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Abstract

Research on adversarial examples in computer vision tasks has shown that small
changes to an image (usually imperceptible to a human observer) can induce
misclassifications, which has security implications for a wide range of image pro-
cessing systems. When considering distortions using the L2 norm, the Carlini
and Wagner (C&W) attack is presently the most effective white-box attack in the
literature, being able to obtain adversarial examples with very small distortions.
However, this method is slow, since it requires a line-search in one of the optimiza-
tion terms, and often requires thousands of iterations. In this paper, a new approach
is proposed for generating attacks with low L2 norm, by decoupling the direction
and the norm of the adversarial noise that is added to the image. We obtain results
comparable to the C&W attack even with as few as 100 iterations, which allows its
usage for adversarial training. Experiments conducted on MNIST an CIFAR-10
show that our attack achieves comparable results to the state-of-the-art (in terms of
L2-norm) in much fewer iterations.2

1 Introduction

Several machine learning models, most notably neural networks, are susceptible to adversarial
examples, in which adding small perturbations to an input causes a misclassification [1, 2]. While
defenses have been proposed to address this issue [3, 4, 5], developing robust models is still an open
research problem [6, 7].

Many attacks for neural networks have been proposed in the literature to achieve different objectives,
such as obtaining the lowest amount of noise that induces misclassification [1, 8], or being fast enough
to be incorporated in the training procedure [3, 4]. In the case of obtaining adversarial examples with
lowest noise (measured by its L2 norm), the state-of-the-art is the attack proposed by Carlini et al.
[8]. While this attacks obtains good results, it also requires a high number of iterations, which makes
it impractical to be used for training. On the other hand, one-step attacks are fast to generate, but
using them for training do not increase model robustness on white-box scenarios (full knowledge
of the model under attack) [4]. Developing an attack that finds adversarial examples with low noise
in few iterations would enable adversarial training with such examples, which we hypothesize can
increase model robustness against white-box attacks.

In this paper, we propose a new gradient-based attack called DDN (Decoupled Direction and Norm),
that achieves similar performance to C&W L2, while requiring fewer iterations, being amenable to
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be used during training. We first review the C&W L2 attack, exploring the reason why this attack
requires many iterations, and then present our attack that address this issue. Our attack obtains
comparable results to the state-off-the-art on MNIST and CIFAR-10 (in terms of success rate and L2

norm) while requiring much fewer iterations (~100 times).

Having an efficient attack allowed us to adversarily train a classification model for the NIPS 2018
Adversarial Vision Challenge [9], achieving 3rd place in the Robust Model track on the Tiny ImageNet
dataset (64×64 natural images).

2 Related work

In this work, we consider attacks that are generated by a gradient-based optimization procedure to
obtain a minimum distortion when considering the L2-norm. For this case, the state-of-the-art is the
attack proposed by Carlini et al. [8].

Carlini and Wagner L2 Attack. Carlini and Wagner designed a L2 attack [8] that optimizes two
criteria at the same time: producing a perturbation that makes the sample adversarial (e.g. incorrectly
classified by the model), and minimizing the L2-norm of the perturbation. By making a change of
variable using the tanh function, we can formulate a continuous optimization problem that constrains
the L2 norm of the distortion to find an adversarial perturbation δ that will make the original sample
x ∈ [−1, 1]n be assigned to class t by a model Z which outputs pre-softmax activations:

min
δ

[
‖x̃− x‖22 + C · f(x̃))

]
where f(x̃) = max(max

i 6=t
{Z(x̃)i − Z(x̃)t},−κ)

and x̃ =
1

2
(tanh(arctanh(x) + δ) + 1)

(1)

By increasing the confidence parameter κ, the adversarial sample will be misclassified with
higher confidence. To use this attack in the untargeted setting, the definition of f is modified
to f(x̃) = max(maxi 6=y{Z(x̃)y − Z(x̃)i},−κ) where y is the original label. The difficulty in this
optimization is to find the best value for C; a C too small will lead to a small distortion stuck in
a local minimum that may not be adversarial and a C too large will lead to a large norm of the
distortion.

3 Decoupled Direction and Norm attack

Algorithm 1 Decoupled Direction and Norm Attack

Input: x: image to be attacked
Input: y: true label (untargeted) or target label (targeted)
Input: α: step size
Input: γ: factor to increase/decrease the norm in each iteration
Output: x̃: adversarial example

1: Initialize δ0 ← 0, x̃0 ← x, ε0 ← 1
2: If targeted attack: m← −1 else m← +1
3: for k ← 1 to K do
4: g ← m∇x̃k−1

L(x̃k−1, y, θ)
5: g ← α g

‖g‖2
. Step of size α in the gradient direction

6: δk ← δk−1 + g
7: if x̃k−1 is adversarial then . Reduce or increase the distortion size
8: εk ← (1− γ)εk−1
9: else

10: εk ← (1 + γ)εk−1
11: end if
12: x̃k ← x+ εk

δk
‖δk‖2

. Project example to an εk-ball around x
13: x̃k ← clip(x̃k, 0, 1) . Ensure the image is within bounds
14: end for
15: Return xk that has lowest norm ‖x− xk‖2 and is adversarial
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As mentioned above, optimizing the classification loss (either cross-entropy or Carlini’s formulation)
and the L2-norm at the same time can be tricky, as it requires an almost optimal hyper-parameter
to find an adversarial with a small norm (compared to other attacks). Therefore, we propose not
imposing a penalty on the L2-norm in the optimization, but rather constraining it with a projection.
Modifying the L2-norm is, from there, a binary decision: if the sample is not adversarial at step k,
the norm is multiplied by a factor 1 + γ, otherwise, it is multiplied by 1− γ.

The full procedure is described in Algorithm 1. We start from the original sample x, and iteratively
refine the noise δk. In iteration k, if the current point x̃k = x+ δk is still not adversarial, we consider
a larger norm (εk+1) for the for the next iteration. Otherwise, if the sample is adversarial, we consider
a smaller εk+1. In both cases, we take a step g = α

∇x̃k
L(x̃k,y,θ)

‖∇x̃k
L(x̃k,y,θ)‖ 2

from the point x̃k, and project it

back on an εk+1-ball around x, obtaining x̃k+1. Lastly, we project the sample into the feasible region
of the input space X . In the case of images normalized to [0, 1], we simply clip the value of each
pixel to be inside this range. Besides this step, we can also consider quantizing the image in each
step, to make sure the attack is a valid image.

4 Experimental methodology

As a preliminary evaluation for our attack, we compare it to Carlini and Wagner L2 attack [8]. We
use the same model architectures with identical hyper-parameters as in [10, 8] to train relatively
small models on MNIST and CIFAR-10, which obtain 99.44% and 85.51% accuracy on the test sets
respectively. We evaluate our attack on the first 1 000 images of the MNIST and CIFAR-10 test sets,
in the untargeted setting, as in [8]. We also report the number of gradient computations required for
the attacks and the runtime on a NVIDIA GTX 1080 Ti.

For MNIST, we use a higher value of γ for small numbers of iterations (100). This is due to the fact
that even for a network trained without defense, the adversarial perturbations on MNIST have a high
L2-norm compared to natural images. In all other cases, the value of γ is fixed at 0.05. We observed
an improvement in the results when reducing the value of γ through the iterations (e.g. with cosine
annealing) but decided not to include it as it was a data- and model-specific tuning. We also did not
try to find the optimal initial value of ε for each dataset and number of iterations and kept it at 1. The
only hyper-parameter that we found that was important to modify throughout the iterations was the
step size α, starting at 1 and reaching 0.01 using a cosine annealing.

As discussed in [8], we also perform quantization to have valid values for the adversarial samples. In
our attack, quantization can be included in the search of the adversarial as a part of the projection in
the valid range (step 13 of Algorithm 1).

5 Results and discussion

Table 1 reports the results of DDN compared to the C&W L2 attack, on the 1 000 first images of the
MNIST and CIFAR-10 test sets. In particular, we report the success rate of the attack (percentage of
samples for which an attack was found), the mean L2 norm of the adversarial noise (for successful
attacks) and the median L2 norm over all attacks while considering unsuccessful attacks as worst-
case adversarial (distance to a uniform gray image [9]). We also report the number of gradient
computations and the run-time.

In both datasets we obtain results comparable to the state-of-the-art. We obtain slightly worse L2

norms on the MNIST dataset, however, our attack is able to get within 4% of the norm found by C&W
in 100 iterations compared to the 58,015 iterations required for the C&W L2 attack. On CIFAR-10,
our attack requires 500 iterations to reach 100% success rate with a lower norm than the C&W L2

attack.

6 Conclusion

In this article, we presented a new attack called DDN (Decoupled Direction and Norm attack), that
obtains comparable results with the state-of-the-art for L2-norm adversarial perturbations in fewer
iterations. This attack represents an advance in two directions: it allows for faster evaluation of
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Attack Budget % Success Mean L2 Median L2 #Grads Run-time

M
N

IS
T

C&W 9 steps, 1 000 iters 100.0 1.4056 1.4214 7 402 118.3
9 steps, 10 000 iters 100.0 1.3961 1.4121 54 007 856.8

DDN
100 iters 100.0 1.4563 1.4506 100 1.5
300 iters 100.00 1.4357 1.4386 300 4.5
1 000 iters 100.00 1.4240 1.4342 1 000 14.9

C
IF

A
R

-1
0 C&W 9 steps, 1 000 iters 100.0 0.1552 0.1456 3 409 171.3

9 steps, 10 000 iters 100.0 0.1543 0.1453 36 009 1793.2

DDN
100 iters 100.0 0.1503 0.1333 100 4.7
300 iters 100.0 0.1487 0.1322 300 14.2
1 000 iters 100.0 0.1480 0.1317 1 000 47.6

Table 1: Comparison of our DDN attack to the C&W L2 attack on the first 1 000 images of the
MNIST and CIFAR-10 test sets. Run-times are in seconds.

the robustness of differentiable models and it makes a new kind of adversarial training conceivable
without the need for a lot of resources. Future work is oriented towards using this attack for adversarial
training.
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