
Attacking JavaScript
Engines in 2022

Samuel Groß (@5aelo), Amy Burnett (@itszn13)

JavaScriptCore / WebKit / Safari

V8 / Chromium / Chrome

Spidermonkey / Gecko / Firefox

Basic JavaScript

v: 0x1337

let v = 0x1337;
// typeof(v) == “number”

Basic JavaScript

v: <pointer>

“foobar”

let v = 0x1337;
// typeof(v) == “number”
v = "foobar";
// typeof(v) == “string”

Basic JavaScript

let v = 0x1337;
// typeof(v) == “number”
v = "foobar";
// typeof(v) == “string”
v = {a: 42, b: 43};
// typeof(v) == “object”

v: <pointer>

JSObject

 ???

Basic JavaScript

let o1 = {a: 42, b: 43};

console.log(o1.a);

HiddenClass 1

Type: PlainObject
.a: inline slot 0
.b: inline slot 1

JSObject 1

Type:
Extra: null
Slot 0: 42
Slot 1: 43

<pointer>

Basic JavaScript

let o1 = {a: 42, b: 43};

console.log(o1.a);

let o2 = {a: 13, b: 37};

HiddenClass 1

Type: PlainObject
.a: inline slot 0
.b: inline slot 1

JSObject 2

Type:
Extra:
Slot 0: 13
Slot 1: 37

<pointer>

JSObject 1

Type:
Extra: null
Slot 0: 42
Slot 1: 43

<pointer>

<pointer>

Basic JavaScript

let o1 = {a: 42, b: 43};

console.log(o1.a);

let o2 = {a: 13, b: 37};

o2.c = o1;

HiddenClass 1

Type: PlainObject
.a: inline slot 0
.b: inline slot 1

JSObject 2

Type:
Extra:
Slot 0: 13
Slot 1: 37

<???>

JSObject 1

Type:
Extra: null
Slot 0: 42
Slot 1: 43

<pointer>

<???>

Basic JavaScript

let o1 = {a: 42, b: 43};

console.log(o1.a);

let o2 = {a: 13, b: 37};

o2.c = o1;

HiddenClass 1

Type: PlainObject
.a: inline slot 0
.b: inline slot 1

JSObject 2

Type:
Extra:
Slot 0: 13
Slot 1: 37

<pointer>

JSObject 1

Type:
Extra: null
Slot 0: 42
Slot 1: 43

<pointer>

<???>

HiddenClass 2

Type: PlainObject
.a: inline slot 0
.b: inline slot 1
.c: out-of-line slot 0

Basic JavaScript

let o1 = {a: 42, b: 43};

console.log(o1.a);

let o2 = {a: 13, b: 37};

o2.c = o1;

HiddenClass 1

Type: PlainObject
.a: inline slot 0
.b: inline slot 1

JSObject 2

Type:
Extra:
Slot 0: 13
Slot 1: 37

<pointer>

JSObject 1

Type:
Extra: null
Slot 0: 42
Slot 1: 43

<pointer>

PropertyArray 1

Slot 0:
Slot 1: null
Slot 2: null

<pointer>
<pointer>

HiddenClass 2

Type: PlainObject
.a: inline slot 0
.b: inline slot 1
.c: out-of-line slot 0

Basic JavaScript

let o1 = {a: 42, b: 43};

console.log(o1.a);

let o2 = {a: 13, b: 37};

o2.c = o1;

delete o2.a;

HiddenClass 1

Type: PlainObject
.a: inline slot 0
.b: inline slot 1

JSObject 2

Type:
Extra:
Slot 0: <deleted>
Slot 1: 37

<pointer>

JSObject 1

Type:
Extra: null
Slot 0: 42
Slot 1: 43

<pointer>

PropertyArray 1

Slot 0:
Slot 1: null
Slot 2: null

<pointer>
<pointer>

HiddenClass 3

Type: PlainObject
.b: inline slot 1
.c: out-of-line slot 0

Interpreter

Wasm
Compiler(s)

Runtime
(objects, globals, constructors,

functions, methods, …)

Garbage
Collector

(GC)

JIT
Compiler(s)

Bytecode
Compiler

Interpreter

Wasm
Compiler(s)

Runtime
(objects, globals, constructors,

functions, methods, …)

Garbage
Collector

(GC)

JIT
Compiler(s)

Bytecode
Compiler

function main() {
 console.log(“Hello World!”);
}
main();

Interpreter

Wasm
Compiler(s)

Runtime
(objects, globals, constructors,

functions, methods, …)

Garbage
Collector

(GC)

JIT
Compiler(s)

Bytecode
Compiler

function main() {
 console.log(“Hello World!”);
}
main();

Bytecode
LdaGlobal
Star1
LdaNamedProperty
Star0

Interpreter

Wasm
Compiler(s)

Runtime
(objects, globals, constructors,

functions, methods, …)

Garbage
Collector

(GC)

JIT
Compiler(s)

Bytecode
Compiler

function main() {
 console.log(“Hello World!”);
}
main();

Bytecode
LdaGlobal
Star1
LdaNamedProperty
Star0

Interpreter

Wasm
Compiler(s)

Runtime
(objects, globals, constructors,

functions, methods, …)

Garbage
Collector

(GC)

JIT
Compiler(s)

Bytecode
Compiler

function main() {
 console.log(“Hello World!”);
}
main();

Bytecode
LdaGlobal
Star1
LdaNamedProperty
Star0

Runtime State

Interpreter

Wasm
Compiler(s)

Runtime
(objects, globals, constructors,

functions, methods, …)

Garbage
Collector

(GC)

JIT
Compiler(s)

Bytecode
Compiler

Bytecode
LdaGlobal
Star1
LdaNamedProperty
Star0

Runtime State

Interpreter

Wasm
Compiler(s)

Runtime
(objects, globals, constructors,

functions, methods, …)

Garbage
Collector

(GC)

JIT
Compiler(s)

Bytecode
Compiler

Bytecode
LdaGlobal
Star1
LdaNamedProperty
Star0

Machine Code
add x3, x28, x3
ldr x4, [x26, #376]
cmp w3, w4
b.eq #+0x23c
ldur w5, [x3, #-1]

Runtime State

Interpreter

Wasm
Compiler(s)

Runtime
(objects, globals, constructors,

functions, methods, …)

Garbage
Collector

(GC)

JIT
Compiler(s)

Bytecode
Compiler

Bytecode
LdaGlobal
Star1
LdaNamedProperty
Star0

Machine Code
add x3, x28, x3
ldr x4, [x26, #376]
cmp w3, w4
b.eq #+0x23c
ldur w5, [x3, #-1]

Runtime State

Interpreter

Wasm
Compiler(s)

Runtime
(objects, globals, constructors,

functions, methods, …)

Garbage
Collector

(GC)

JIT
Compiler(s)

Bytecode
Compiler

(func
 (param $lhs i32)
 (param $rhs i32)
 (result i32)
 local.get $lhs
 local.get $rhs
 i32.add))

Bytecode
LdaGlobal
Star1
LdaNamedProperty
Star0

Machine Code
add x3, x28, x3
ldr x4, [x26, #376]
cmp w3, w4
b.eq #+0x23c
ldur w5, [x3, #-1]

JIT Compilation

A (Hypothetical) JIT Optimization Example

const W = 64, H = 64;

const bmp = new Uint8Array(W * H);

function set(p, v) {

 if (p.x < 0 || p.x >= W ||

 p.y < 0 || p.y >= H) {

 throw "invalid point";

 }

 bmp[p.x * W + p.y] = v;

}

Example: “Training” the JIT

const W = 64, H = 64;

const bmp = new Uint8Array(W * H);

function set(p, v) {

 if (p.x < 0 || p.x >= W ||

 p.y < 0 || p.y >= H) {

 throw "invalid point";

 }

 bmp[p.x * W + p.y] = v;

}

// "Train" the JIT
for (let i = 0; i < 10000; i++) {
 set({x: 1, y: 2}, 3);
}

Example: Bytecode Parsing

x1 = LoadProperty p, ‘x’

GotoIf .throwException, x1 < 0

x2 = LoadProperty p, ‘x’

GotoIf .throwException, x2 >= 64

const W = 64, H = 64;

const bmp = new Uint8Array(W * H);

function set(p, v) {

 if (p.x < 0 || p.x >= W ||

 p.y < 0 || p.y >= H) {

 throw "invalid point";

 }

 bmp[p.x * W + p.y] = v;

}

Example: Speculation + Lowering

CheckType p, ObjType1

x1 = LoadField p, +8

GotoIf .throwException, x1 < 0

CheckType p, ObjType1

x2 = LoadField p, +8

GotoIf .throwException, x2 >= 64

const W = 64, H = 64;

const bmp = new Uint8Array(W * H);

function set(p, v) {

 if (p.x < 0 || p.x >= W ||

 p.y < 0 || p.y >= H) {

 throw "invalid point";

 }

 bmp[p.x * W + p.y] = v;

}

Example: Speculation + Lowering

CheckType p, ObjType1

x1 = LoadField p, +8

GotoIf .throwException, x1 < 0

CheckType p, ObjType1

x2 = LoadField p, +8

GotoIf .throwException, x2 >= 64

const W = 64, H = 64;

const bmp = new Uint8Array(W * H);

function set(p, v) {

 if (p.x < 0 || p.x >= W ||

 p.y < 0 || p.y >= H) {

 throw "invalid point";

 }

 bmp[p.x * W + p.y] = v;

}

Example: Redundancy Elimination

CheckType p, ObjType1

x1 = LoadField p, +8

GotoIf .throwException, x1 < 0

CheckType p, ObjType1

x2 = LoadField p, +8

GotoIf .throwException, x1 >= 64

const W = 64, H = 64;

const bmp = new Uint8Array(W * H);

function set(p, v) {

 if (p.x < 0 || p.x >= W ||

 p.y < 0 || p.y >= H) {

 throw "invalid point";

 }

 bmp[p.x * W + p.y] = v;

}

Example: Bytecode Parsing

W = LoadGlobal ‘W’

i1 = Mul x, W

i2 = Add i1, y

bmp = LoadGlobal ‘bmp’

StoreElememt bmp, i2, v

const W = 64, H = 64;

const bmp = new Uint8Array(W * H);

function set(p, v) {

 if (p.x < 0 || p.x >= W ||

 p.y < 0 || p.y >= H) {

 throw "invalid point";

 }

 bmp[p.x * W + p.y] = v;

}

Example: Constant Folding + Lowering

i1 = IntegerMul x, 64

i2 = IntegerAdd i1, y

CheckBounds i2, 4096

CheckType v, Uint8

StoreUint8Array bmp, i2, v

const W = 64, H = 64;

const bmp = new Uint8Array(W * H);

function set(p, v) {

 if (p.x < 0 || p.x >= W ||

 p.y < 0 || p.y >= H) {

 throw "invalid point";

 }

 bmp[p.x * W + p.y] = v;

}

Example: Range Analysis + Bounds Check Elimination

// x = Range [0, 64)

// y = Range [0, 64)

i1 = IntegerMul x, 64

// i1 = Range [0, 4033)

i2 = IntegerAdd i1, y

// i2 = Range [0, 4096)

CheckBounds i2, 4096

...

const W = 64, H = 64;

const bmp = new Uint8Array(W * H);

function set(p, v) {

 if (p.x < 0 || p.x >= W ||

 p.y < 0 || p.y >= H) {

 throw "invalid point";

 }

 bmp[p.x * W + p.y] = v;

}

CheckType p, ObjType1

x = LoadField p, +8

y = LoadField p, +16

GotoIf .throwException x < 0 || ...

i1 = IntegerMul x, 64

i2 = IntegerAdd i1, y

CheckType v, Uint8

StoreUint8Array bmp, i2, v

Example: Final JIT IR Code

const W = 64, H = 64;

const bmp = new Uint8Array(W * H);

function set(p, v) {

 if (p.x < 0 || p.x >= W ||

 p.y < 0 || p.y >= H) {

 throw "invalid point";

 }

 bmp[p.x * W + p.y] = v;

}

JIT Compilation (simplified)

Unoptimized
Bytecode

Optimized
Machine

Code

Optimization
(mostly remove unnecessary stuff, but also

e.g. move things out of loops, …)

Lowering
(convert higher-level IR to lower-level IR,

ultimately to machine code)

Speculation
(insert type checks based

on feedback)

Static Analysis of
Input Code

Runtime State of
Various ObjectsFeedback from Past

Executions

A (Hypothetical) JIT Bug Example

function replace(a, cond, v) {

 let i = a.findIndex(cond);

 a[i] = v;

}

let a = [0, 1, 2, 3, 4, 5];

replace(a, (e) => e == 3, 42);

// a == [0, 1, 2, 42, 4, 5];

A (Hypothetical) JIT Bug Example

CheckType a, ArrType1

i = Call Runtime_FindIndex(a, cond)

CheckBounds a, i

StoreArray a, i, v

function replace(a, cond, v) {

 let i = a.findIndex(cond);

 a[i] = v;

}

let a = [0, 1, 2, 3, 4, 5];

replace(a, (e) => e == 3, 42);

// a == [0, 1, 2, 42, 4, 5];

A (Hypothetical) JIT Bug Example

CheckType a, ArrType1

i = Call Runtime_FindIndex(a, cond)

// i = Range [0, a.length - 1)

CheckBounds a, i

StoreArray a, i, v

function replace(a, cond, v) {

 let i = a.findIndex(cond);

 a[i] = v;

}

let a = [0, 1, 2, 3, 4, 5];

replace(a, (e) => e == 3, 42);

// a == [0, 1, 2, 42, 4, 5];

A (Hypothetical) JIT Bug Example

function replace(a, cond, v) {

 let i = a.findIndex(cond);

 a[i] = v;

}

let a = [0, 1, 2, 3, 4, 5];

replace(a, (e) => false, 42);

CheckType a, ArrType1

i = Call Runtime_FindIndex(a, cond)

// i = Range [0, a.length - 1)

CheckBounds a, i

StoreArray a, i, v

CheckType a, ArrType1

i = Call Runtime_FindIndex(a, cond)

// i = Range [0, a.length - 1)

CheckBounds a, i

StoreArray a, i, v

A (Hypothetical) JIT Bug Example

function replace(a, cond, v) {

 let i = a.findIndex(cond);

 a[i] = v;

}

let a = [0, 1, 2, 3, 4, 5];

replace(a, (e) => false, 42);

A (Hypothetical) JIT Bug Example

CheckType a, ArrType1

i = Call Runtime_FindIndex(a, cond)

// i = Range [-1, a.length - 1)

Check i >= 0

StoreArray a, i, v

function replace(a, cond, v) {

 let i = a.findIndex(cond);

 a[i] = v;

}

A (Hypothetical) JIT Bug Example

function replace(a, cond, v) {

 let i = a.findIndex(cond);

 a[i] = v;

}

let a = [0, 1, 2, 3, 4, 5];

replace(a, (e) => {

 a.length = 0; return true;

}, 42);

CheckType a, ArrType1

i = Call Runtime_FindIndex(a, cond)

// i = Range [-1, a.length - 1)

Check i >= 0

StoreArray a, i, v

A (Hypothetical) JIT Bug Example

CheckType a, ArrType1

i = Call Runtime_FindIndex(a, cond)

// i = Range [-1, a.length - 1)

Check i >= 0

StoreArray a, i, v

function replace(a, cond, v) {

 let i = a.findIndex(cond);

 a[i] = v;

}

let a = [0, 1, 2, 3, 4, 5];

replace(a, (e) => {

 a.length = 0; return true;

}, 42);

CSE
(common subexpression

elimination)

BCE
(bounds-check

elimination)

Range
Analysis

“Pureness”
Analysis

Type
Safety

Spatial
Memory
Safety

Temporal
Memory
Safety

CVE-2020-9802

crbug 762874 (2017)
crbug 880207 (2018)
CVE-2019-13764

Type-Check
Elimination

Type
Inference

CVE-2018-4233
CVE-2018-17463
CVE-2019-11707
CVE-2020-6418

GC
Modelling

Write Barrier
Elision

CVE-2019-4442
CVE-2019-8622

Array Length
Computation

Register
Allocation

Lowering
CVE-2021-21220

Runtime
State

CVE-2019-8506
CVE-2021-30551
CVE-2021-30561C
VE-2021-30632

LICM
(loop-invariant code

motion)

CVE-2017-2547

Optimization

Analysis

“Breaks”

CVE-2018-12386CVE-2019-8623
CVE-2019-8518

Pattern
Matching

CVE-2021-30598
CVE-2021-30599

Other

GVN
(global value numbering)

Alias
Analysis

CVE-2019-9810
CVE-2019-17026

https://googleprojectzero.blogspot.com/2020/09/jitsploitation-one.html
https://bugs.chromium.org/p/chromium/issues/detail?id=762874
https://bugs.chromium.org/p/project-zero/issues/detail?id=1710
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://github.com/saelo/pwn2own2018#stage-0
http://phrack.org/issues/70/9.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1820
https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2020/CVE-2020-6418.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1699
https://bugs.chromium.org/p/project-zero/issues/detail?id=1802
https://bugs.chromium.org/p/chromium/issues/detail?id=1196683
https://bugs.chromium.org/p/project-zero/issues/detail?id=1753
https://bugs.chromium.org/p/chromium/issues/detail?id=1216437
https://bugs.chromium.org/p/project-zero/issues/detail?id=2197
https://securitylab.github.com/research/in_the_wild_chrome_cve_2021_30632/
https://securitylab.github.com/research/in_the_wild_chrome_cve_2021_30632/
https://www.zerodayinitiative.com/blog/2017/8/24/deconstructing-a-winning-webkit-pwn2own-entry
https://ssd-disclosure.com/ssd-advisory-firefox-javascript-type-confusion-rce/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1789
https://bugs.chromium.org/p/project-zero/issues/detail?id=1775
https://bugs.chromium.org/p/chromium/issues/detail?id=1234764
https://bugs.chromium.org/p/chromium/issues/detail?id=1234770
https://doar-e.github.io/blog/2019/06/17/a-journey-into-ionmonkey-root-causing-cve-2019-9810/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/

Type
Safety

Spatial
Memory
Safety

Temporal
Memory
Safety

Optimization

Analysis

“Breaks”

Other

BCE
(bounds-check

elimination)

Range
Analysis

Type
Safety

Spatial
Memory
Safety

Temporal
Memory
Safety

crbug 762874 (2017)
crbug 880207 (2018)
CVE-2019-13764

CVE-2017-2547

Optimization

Analysis

“Breaks”

Other

https://bugs.chromium.org/p/chromium/issues/detail?id=762874
https://bugs.chromium.org/p/project-zero/issues/detail?id=1710
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://www.zerodayinitiative.com/blog/2017/8/24/deconstructing-a-winning-webkit-pwn2own-entry

BCE
(bounds-check

elimination)

Range
Analysis

Spatial
Memory
Safety

Temporal
Memory
Safety

crbug 762874 (2017)
crbug 880207 (2018)
CVE-2019-13764

Optimization

Analysis

“Breaks”

Other
Type

Safety

Type-Check
Elimination

Type
Inference

CVE-2018-4233
CVE-2018-17463
CVE-2019-11707
CVE-2020-6418

CheckType o, ObjType1
...
CheckType o, ObjType1

https://bugs.chromium.org/p/chromium/issues/detail?id=762874
https://bugs.chromium.org/p/project-zero/issues/detail?id=1710
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://github.com/saelo/pwn2own2018#stage-0
http://phrack.org/issues/70/9.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1820
https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2020/CVE-2020-6418.html

Type-Check
Elimination

Type
Inference

CVE-2018-4233
CVE-2018-17463
CVE-2019-11707
CVE-2020-6418

BCE
(bounds-check

elimination)

Range
Analysis

Temporal
Memory
Safety

crbug 762874 (2017)
crbug 880207 (2018)
CVE-2019-13764

Optimization

Analysis

“Breaks”

Other
Type

Safety

GVN
(global value numbering)

Alias
Analysis

CVE-2019-9810
CVE-2019-17026

Spatial
Memory
Safety

let tmp1 = x + y;
...
let tmp2 = x + y; tmp1;

https://github.com/saelo/pwn2own2018#stage-0
http://phrack.org/issues/70/9.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1820
https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2020/CVE-2020-6418.html
https://bugs.chromium.org/p/chromium/issues/detail?id=762874
https://bugs.chromium.org/p/project-zero/issues/detail?id=1710
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://doar-e.github.io/blog/2019/06/17/a-journey-into-ionmonkey-root-causing-cve-2019-9810/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/

GVN
(global value numbering)

Alias
Analysis

CVE-2019-9810
CVE-2019-17026

BCE
(bounds-check

elimination)

Range
Analysis

Type
Safety

Spatial
Memory
Safety

crbug 762874 (2017)
crbug 880207 (2018)
CVE-2019-13764

Type-Check
Elimination

Type
Inference

CVE-2018-4233
CVE-2018-17463
CVE-2019-11707
CVE-2020-6418

Optimization

Analysis

“Breaks”

Other

Temporal
Memory
Safety

GC
Modelling

Write Barrier
Elision

CVE-2019-4442
CVE-2019-8622

https://doar-e.github.io/blog/2019/06/17/a-journey-into-ionmonkey-root-causing-cve-2019-9810/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/
https://bugs.chromium.org/p/chromium/issues/detail?id=762874
https://bugs.chromium.org/p/project-zero/issues/detail?id=1710
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://github.com/saelo/pwn2own2018#stage-0
http://phrack.org/issues/70/9.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1820
https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2020/CVE-2020-6418.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1699
https://bugs.chromium.org/p/project-zero/issues/detail?id=1802

BCE
(bounds-check

elimination)

Range
Analysis

Temporal
Memory
Safety

crbug 762874 (2017)
crbug 880207 (2018)
CVE-2019-13764

Type-Check
Elimination

Type
Inference

CVE-2018-4233
CVE-2018-17463
CVE-2019-11707
CVE-2020-6418

GC
Modelling

Write Barrier
Elision

CVE-2019-4442
CVE-2019-8622

CVE-2017-2547

Optimization

Analysis

“Breaks”

Other

GVN
(global value numbering)

Alias
Analysis

CVE-2019-9810
CVE-2019-17026

Register
Allocation

LICM
(loop-invariant code

motion)

CVE-2018-12386CVE-2019-8623
CVE-2019-8518 Spatial

Memory
Safety

Type
Safety

const x = 42;
for (let i = 0; i < 100; i++) {
 ...;
 a[x] = 1337;
}

https://bugs.chromium.org/p/chromium/issues/detail?id=762874
https://bugs.chromium.org/p/project-zero/issues/detail?id=1710
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://github.com/saelo/pwn2own2018#stage-0
http://phrack.org/issues/70/9.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1820
https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2020/CVE-2020-6418.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1699
https://bugs.chromium.org/p/project-zero/issues/detail?id=1802
https://www.zerodayinitiative.com/blog/2017/8/24/deconstructing-a-winning-webkit-pwn2own-entry
https://doar-e.github.io/blog/2019/06/17/a-journey-into-ionmonkey-root-causing-cve-2019-9810/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/
https://ssd-disclosure.com/ssd-advisory-firefox-javascript-type-confusion-rce/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1789
https://bugs.chromium.org/p/project-zero/issues/detail?id=1775

crbug 762874 (2017)
crbug 880207 (2018)
CVE-2019-13764

Type
Safety

Temporal
Memory
Safety

Type-Check
Elimination

Type
Inference

CVE-2018-4233
CVE-2018-17463
CVE-2019-11707
CVE-2020-6418

GC
Modelling

Write Barrier
Elision

CVE-2019-4442
CVE-2019-8622

Register
Allocation

LICM
(loop-invariant code

motion)

CVE-2017-2547

Optimization

Analysis

“Breaks”

CVE-2018-12386CVE-2019-8623
CVE-2019-8518

Other

GVN
(global value numbering)

Alias
Analysis

CVE-2019-9810
CVE-2019-17026

CSE
(common subexpression

elimination) Range
Analysis

“Pureness”
Analysis

CVE-2020-9802

Array Length
Computation

Lowering
CVE-2021-21220

Pattern
Matching

CVE-2021-30598
CVE-2021-30599

Spatial
Memory
Safety

BCE
(bounds-check

elimination)

https://bugs.chromium.org/p/chromium/issues/detail?id=762874
https://bugs.chromium.org/p/project-zero/issues/detail?id=1710
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://github.com/saelo/pwn2own2018#stage-0
http://phrack.org/issues/70/9.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1820
https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2020/CVE-2020-6418.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1699
https://bugs.chromium.org/p/project-zero/issues/detail?id=1802
https://www.zerodayinitiative.com/blog/2017/8/24/deconstructing-a-winning-webkit-pwn2own-entry
https://ssd-disclosure.com/ssd-advisory-firefox-javascript-type-confusion-rce/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1789
https://bugs.chromium.org/p/project-zero/issues/detail?id=1775
https://doar-e.github.io/blog/2019/06/17/a-journey-into-ionmonkey-root-causing-cve-2019-9810/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-one.html
https://bugs.chromium.org/p/chromium/issues/detail?id=1196683
https://bugs.chromium.org/p/chromium/issues/detail?id=1234764
https://bugs.chromium.org/p/chromium/issues/detail?id=1234770

CSE
(common subexpression

elimination)

BCE
(bounds-check

elimination)

Range
Analysis

“Pureness”
Analysis

Spatial
Memory
Safety

Temporal
Memory
Safety

CVE-2020-9802

crbug 762874 (2017)
crbug 880207 (2018)
CVE-2019-13764

CVE-2018-4233
CVE-2018-17463
CVE-2019-11707
CVE-2020-6418

GC
Modelling

Write Barrier
Elision

CVE-2019-4442
CVE-2019-8622

Array Length
Computation

Register
Allocation

Lowering
CVE-2021-21220

LICM
(loop-invariant code

motion)

CVE-2017-2547

Optimization

Analysis

“Breaks”

CVE-2018-12386CVE-2019-8623
CVE-2019-8518

Pattern
Matching

CVE-2021-30598
CVE-2021-30599

Other

GVN
(global value numbering)

Alias
Analysis

CVE-2019-9810
CVE-2019-17026

Type
Inference Runtime

State
CVE-2019-8506
CVE-2021-30551
CVE-2021-30561C
VE-2021-30632

Type
Safety

Type-Check
Elimination

https://googleprojectzero.blogspot.com/2020/09/jitsploitation-one.html
https://bugs.chromium.org/p/chromium/issues/detail?id=762874
https://bugs.chromium.org/p/project-zero/issues/detail?id=1710
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://github.com/saelo/pwn2own2018#stage-0
http://phrack.org/issues/70/9.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1820
https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2020/CVE-2020-6418.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1699
https://bugs.chromium.org/p/project-zero/issues/detail?id=1802
https://bugs.chromium.org/p/chromium/issues/detail?id=1196683
https://www.zerodayinitiative.com/blog/2017/8/24/deconstructing-a-winning-webkit-pwn2own-entry
https://ssd-disclosure.com/ssd-advisory-firefox-javascript-type-confusion-rce/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1789
https://bugs.chromium.org/p/project-zero/issues/detail?id=1775
https://bugs.chromium.org/p/chromium/issues/detail?id=1234764
https://bugs.chromium.org/p/chromium/issues/detail?id=1234770
https://doar-e.github.io/blog/2019/06/17/a-journey-into-ionmonkey-root-causing-cve-2019-9810/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1753
https://bugs.chromium.org/p/chromium/issues/detail?id=1216437
https://bugs.chromium.org/p/project-zero/issues/detail?id=2197
https://securitylab.github.com/research/in_the_wild_chrome_cve_2021_30632/
https://securitylab.github.com/research/in_the_wild_chrome_cve_2021_30632/

CSE
(common subexpression

elimination)

BCE
(bounds-check

elimination)

Range
Analysis

“Pureness”
Analysis

Type
Safety

Spatial
Memory
Safety

Temporal
Memory
Safety

CVE-2020-9802

crbug 762874 (2017)
crbug 880207 (2018)
CVE-2019-13764

Type-Check
Elimination

Type
Inference

CVE-2018-4233
CVE-2018-17463
CVE-2019-11707
CVE-2020-6418

GC
Modelling

Write Barrier
Elision

CVE-2019-4442
CVE-2019-8622

Array Length
Computation

Register
Allocation

Lowering
CVE-2021-21220

Runtime
State

CVE-2019-8506
CVE-2021-30551
CVE-2021-30561C
VE-2021-30632

LICM
(loop-invariant code

motion)

CVE-2017-2547

Optimization

Analysis

“Breaks”

CVE-2018-12386CVE-2019-8623
CVE-2019-8518

Pattern
Matching

CVE-2021-30598
CVE-2021-30599

Other

GVN
(global value numbering)

Alias
Analysis

CVE-2019-9810
CVE-2019-17026

https://googleprojectzero.blogspot.com/2020/09/jitsploitation-one.html
https://bugs.chromium.org/p/chromium/issues/detail?id=762874
https://bugs.chromium.org/p/project-zero/issues/detail?id=1710
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://github.com/saelo/pwn2own2018#stage-0
http://phrack.org/issues/70/9.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1820
https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2020/CVE-2020-6418.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1699
https://bugs.chromium.org/p/project-zero/issues/detail?id=1802
https://bugs.chromium.org/p/chromium/issues/detail?id=1196683
https://bugs.chromium.org/p/project-zero/issues/detail?id=1753
https://bugs.chromium.org/p/chromium/issues/detail?id=1216437
https://bugs.chromium.org/p/project-zero/issues/detail?id=2197
https://securitylab.github.com/research/in_the_wild_chrome_cve_2021_30632/
https://securitylab.github.com/research/in_the_wild_chrome_cve_2021_30632/
https://www.zerodayinitiative.com/blog/2017/8/24/deconstructing-a-winning-webkit-pwn2own-entry
https://ssd-disclosure.com/ssd-advisory-firefox-javascript-type-confusion-rce/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1789
https://bugs.chromium.org/p/project-zero/issues/detail?id=1775
https://bugs.chromium.org/p/chromium/issues/detail?id=1234764
https://bugs.chromium.org/p/chromium/issues/detail?id=1234770
https://doar-e.github.io/blog/2019/06/17/a-journey-into-ionmonkey-root-causing-cve-2019-9810/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/

Type
Safety

Spatial
Memory
Safety

Temporal
Memory
Safety

Exploitation
- Choose (arbitrary) victim array
- Choose (arbitrary) OOB index
- Choose read or write access
- Trigger bug to corrupt memory

Exploitation
- Choose (arbitrary) victim type
- Choose (arbitrary) target type
- Choose (arbitrary) operation
- Trigger bug to confuse objects

Exploitation
- Choose (arbitrary) victim type
- Choose (arbitrary) replacement type
- Trigger bug and GC to cause UaF

JS Outside JIT

Interpreter

Wasm
Compiler(s)

Runtime
(objects, globals, constructors,

functions, methods, …)

Garbage
Collector

(GC)

JIT
Compiler(s)

Bytecode
Compiler

CVE-2022-0102

CVE-2021-30734

CVE-2021-30517
CVE-2021-38001

CVE-2021-1789
CVE-2021-21225
CVE-2021-38003

CVE-2021-37975

See prev. slides :)

● Plenty of complexity elsewhere
● Few bug patterns, many “1-off” bugs

https://bugs.chromium.org/p/chromium/issues/detail?id=1251366#c11
https://blog.ret2.io/2021/06/02/pwn2own-2021-jsc-exploit/
https://bugs.chromium.org/p/chromium/issues/detail?id=1203122
https://bugs.chromium.org/p/chromium/issues/detail?id=1260577
https://www.welivesecurity.com/2022/01/25/watering-hole-deploys-new-macos-malware-dazzlespy-asia/
https://tiszka.com/blog/CVE_2021_21225.html
https://bugs.chromium.org/p/chromium/issues/detail?id=1263462
https://securitylab.github.com/research/in_the_wild_chrome_cve_2021_37975/

Exploitation & Mitigations

Exploit Flow Circa 2016

JIT
Overwrite

“Shellcode”
Sandbox
Escape

Arbitrary Memory
Read & Write

Create Fake
JSObject

Corrupt
Existing

JSObject

Bug

http://phrack.org/issues/70/3.html#article

What About Classical Mitigations?

- ASLR: Usually easy to construct a leak via type confusion or
OOB (second bug not required)

- DEP/NX: JIT provides easy ways to map shellcode
- Stack Cookies: Most JS bugs are heap based

Victim Array | 0 | 1 | 2 | ... Other Data

Can OOB read and write with same bug

"Modern" Mitigations

When most people think of modern mitigations they think of Control Flow Integrity (CFI)

Armv8.3+: Pointer Authentication (PAC) and Branch Target Identification (BTI)

Intel: Shadow Stack and Control-flow Enforcement Technology (CET)

Windows: Control Flow Guard (CFG)

Func1

Func2

Func3

Shell
Code /
ROP

"Modern" Mitigations - Not Quite There Yet

When most people think of modern mitigations they think of Control Flow Integrity (CFI)

Armv8.3+: Pointer Authentication (PAC) and Branch Target Identification (BTI)

Intel: Shadow Stack and Control-flow Enforcement Technology (CET)

Windows: Control Flow Guard (CFG)

JSC supports PAC
V8 does not yet have full support for CET, CFG, or PAC

https://bugs.chromium.org/p/chromium/issues/detail?id=1268074
https://bugs.chromium.org/p/chromium/issues/detail?id=584575#c29
https://source.chromium.org/chromium/chromium/src/+/main:v8/BUILD.gn;drc=7305d25652be8f1aa261c20003349461bb634cec;l=1043

Pointer Authentication

Newer iOS devices and M1 Macbooks benefit from Armv8's Pointer Authentication

- PAC*: signs the pointer, writes cryptographic signature to upper bits
- AUT*: verifies the pointer

Mostly used to protect code pointers, but may be used for data as well

0x00007fc75ae25b20

0xa9b67fc75ae25b20 0x8000414141414141

0xa9b6414141414141

https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html

Bypassing Pointer Authentication

PAC bypasses can be considered similar to bugs; ie patched quickly if disclosed

Example Bypass Methods

- Pointer Forgery: Writable memory which later gets signed [ref]
- Swap or use signed pointers which lack context

Additionally, V8 currently supports PAC, but not in JITed code [ref]

Writable Mem

0x41414141

ADRP X16, #_pow_ptr_3@PAGE
LDR X16, [X16,#_pow_ptr_3@PAGEOFF]
PACIZA X16

0x41414141
Arbitrary

Write
Primitive

0x66c0000041414141

https://googleprojectzero.blogspot.com/2020/09/jitsploitation-three.html
https://bugs.chromium.org/p/chromium/issues/detail?id=919548

"Scripted" Code Execution

If you can't get arbitrary asm code, you may be able to call existing functionality

Build control flow with manipulated calls / actions made from JavaScript

Required sandbox escape functionality usually already exists!

Good Example: ObjectiveC Selector Calls [ref][ref]

JS Bound
API

Object

Corrupted
Web Api

Data
corrupted_web_obj.do_action()

Function
Using Data

for IPC /
ObjC Call

https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-3.html
https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-Hack-Different-Pwning-IOS-14-With-Generation-Z-Bug-wp.pdf

On PAC devices and as CFI rolls out, shellcode/rop exec is becoming harder…

However, this is usually not the endgame of a JS exploit

Exploits may attempt to attack cross-process data integerty / confidentiality

- Corrupt IPC data / messages / state to exploit a sandbox bug
- Read sensitive data stored within the process itself

These attacks do not rely on code exec, only memory read and write

The Rise Of Data-Only Attacks

Exploitation Tricks: Winning Races With Linked Lists

A lot of data attacks become races: Either

- You complete the write in time
- You smash some other data and crash…

We can abuse linked list structures to stall this race [ref]

Wait until
program hits
♾ loop

Perform
write to

target data

Corrupt link list to
form a cycle

Repair linked list and
allow thread to resume

https://googleprojectzero.blogspot.com/2020/09/jitsploitation-three.html

Attacking Cross-Origin

We have control of all the data in
the compromised process

- Force the process to load
sensitive data

- Inject JavaScript into other
website -> hijack session

- Abuse persistent data features
in other websites [ref]

https://www.youtube.com/watch?v=a0yPYpmUpIA

Mitigating Cross Origin Attacks

Chrome and Firefox have enabled
"Site Isolation"

- Iframes are in separate
processes

- Requests and access enforced
by the network IPC

https://www.chromium.org/Home/chromium-security/site-isolation/
https://bugzilla.mozilla.org/show_bug.cgi?id=1732358

Multiple Endgames “Shellcode”
Sandbox
Escape

Data-Only
Sandbox
Escape

“Scripted”
Sandbox
Escape

Renderer
Data

Exfiltration

Arbitrary Memory
Read & Write

Create Fake
JSObject

Corrupt
Existing

JSObject

Bug

Mitigating Arbitrary Read / Write

Arbitrary read/write is a very powerful primitive

Thus, vendors are creating mitigations to make it more difficult

Pointer Caging - Code restricts pointers to specific regions of memory

JavaScriptCore's GigaCage

GigaCage prevents pointers being used to corrupt sensitive memory

class JSArrayBufferView {
 using VectorPtr = CagedPtr<Gigacage::Primitive, void, tagCagedPtr>;
 VectorPtr m_vector;
}

CagedPtr forces all pointer accesses to remain in a specific "GigaCage" region

JavaScriptCore's GigaCage

Is GigaCage Effective?

Required to protect a "vulnerable" pointer:

- Explicit caged typing of the pointer
- Correct uncaging implementation when accessing (such as in the JIT)

There are a lot of objects and a lot of pointers

- Attackers just need to find single uncaged pointer they can r/w from
- This is made easier by faking object state

Is GigaCage Effective?

Current easiest method: make a fake JSArray…[ref]

Slightly limited R/W, but allows corrupting more complex structures elsewhere

JSCell (Type Info)

Butterfly (Data Ptr)

…
Properties

Array Length

Elements
…

Non Zero

Target Data
For R/W

JSArray

https://googleprojectzero.blogspot.com/2020/09/jitsploitation-two.html

Moving Towards A Heap Sandbox

Attackers will continue to find objects with corruptible pointers

Why not constrain the entire JS Heap?

- JavaScript manages many "external pointers" to browser memory

Moving Towards A Heap Sandbox

Attackers will continue to find objects with corruptible pointers

Why not constrain the entire JS Heap?

- JavaScript manages many "external pointers" to browser memory

Solution: Hold these pointers outside the heap and reference with index #

Future V8 Heap Sandbox

All JS objects confined to sandbox memory

All other sensitive memory is outside:

- External pointers (and type) in table
- JIT compiler structures and code
- Any reference to other memory

Exploit now relies on unsound behavior of
external objects and code it has handles to

(similar to a sandbox escape…)

https://docs.google.com/document/d/1FM4fQmIhEqPG8uGp5o9A-mnPB5BOeScZYpkHjo0KKA8/edit#
https://docs.google.com/document/d/1FM4fQmIhEqPG8uGp5o9A-mnPB5BOeScZYpkHjo0KKA8/edit#

Exploit Flow Today “Shellcode”
Sandbox
Escape

Data-Only
Sandbox
Escape

“Scripted”
Sandbox
Escape

Renderer
Data

Exfiltration

Arbitrary Memory
Read & Write

Fake Own
JSObject

Corrupt
Existing

JSObject

Limited Memory
Read & Write

Bug

What Have We Learned

Fewer bug classes, instead more “1-off” bugs, more complex JIT bugs

No significant changes to “early” exploitation phase (Same primitives available)

Current mitigations are not fully effective or applied evenly

Future mitigations seem more promising! (But still not bulletproof)

