(1t at Scale for Everyone

D. Stolee, Git Ecosystem Team, Microsoft
Twitter: @stolee GitHub: @derrickstolee
https://stolee.dev/docs/git-merge-2020.pdf

Spectrum of Scale

(1o

J

Azure DevOps
10 GB

Pack-file size for initial clone

Spectrum of Perceived Performance

<100ms 100ms-1s 1-10s 10s-1min >1min
Immediate Interactive Keeps user’s attention User switches context User will avoid

Repository growth

Git command time

Success Story: Microsoft Windows

4 Largest Git repository
& VFS for Git enabled using it af all

& Virtualized filesystem “fakes” working
directory updates

& Measuring real user interactions showed need
for Git performance improvements

% Delivered most improvements as contributions
to core Git client

Next Milestone: Microsoft Office

Similar size and shape to Windows OS repo
Hosted on Azure Repos

Client must work on Windows & macOS

" Developer Discover Develop Distribute Support Account

Support Overview Articles

Deprecated Kernel Extensions and
System Extension Alternatives

System extensions on macOS Catalina (10.15) allow software like network extensions and
endpoint security solutions to extend the functionality of macOS without requiring kernel-
level access. At WWDC19, we announced the deprecation of kernel extensions as part of
our ongoing effort to modernize the platform, improve security and reliability, and enable
more user-friendly distribution methods. Kernel programming interfaces (KPIs) will be
deprecated as alternatives become available, and future OS releases will no longer load
kernel extensions that use deprecated KPIs by default.

Transitioning Your Kernel Extensions

If your software uses deprecated and supported KPIs, you'll need to factor out deprecated components

A Scalar

https://github.com/microsoft/scalar

Lessons for (Git at Scale

Lesson 1: Focus on the files that matter

Lesson 2: Reduce object transfer

Lesson 3: Don’t wait for expensive operations

Lesson 1: Focus on the files that matter

Index
Every path tracked by Git

(Millions)

Populated

Every file from the index that
Git writes to the working directory

(Hundreds of thousands) / Untracked files

Tracked files ’ Modified

Every file on-disk whose contents
differ from the indexed version
(Hundreds)

Reduce Populated Size:
Sparse-checkout

To control the number of files in your working
directory, run

git sparse-checkout init --cone

initializes sparse-checkout in “cone mode”. This
starts with only the files at root.

Included paths can be expanded using

git sparse-checkout set <dirl> <dir2> ...
In this example, we use:

git sparse-checkout set client/android

Android Client Dev
[

[(root)
bootstrap.sh u

| client
i android_
i electron_
=

LICENSE.md
README.md

+ T
+
- I

I ons

https://github.blog/2020-01-17-bring-your-monorepo-down-to-size-with-sparse-checkout/

Spectrum of Perceived Performance

<100ms 100ms-1s 1-10s 10s-1min >1min
Immediate Interactive Keeps user’s attention ~ User switches context User will avoid

I ! 10s :
40 minutes!

Time to update sparse-checkout definition

Finding Modified Files
with Filesystem Monitor

Commands like git status or git add
need to know which files were modified since
the last checkout.

This usually results in scanning directories.

Finding Modified Files
with Filesystem Monitor

What’s new?

\ 4

<
<«

Not much

Commands like git status or git add
need to know which files were modified since
the last checkout.

This usually results in scanning directories.

With the fsmonitor hook, Git can get a list from a
specialize filesystem watcher, such as

https://github.com/facebook/watchman

f
——

Spectrum of Perceived Performance

<100ms 100ms-1s 1-10s 10s-1min >1min
Immediate Interactive Keeps user’s attention ~ User switches context User will avoid

-

Is 10s

git status command time

How can Git better focus on files that matter?

Sparse-Checkout Filesystem Monitor
Continued UX improvements - Make the hook more robust, faster
git sparse-checkout add <dir> - We are preparing a Git-aware filesystem
git sparse-checkout remove <dir> monitor.

git sparse-checkout stats

Update with non-empty git status

Lesson 2: Reduce Object Transfer

dstolee@stolee-book /c/_git/t

$ git clone --single-branch https://dev.azure.com/mseng/_git/AzureDevOps
Cloning into 'AzureDevOps'...

remote: Azure Repos

remote: Found 6938156 objects to send. (1090 ms)

Receiving objects: 0% (18433/6938156), 3.13 MiB | 1.17 MiB/s

Spectrum of Perceived Performance

<100ms 100ms-1s 1-10s 10s-1min >1min
Immediate Interactive Keeps user’s attention User switches context User will avoid

100ms Is 10s Imin

git clone time

Spectrum of Perceived Performance

<Ilm Im-10m 10m-1h 1h-10h >10h
Feels fast Feels slow Over lunch break Overnight User will avoid

-

&)

git clone time

GVES Protocol [—]| Partial Clone

GVES protocol (Created 2015-16) Git Partial Clone (Created 2018)
& Uses these REST API endpoints: & git clone --filter=blob:none <url>
& GET <url>/gvfs/config & Fetches only commits and trees

OO

GET <url>/gvfs/objects/{objectid} & Blobs are fetched in a batch request during

POST <url>/gvfs/objects git checkout and similar requests

GET <url>/gvfs/prefetch

, Now available on all GitHub.com repositories!
POST <url>/gvfs/sizes

Reduced Object Transfer + Sparse-Checkout = Success!

https://git-scm.com/docs/partial-clone

Spectrum of Perceived Performance

<Ilm Im-10m 10m-1h 1h-10h >10h
Feels fast Feels slow Over lunch break Overnight User will avoid

J

ul
A _]

10m 1h

Time for git clone vs partial clone or GVFS protocol

GVES Cache Servers and Git Promisor Remotes
73 B — o

Recommended Updates to Partial Clone

1. Extend multiple promisor remotes to do commit and tree fetches.

2. Extend Git protocol to assist auto-discovery of nearby promisor remotes

Lesson 3: Don’t wait for expensive operations

THE #2 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

git gc --auto

T

(HEY! GET BACK.
—

" REPACKING! l:? N

R

https://xkcd.com/303/

Background Maintenance

The following can be done in the background, reducing user-blocking time:
Background fetch: get latest objects from remotes
Loose Objects: Clean up loose objects safely

Pack-files: Index and repack pack-files incrementally

Spectrum of Perceived Performance

<100ms 100ms-1s 1-10s 10s-1m >1m
Immediate Interactive Keeps user’s attention ~ User switches context User will avoid

Is 10s

Foreground git fetch time

Too Many Packs?

2,000 — 4,000 packs
150 GB - 250 GB

Too Many Packs?

1dx files:
.pack files:

Too Many Packs?

git multi-pack-index write

multi-pack-index: H HHEEE BE EENEEEEEEEEEEERENEEEEEEEEEE

.pack files:

Incremental Repack

git multi-pack-index repack

multi-pack-index: H HHEEE BE BN EEEEREEEEEEEENEREEEEEEER

.pack files:

Incremental Repack

git multi-pack-index expire

multi-pack-index: H HHEEE BE BN EEEEREEEEEEEENEREEEEEEER

.pack files:

Spectrum of Scale

30 — 60 packs 2,000 — 4,000 packs
30 GB-50 GB 150 GB — 250 GB
1 GB 10 GB

Background Maintenance in Git?

& Should Git do background maintenance?
¢ What of these background jobs make sense for most users?

¢ How might expert users want to customize these jobs? (Frequency, batch sizes, etc.)

Scalar

A

https://github.com/microsoft/scalar

Installers available for Windows and macOS

Scalar Quick Start

$ git version

ke VERPSIOM 2 o 25 qdle VRS 4l o 22

$ scalar version

scalar 20.03.167.1

$ scalar register

Successfully registered repo at ‘/Users/stolee/ git/vscode’

What does scalar register do?

1. Sets advanced Git config settings for optimal performance
2. Initializes filesystem monitor hook, if Watchman 1s installed

https://github.com/facebook/watchman

3. Starts background maintenance
1. Background fetch
2. Write commit-graph
3. Clean up loose objects

4. Clean up pack-files

https://github.com/facebook/watchman

https:// Wﬂ*r.instag m.com \p/ BiBossgFMmE/

https://www.instagram.com/p/BiBossgFMmE/

What does scalar clone do?

Creates new repository with working directory <name>/src
If remote supports GVFS protocol, then configure to use it.
Otherwise, configures Git to use partial clone.

Downloads all commits and trees.

git sparse-checkout init --cone

Everything from scalar register

=
9]

Q
Sh S
@A
ATl
ol At
s &
N0
» S

Scalar

A

https://github.com/microsoft/scalar

Installers available for Windows and macOS

