the scheme m′ can be bounded by
starting nim-entropy m from the feature distribution and
the leakage n− k: m′ = m− (n− k).

3.5.2. Fuzzy Vault. Another interesting approach, so-
called Fuzzy Vault, was proposed by Juels and Su-
dan [21]. The fuzzy vault is based on Shamir’s secret

sharing scheme [39] and was originally designed for un-
ordered biometric feature sets. In this scheme, a secret
is encoded as an evaluation of a polynomial of degree
t− 1. Polynomial is evaluated in all n features. The user
who can reproduce t-of-n features can find the correct
evaluations and interpolate the polynomial. Randomly
generated garbage points obscure the vault against brute-
force attacks. Specifically, the scheme is constructed as
follows.

Definition 3.9 (Fuzzy Vault). Fix parameters (n, k, r, t)
where n is the biometric sample size, r is the size of helper
data, k is the secret size, and t−1 is the polynomial degree.
Then, the fuzzy extractor ΠV over the Reed-Solomon code
RS[Fq, n, t] is constructed as follows.
• Gen(1λ,w ∈ Fn

q ) → (hs ∈ Fr
q, sk ∈ Fk

q ). Generate
a random polynomial f(X) ∈ F<t

q [X]. Set secret
value to sk ← {f(α)}α∈L where L ⊆ Fq is the
set of distinct field elements of size k (evaluation
domain). Form the helper data as the set of points
hs = {(xi, f(xi))}i∈[r] where xi = wi for i ∈ [n]
and xi ←$ Fq for all remaining indices i ∈ [r] \ [n].
Shuffle array hs.

• Rep(w′ ∈ Fn
q , hs ∈ Fr

q) → sk. Parse the received
helper data hs as {(xi, yi)}i∈[r]. Form an array of
points H := {(xi, yi) ∈ hs : xi ≈ w′j for some j ∈
[n]}2. Run the Reed-Solomon decoding algorithm
over H to get polynomial g ∈ F<t[X] and output
sk← {g(α)}α∈L.

Despite the promise of this approach, it introduces a
significant challenge related to transforming features into
field elements. While in § 2.4.2 we described possible
ways to construct such a map, the Fuzzy Vault construc-
tion must have a relatively large q (at least of characteristic
n).

Other notable candidates. Other approaches include
metric embedding techniques [11] and specialized adap-
tations for biometric authentication [40] and physical un-
clonable functions (PUFs) [31]. These architectures have
broadened the applicability of fuzzy extractors across
secure storage, authentication, and key generation.

3.5.3. LWE Code-Based Fuzzy Extractor. As described
in the section § 3.5.1, fuzzy extractors that are built on
the secure sketch paradigm require a high min-entropy
input, which we could not afford because most of the
available to us fuzzy sources have low min-entropy, which
makes the scheme broken. Even having 128 bits of min-
entropy from the combined feature vectors, we still need
a large parameter t to correct the errors. This results in
the negative entropy of the scheme.

For this specific reason, Fuller, Meng, and Reyzin [5]
showed that there is no computational secure sketch that is
more efficient than information-theoretical, which is based
on ECC. They also proposed a new construction, which is
based on the computational hardness of a random linear
code, and has way less leakage than the constructions
based on the secure sketch. But their construction has
low error correction capability, which isn’t practical for
our purposes.

2. Here, xi ≈ w′
j can be either interpreted as the precise equality or,

say, if |xi − w′
j |/q < δ for some δ ∈ [0, 1].



Another fuzzy extractor based on the LWE prob-
lem described in [?]. This construction utilizes another
approach to correcting errors using ECC with leakage-
resistance by adding the codeword to an LWE instance
with a secret given by the feature vector and fresh noise,
instead of masking the feature vector in the LWE instance.
This construction gives us the ability to correct more
errors, while relying on the hardness of the LWE problem
(more accurately — Non-uniform LWE). The construction
is defined as follows:

Definition 3.10 (NLWE Code-Offset Fuzzy Extractor).
Consider (m, k, d) linear error-correction code C ⊆
{0, 1}m, (q, h) error-tolerant encryption EMBLEM E ⊆
Zm
q and a random oracle H : {0, 1}m → {0, 1}µ. Let

η =
[
−
√
q

2 ;
√
q

2

]
, where q is a modulus of an NLWE

instance. Then, the fuzzy extractor ΠCNLWE is constructed
as follows:
• Gen(1λ,w ∈ Zn

q ) → (hs = (A, b) ∈ ηm×n ×
Zm
q , sk ∈ {0, 1}µ). Sample a matrix A ←$ ηm×n

and the secret error term e ∈ Zm
q from discrete Gaus-

sian distribution. Generate a random value (message)
r←$ {0, 1}k and encode it to get a random codeword
in Zm

q : c ← Enc(r) = E .Encrypt(C.Enc(r)). Evalu-
ate b = Aw + e + c ∈ Zm

q . Form the helper data
as hs = (A, b), while the secret data is sk ← H(r).
Output (hs, sk).

• Rep(w′ ∈ Zn
q , hs = (A, b) ∈ ηm×n × Zm

q ) → sk.
Evaluate c′ = b−Aw′. Decode the corrupted code-
word to get r ← Dec(c′) = C.Dec(E .Decrypt(c′)),
and output sk← H(r).

3.6. Unforgettable Fuzzy Extractor

3.6.1. Keyed LWE-based Fuzzy Extractor. After ana-
lyzing current suitable fuzzy extractor constructions, we
adapt and modify the NLWE code-offset construction to
use multiple sources (such as stable and unstable factors)
to achieve a secure and efficient construction, which re-
quires less min-entropy from all factors combined. As
discussed in §1.1, we want to use all factors directly in the
fuzzy extractor construction. At first, we will describe the
Keyed LWE fuzzy extractor construction, which we will
modify to the Unforgettable fuzzy extractor. The Keyed
LWE construction is defined as follows:

Definition 3.11 (Keyed LWE Code-Offset Fuzzy Extrac-
tor). Consider the same setup as in the section Defi-
nition 3.10. Additionally, we define the distribution of
secret keys, which has at least 8 symbols as K from
some dictionary Σ with min-entropy λK. Then, the fuzzy
extractor ΠCU is constructed as follows:
• Gen(1λ,w ∈ Zn

q ,p ∈ P) → (hs = (A1, A2, b, h) ∈
Zm×n
q ×ηm×n×Zm

q ×{0, 1}∗, sk ∈ {0, 1}µ). Sample
matrices A1 ←$ Zm×n

q A2 ←$ ηm×n and the secret
error term e ∈ Zm

q from Gaussian distribution. From
the secret key distribution k obtain the uniform in
Zn
q the secret value s ← PRF(H(k||h)). Generate a

random value (message) r ←$ {0, 1}k and encode it
to get a random codeword in Zm

q : c ← Enc(r) =
E .Encrypt(C.Enc(r)). Evaluate b = A1s + A2w +
e + c ∈ Zm

q . Form the helper data as hs = (A, b),
while the secret data is sk← H(r). Output (hs, sk).

• Rep(w′ ∈ Zn
q ,k ∈ K, hs = (A1, A2, b, h) ∈ Zm×n

q ×
ηm×n×Zm

q ×{0, 1}∗)→ sk. Obtain the secret value
s ∈ Zn

q . Evaluate c′ = b − A1s − A2w
′. Decode

the corrupted codeword to get r ← Dec(c′) =
C.Dec(E .Decrypt(c′)) and output sk← H(r).

This construction utilizes the key k to use the LWE
setting, instead of the NLWE, which is more convenient
for security analysis and overall security of the scheme.
The adversary must somehow obtain both the correct key
k and the feature vector w′ to successfully recover the
secret value r.
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Appendix

1. Goppa Codes

y = c + e with c ∈ Γ(L, g) and ∥e∥0 ≤ t. To
correct y, we need to locate position of errors, say,
B := {i ∈ [n] : ei ̸= 0}, and determine the corresponding
{ei}i∈B. Define the error-locator polynomial σ(z) and
error-evaluator polynomial w(z) as follows:

σ(z) ≜
∏
i∈B

(z − αi), w(z) ≜
∑
i∈B

ei
∏

j∈B\{i}

(z − αj).

Finally, define the syndrome S(y) ≜
∑

i∈[n]
yi

z−αi
≡∑

i∈B
ei

z−αi
(mod g(z)).

Proposition A.1. Suppose y = c + e with c ∈ Γ(L, g)
and r := ∥e∥0 ≤ t. Then,
• Degrees of σ and w are as follows: deg σ = r,
degw ≤ r − 1.

• σ and w are relatively prime: gcd(σ(z), w(z)) = 1.
• Error bits can be found as ek = w(αk)/σ

′(αk) where
k ∈ B and σ′ is the formal derivative of σ(z).

• One has σ(z)S(y) = w(z) modulo g(z).

The Proposition A.1 gives rise to the following cor-
rection procedure.

https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki


Goppa Code Decoding Procedure Γ.Dec
Input: y = (y0, . . . , yn−1) ∈ Fqm with Goppa

code Γ(L = {αi}i∈[n], g(z)).
Algorithm:

1) Compute the syndrome S(y) =
∑

i∈[n]
yi

z−αi
.

2) Solve the equation σ(z)S(y) = w(z)
(mod g(z)) with respect to coefficients of w
and σ: namely, σ(z) = zr +

∑
i∈[r] σiz

i and
w(z) =

∑
i∈[n] wiz

i. If q = 2, take w(z) :=
σ′(z).

3) Compute B = {i ∈ [n] : σ(αi) = 0} and
compute errors ei = w(αi)/σ

′(αi) for i ∈ B.
Output: c = y − e ∈ Γ(L, g).

Remark. While the aforementioned construction
works over fields of arbitrary finite characteristic, we
further always assume q = 2.

2. Geoposition factor

2.1. Converting to stable factor. One of the sources
of key derivation could be geopositioning. It could be
the current user’s geoposition or any memorable place.
However, geoposition is not precise, it possible to make
it stable with the chosen precision, so geoposition will be
treated in Unforgettable as a stable factor.

In order to convert geoposition into a stable value, we
will use the S2Geometry [1]. This method projects the
entire globe into a cube. Then, each face of the cube is
divided into squares of the same size as 1

22·d
of the original

face size, where d is the depth level that determines the
cell size.

When the cube is divided into cells using the Hilbert
curve, all the cells are numbered by a certain ID. The
Hilbert curve is built recursively, starting from the d = 0,
where we have only one square. Then, the starting square
is divided into four smaller squares that are connected
in a U-shape. Then each smaller square is divided into
4 additional squares, which are connected together in a
U-shape or a rotated U-shape. All of the U-shapes are
connected together, forming a single line. Then, such a
process continues until we reach the required depth level.
This operation is performed for each of the cube faces,
and together they can construct a continuous, closed line.

When each cell has it’s own ID, we can convert the
geoposition into the cell with the needed precision. So
now, the cell ID will be the unique identifier of the
geolocation that the user has chosen.

In order to ensure that the user’s geoposition is con-
nected to only one cell, the geoposition should be taken
with a precision of less than the minimum cell size. How-
ever, there is still a problem when the users geoposition
could be chosen in the edge of two neighboring cells. To
solve this, we propose recovering the key for the cells that
are neighbors to the cell extracted from the geoposition
cell. Usually, there are tools in S2Geometry libraries for
extracting neighboring cells.

2.2. Security analysis. The most obvious way is to cal-
culate the number of cells 6 · 22·d, reverse it 1

6·22·d , and
state that it is the probability of randomly guessing the
cell among all the others. In this way, we already have

2 · d + 2 bits of security. However, it is less likely that
person a will choose geolocation in the ocean or in areas
where nobody lives.

In order to calculate such a probability, we need the
area of the Earth without oceans Sl ≈ 150 · 1012m2 and
the actual area of the Earth S ≈ 510, 1·1012m2. Then, cell
area Sc ≈ S

6·22·d . So, the number of cells that are on the
land is Sl

Sc
≈ Sl·6·22·d

S . So the probability is ≈ S
Sl·6·22·d ≈

0.56
22·d

, and the number of bits of security is 2 · d.
However, assuming a uniform distribution over the

land Sl is still too optimistic. In reality, population density
is highly uneven. Studies show that roughly 95% of the
population inhabits only about 10% of the land area. Let
us define this effective inhabited area as Seff ≈ 0.1 ·Sl ≈
15 · 1012m2.

Compared to the actual area of the Earth S ≈ 510 ·
1012m2, the ratio is S

Seff
≈ 34. Then, the number of

effective cells is Seff

Sc
≈ Seff ·6·22·d

S . Consequently, the
probability of guessing the cell is ≈ S

Seff ·6·22·d ≈
34

6·22·d ≈
5.66
22·d

.
So the entropy is ≈ − log2

(
5.66
22·d

)
= 2 · d −

log2(5.66) ≈ 2 · d − 2.5. Thus, the number of bits of
security is 2 · d− 3.

3. Voice factor

One of the sources of key derivation could be voice
biometrics. It could be the current user’s voice record-
ing or a specific passphrase. However, raw audio is not
precise; it is susceptible to background noise, intonation
variability, and channel distortion. To make it stable with
the chosen precision, voice must be treated in Unforget-
table as a stable factor.

In order to convert voice into a stable value, we will
use the ECAPA-TDNN model. This method projects the
variable-length audio signal into a fixed-dimensional em-
bedding space R192. To produce the input for the model,
the continuous audio signal is sampled at 16 kHz. Then,
the signal is divided into short, overlapping frames to
capture temporal stationarity. This operation is performed
using a sliding window technique with a frame length of
25 ms and a stride of 10 ms. To minimize spectral leakage
at the boundaries, a Hamming window is applied to each
frame.

When the frames are prepared, a Short-Time Fourier
Transform (STFT) is computed to obtain the power spec-
trum. This converts the signal from the time domain to the
frequency domain. Then, the linear frequency spectrum is
mapped to the Mel scale, which mimics the non-linear fre-
quency resolution of the human ear. We apply a filterbank
of 80 triangular filters spaced linearly on the Mel scale
to aggregate the spectral energy. Finally, a logarithmic
operation is applied to the filterbank energies to replicate
the human perception of loudness. The resulting matrix
serves as the input to the neural network.

When the features are extracted, the ECAPA-TDNN
projects them into the embedding space. However, there
is still a problem with transient noise in single utterances.
To solve this, we propose recovering the centroid vector
for the user by applying a windowed averaging technique.
The input audio is processed in overlapping segments, and



the resulting vectors are aggregated. Finally, the vector
w is L2-normalized to lie on the surface of the unit
hypersphere.

After receiving the feature vector from the neural net-
work, we need to binarize it using the random projection
method. Then binarized samplescould be compared to
verify if the voice samples are the same using hamming
distance, so we can put them directly into the fuzzy
extractor.
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Figure 2: Distribution of distances: one distribution ρ+(ε)
(marked in green) corresponds to probability of getting
given distances between same people, while the other
ρ−(ε) (marked in red) corresponds to distances between
different people. As can be seen, proximity parameters
(expected values of each distribution) are approximately
d+ ≈ 0.17, and d− ≈ 0.45 respectively.
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