V8 / Chromium / Chrome ------.

J

Attacking JavaScript
Engines in 2022

Samuel Grol} (@5aelo), Amy Burnett (@itszn13)

JavaScriptCore / WebKit / Safari
Spidermonkey / Gecko / Firefox -~ %

Basic JavaScript

let v = 0x1337;

v: Ox1337

Basic JavaScript

“foobar”

let v = 0x1337;

V: <poiln >
v = ""foobar"; PEAEE 7

Basic JavaScript

let v = 0x1337;

// typeof(v) == “number”
v = "foobar";

// typeof(v) == “string”
v = {a: 42, b: 43},

// typeof(v) == “object”

V.

<pointer>

Basic JavaScript

let ol = {a: 42, b: 43};

console.log(ol.a);

/ JSObject 1 \

Type: <pointer> —
Extra: null
Slot 0: 42

Slot 1: 43
& /

4 HiddenClass 1)

Type: PlainObject
.a: inline slot 0

\b: inline slot 1)

Basic JavaScript

let ol = {a: 42, b: 43};

console.log(ol.a);

/ JSObject 1 \

Extra: null
Slot 0: 42
@Iot 1: 43

Type: <pointer> —

4 HiddenClass 1 N

Type: PlainObject
.a: inline slot 0

)

let 02 = {a: 13, b: 37}3

/ JSObject 2 \

Type: <pointer> -
Extra: <pointer>
Slot 0: 13

Slot 1: 37
| >

\b: inline slot 1)

Basic JavaScript

let ol = {a: 42, b: 43};
console.log(ol.a);
let 02 = {a: 13, b: 37};

02.C = 01}

/ JSObject 1 \

Slot 0: 42

Slot 1: 43
O 4

/ JSObject 2 \

Type: <??7?>
Extra: <??7?>

Slot 0: 13

Slot 1: 37
O /

Type: <pointer> —
Extra: null \>

4 HiddenClass 1 N

Type: PlainObject
.a: inline slot 0

\b: inline slot 1)

Basic JavaScript

let ol = {a: 42, b: 43};
console.log(ol.a);
let 02 = {a: 13, b: 37};

02.C = 01}

/ JSObject 1 \

Slot 0: 42

Slot 1: 43
O 4

Type: <pointer> —
Extra: null \>

4 HiddenClass 1 N

Type: PlainObject
.a: inline slot 0

\b: inline slot 1 /

/" HiddenClass 2)

/ JSObject 2 \

Type: PlainObject

.a: inline slot 0

.b: inline slot 1
_C: out-of-line slot 0 J

Type: <pointer> /
Extra: <?77?>

Slot 0: 13

Slot 1: 37
O /

Basic JavaScript

let ol {a: 42, b: 43};

console.log(ol.a);

let 02 {a: 13, b: 37};

02.cC ol;

/ JSObject 1 \

Type: <pointer> —
Extra: null
Slot 0: 42

@Iot 1: 43

4

/" HiddenClass 2)

~—.

4 HiddenClass 1 N

Type: PlainObject
.a: inline slot O
\b: inline slot 1

)

/ JSObject 2

Type: <pointer>
Extra: <pointer>
Slot 0: 13
@Iot 1: 37

Type: PlainObject

.a: inline slot 0

.b: inline slot 1

_C: out-of-line slot 0 J

PropertyArray 1

Slot 0: <pointer>
Slot 1: null
Slot 2: null

Basic JavaScript (" sobject1)
4 HiddenClass 1 N

let ol = {a: 42, b: 43}; | Dype: <pointer> T~

Extra: null Type: PlainObject
Slot 0: 42 .a: inline slot 0
console.log(ol.a); @Iot 1: 43 y _biiniine slot 1)

let 02 = {a: 13, b: 37}; 4 HiddenClass 3 N

o2.c = o0l1;
g Type: PlainObject

.b: inline slot 1

delete o02.a;

.c: out-of-line slot 0
" JsObject2) A /
Type: <pointer> — PropertyArray 1
Extra: <pointer> —
Slot 0: <deleted> Slot 0 <poi
_ : <pointer>
\ Sl ey) Slot 1: nul

Slot 2: null

Interpreter

Bytecode
Compiler
Runtime
(objects, globals, constructors,
functions, methods, ...)
JIT
Compiler(s)

Garbage
Wasm Collector

Compiler(s) (GC)

function main() {
console.log(“Hello World!");

main();
% Interpreter
Bytecode
Compiler
Runtime
(objects, globals, constructors,
functions, methods, ...)
JIT
Compiler(s)

Garbage
Wasm Collector

Compiler(s) (GC)

function main() {
console.log(“Hello World!");

main();
Interpreter
Bytecode
Compiler
Runtime
(objects, globals, constructors,
functions, methods, ...)
Bytecode
LdaGlobal
J IT Ectj:rrl;medProperty
Compiler(s) stere
Garbage
Wasm Collector
(GC)

Compiler(s)

function main() {
console.log(“Hello World!");

main();
Interpreter
Bytecode
Compiler
Runtime
(objects, globals, constructors,
functions, methods, ...)
Bytecode
LdaGlobal
J IT EE:{I;medProperty
Compiler(s) stere
Garbage
Wasm Collector
(GC)

Compiler(s)

function main() {
console.log(“Hello World!");

Interpreter

%

Runtime State

main();
Bytecode
Compiler

Bytecode

LdaGlobal
J IT EE:{ll\medProperty
Compiler(s) e
Wasm

Compiler(s)

Runtime

(objects, globals, constructors,
functions, methods, ...)

Garbage
Collector
(GC)

Interpreter

Bytecode

Compiler

Runtime

(objects, globals, constructors,

@ functions, methods, ...)
Runtime State

Bytecode
LdaGlobal ‘
J IT EE:{ll\medProperty

Compiler(s) stare

Garbage
Collector

Wasm
(GC)

Compiler(s)

Interpreter

Bytecode

Compiler

Runtime

(objects, globals, constructors,
functions, methods, ...)

| Runtime State
| Machine Code O
JIT N

add x3, x28, x3

H S 1dr x4, [x26, #376]
Compiler(s) nor L
—1 b.eq #+0x23c
1dur w5, [x3, #-1]

Wasm
Compiler(s)

Garbage
Collector
(GC)

Interpreter

Bytecode
Compiler
Runtime
(objects, globals, constructors,
functions, methods, ...)
| Runtime State
| Machine Code o]

JIT E add x3, x28, x3

Compiler(s)] st b

—1 b.eq #+0x23c
1dur w5, [x3, #-1]

Garbage
Collector

Wasm
(GC)

Compiler(s)

Interpreter

Bytecode

Compiler
Runtime
(objects, globals, constructors,
functions, methods, ...)
Bytecode
LdaGlobal
Star1 3
LszaamedProperty MaChIne COde
JIT Star@
q dd x3, x28, x3
Compiler(s) Tar x4, [x26, #376]
cmp w3, wé
b.eq #+6x23c
1ldur w5, [x3, #-1]
(func
$lhs 132
(param Srhe 132 Garbage

(result i32)
local.get $lhs

local.get $rhs Wasm
i32.add)) 5
Compiler(s)

Collector
(GC)

JIT Compilation

A (Hypothetical) JIT Optimization Example

const W = 64, H = 64;
const bmp = new Uint8Array(W * H);
function set(p, v) {
if (p.x <0 || p.x >=W |]
p.y <0 [| p.y >= H) {
throw "invalid point";
¥
bmp[p.x * W + p.y] = v;

Example: “Training” the JIT

const W = 64, H = 64;
const bmp = new Uint8Array(W * H);
function set(p, v) {

if (p.x <0 || p.x >=W |]
for (let i = 0; i < 10000; i++) {

p.y <0 || p.y >= H) { set({x: 1, y: 2}, 3);

throw "invalid point"; }
}
bmp[p.x * W + p.y] = v;

Example: Bytecode Parsing

const W = 64, H = 64;

const bmp = new Uint8Array(W * H);
function set(p, v) {
if (p.x <0 || p.x >= W ||
p.y <0 [| p.y >= H) {
throw "invalid point";

¥
bmp[p.x * W + p.y] = v;

x1 = LoadProperty p, ‘x’

GotoIf .throwException, x1 < 0
‘X’

x2 = LoadProperty p,

GotoIf .throwException, x2 >= 64

Example: Speculation + Lowering

const W = 64, H = 64;

const bmp = new Uint8Array(W * H);

function set(p, v) {

if (p.x <0 || p.x >= W |]

p.y <0 || p.y >= H) {

throw "invalid point";

}
bmp[p.x * W + p.y]

Vs

CheckType p, ObjTypel

x1l = LoadField p, +8

GotoIf .throwException, x1 < 0
CheckType p, ObjTypel

x2 = LoadField p, +8

GotoIf .throwException, x2 >= 64

Example: Speculation + Lowering

const W = 64, H = 64;

const bmp = new Uint8Array(W * H);

function set(p, v) {

if (p.x <0 || p.x >= W |]
p.y <0 || p.y >= H) {

throw "invalid point";

}
bmp[p.x * W + p.y]

Vs

CheckType p, ObjTypel

x1 = LoadField p, +8

GotoIf .throwException, x1 < 0
CheckType p, ObjTypel

x2 = LoadField p, +8

GotoIf .throwException, x2 >= 64

Example: Redundancy Elimination

const W = 64, H = 64;

const bmp = new Uint8Array(W * H);

function set(p, v) {

if (p.x <0 || p.x >= W |]
p.y <0 || p.y >= H) {

throw "invalid point";

}
bmp[p.x * W + p.y]

Vs

CheckType p, ObjTypel

x1 = LoadField p, +8

GotoIf .throwException, x1 < 0
cheekPyrpe—p5—0b5Fypet
x2r——teoadetd—p—S

GotoIf .throwException, x1 >= 64

Example: Bytecode Parsing

const W = 64, H = 64;
const bmp = new Uint8Array(W * H);
function set(p, v) {
if (p.x <0 || pox >= W |]
p.y <0 || p.y >=H) {
throw "invalid point";
¥
bmp[p.x * W + p.y] = v;

W = LoadGlobal ‘W’

il

Mul x, W

12

Add 11, vy
bmp = LoadGlobal ‘bmp’

StoreElememt bmp, 112, v

Example: Constant Folding + Lowering

const W = 64, H = 64; il IntegerMul x, 64

const bmp = new Uint8Array(W * H); 42 = IntegerAdd i1, vy

function set(p, v) { CheckBounds i2, 4096
if (p.x <0 || p.x >= W |]

p.y <0 || p.y >= H) {

throw "invalid point";

CheckType v, Uint8

StoreUint8Array bmp, i2, v

¥
bmp[p.x * W + p.y] = v;

Example: Range Analysis + Bounds Check Elimination

const W = 64, H = 64; // X

Range [0, 64)

const bmp = new Uint8Array(W x H); // vy

Range [0, 64)
function set(p, v) { il = IntegerMul x, 64
if (p.x <0 || p.x >=W |]
p.y <0 [| p.y >= H) {

throw "invalid point";

// 11 = Range [0, 4033)
i2 = IntegerAdd 11, vy

// 12 = Range [0, 4096)
+

cheekBeourds—25—4696
bmp[p.x * W + p.y] = v; ,

Example: Final JIT IR Code

const W = 64, H = 64;
const bmp = new Uint8Array(W * H);
function set(p, v) {
if (p.x <0 || p.x >= W |]
p.y <0 [| p.y >= H) {
throw "invalid point";
¥
bmp[p.x * W + p.y] = v;

CheckType p, ObjTypel

X = LoadField p, +8

y LoadField p, +16

GotoIf .throwException x < 0 ||
il = IntegerMul x, 64

i2 = IntegerAdd 1il, vy
CheckType v, Uint8

StoreUint8Array bmp, i2, v

Static Analysis of

Input Code
Runtime State of
Various Objects

JIT Compilation (simplified)

1
1
17
¥

Feedback from Past
Executions
Optimization
o (mostly remove unnecessary stuff, but also
e.g. move things out of loops, ...)

Speculation
(insert type checks based
on feedback)

Lowering
(convert higher-level IR to lower-level IR,
ultimately to machine code)

Unoptimized
Bytecode

A (Hypothetical) JIT Bug Example

function replace(a, cond, v) {

let 1 = a.findIndex(cond); Description

ali] = v; The findIndex() method executes the callbackFn
function once for every index in the array until it finds the one
where callbackFn returns a truthy value.

}
let a = [0, 1, 2, 3, 4, 5];

replace(a, (e) => e == 3, 42);

A (Hypothetical) JIT Bug Example

function replace(a, cond, v) { CheckType a, ArrTypel
let i = a.findIndex(cond); i = Call Runtime_FindIndex(a, cond)
a[i] = v; CheckBounds a, i

1 StoreArray a, i, v

let a = [0, 1, 2, 3, 4, 5];

replace(a, (e) => e == 3, 42);

A (Hypothetical) JIT Bug Example

function replace(a, cond, v) { CheckType a, ArrTypel
let i = a.findIndex(cond); i = Call Runtime_FindIndex(a, cond)
ali] = v; // 1 = Range [0, a.length - 1)

1 cheekBounrds—a—

let a = [0, 1, 2, 3, 4, 5]; StoreArray a, i, Vv

replace(a, (e) => e == 3, 42);

A (Hypothetical) JIT Bug Example

function replace(a, cond, v) { CheckType a, ArrTypel
let i = a.findIndex(cond); i = Call Runtime_FindIndex(a, cond)
ali] = v; // i = Range [0, a.length - 1)

1 cheekBounrds—a—

let a = [0, 1, 2, 3, 4, 5]; StoreArray a, i, Vv

replace(a, (e) => false, 42);

Return value

The index of the first element in the array that passes the test. Otherwise, -1.

A (Hypothetical) JIT Bug Example

function replace(a, cond, v) { CheckType a, ArrTypel
let 1 = a.findIndex(cond);
ali] = v;

}

let a = [0, 1, 2, 3, 4, 5]; rray a, i, v

replace(a, (e) => false, 42);

Return value

The index of the first element in the array that passes the test. Otherwise, -1.

A (Hypothetical) JIT Bug Example

function replace(a, cond, v) { CheckType a, ArrTypel
let i = a.findIndex(cond); i = Call Runtime_FindIndex(a, cond)
ali] = v; // i = Range [-1, a.length - 1)

1 Check i >= 0

StoreArray a, i, v

A (Hypothetical) JIT Bug Example

function replace(a, cond, v) { CheckType a, ArrTypel
let i = a.findIndex(cond); i = Call Runtime_FindIndex(a, cond)
ali] = v; // i = Range [-1, a.length - 1)

1 Check i >= 0

let a = [0, 1, 2, 3, 4, 5]; StoreArray a, i, v

replace(a, (e) => {
a.length = 05 return true;

}, 42);

A (Hypothetical) JIT Bug Example

function replace(a, cond, v) { CheckType a, ArrTypel
let i = a.findIndex(cond); i
ali] = v; // 1 = Range
} Check i >=
let a = [0, 1, 2, 3, 4, 5]; rray a, i, v
replace(a, (e) => {

a.length = 05 return true;

}, 42);

Optimization

Analysis

Other

“Breaks”

7/
/

/
/
1

Type-Check
Elimination

A

\

Register
Allocation

CVE-2019-8623
CVE-2019-8518

CVE-2018-12386

4

—
55_{

N

CVE-2018-4233
CVE-2018-17463
CVE-2019-11707
CVE-2020-6418

7
LICM

(loop-invariant code
motion)

e GVN _
(global value numbering) BCE <
CVE-2019-9810 ‘ (bounds-check \
CVE-2019-17026 i _- elimination)
| Allasl R CVE-2017-2547 Array Length
§ Analysis 7~ ‘\ Computation
Type CSE ! A
Inference | " Runtime 7T\ oo sbmgresson | Range _-7
State)/ Analysis
CVE-2019-8506 | i crbug 762874 (2017)
CVE-2021-30551 . ;) \ crbug 880207 (2018)
CVE-2021-30561C Pureness , \ | CVE-2019-13764
VE-2021-30632 Analysis , \ .
7
CVE-2020-9802 Patte.rn - .
7 Matching |
-
. . CVE-2021-30598
Write Barrier CVE_2021_30599J Lowering W
Elision N GC
~
Modelling CVE-2021-21220 J

CVE-2019-4442
CVE-2019-8622

https://googleprojectzero.blogspot.com/2020/09/jitsploitation-one.html
https://bugs.chromium.org/p/chromium/issues/detail?id=762874
https://bugs.chromium.org/p/project-zero/issues/detail?id=1710
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://github.com/saelo/pwn2own2018#stage-0
http://phrack.org/issues/70/9.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1820
https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2020/CVE-2020-6418.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1699
https://bugs.chromium.org/p/project-zero/issues/detail?id=1802
https://bugs.chromium.org/p/chromium/issues/detail?id=1196683
https://bugs.chromium.org/p/project-zero/issues/detail?id=1753
https://bugs.chromium.org/p/chromium/issues/detail?id=1216437
https://bugs.chromium.org/p/project-zero/issues/detail?id=2197
https://securitylab.github.com/research/in_the_wild_chrome_cve_2021_30632/
https://securitylab.github.com/research/in_the_wild_chrome_cve_2021_30632/
https://www.zerodayinitiative.com/blog/2017/8/24/deconstructing-a-winning-webkit-pwn2own-entry
https://ssd-disclosure.com/ssd-advisory-firefox-javascript-type-confusion-rce/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1789
https://bugs.chromium.org/p/project-zero/issues/detail?id=1775
https://bugs.chromium.org/p/chromium/issues/detail?id=1234764
https://bugs.chromium.org/p/chromium/issues/detail?id=1234770
https://doar-e.github.io/blog/2019/06/17/a-journey-into-ionmonkey-root-causing-cve-2019-9810/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/

Optimization

Other

“Breaks”

Optimization
Analysis
Other
“Breaks” Type
B Safety

CVE-2017-2547

crbug 880207 (2018)

crbug 762874 (2017)
CVE-2019-13764

Temporal
Memory
Safety

https://bugs.chromium.org/p/chromium/issues/detail?id=762874
https://bugs.chromium.org/p/project-zero/issues/detail?id=1710
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://www.zerodayinitiative.com/blog/2017/8/24/deconstructing-a-winning-webkit-pwn2own-entry

Optimization
Analysis

Other

“Breaks”

Type-Check
Elimination

A

\

J

N

CVE-2018-4233
CVE-2018-17463
CVE-2019-11707
CVE-2020-6418

Temporal
Memory
Safety

Type
Inference

]

CheckType o, ObjTypel

cheekype—o5—0b5Fypet

Spatial
Memory
Safety

BCE

(bounds-check
elimination)
Range
Analysis

https://bugs.chromium.org/p/chromium/issues/detail?id=762874
https://bugs.chromium.org/p/project-zero/issues/detail?id=1710
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://github.com/saelo/pwn2own2018#stage-0
http://phrack.org/issues/70/9.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1820
https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2020/CVE-2020-6418.html

Optimization

Analysis
Other
“Breaks”
P 7’
GVN --
Type'C heck (global value numbering)
Elimination CVE-2019-9810 >
CVE-2019-17026 _-"
Type
Inference
let tmpl = x + y;
let tmp2 = X s tmpl;
Temporal
Memory

Safety

BCE

(bounds-check
elimination)

Range
Analysis

https://github.com/saelo/pwn2own2018#stage-0
http://phrack.org/issues/70/9.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1820
https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2020/CVE-2020-6418.html
https://bugs.chromium.org/p/chromium/issues/detail?id=762874
https://bugs.chromium.org/p/project-zero/issues/detail?id=1710
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://doar-e.github.io/blog/2019/06/17/a-journey-into-ionmonkey-root-causing-cve-2019-9810/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/

Optimization
Analysis
Other .
“Breaks” . Type Spatlal
—-=> | ,- Safety - Memory
/
/ 7 Safety
-—— e
I/ - o B
| Ss o .’
S~—aa GVN -
Type-CheCk (global value numbering) BC E
Elimination CVE-2019-9810 < e
CVE-2019-17026 Alias _ - - elimination)
4 7 Analysi o
\ L nalysis \
\ \
\ ‘(Type]
Inference Range 1
CVE-2018-4233 A .
2018- nalysis
8\\;5—5813117;1(?? crbug 762874 (2017)
CVE-2020-6418 crbug 880207 (2018)
CVE-2019-13764

CVE-2019-4442
CVE-2019-8622

https://doar-e.github.io/blog/2019/06/17/a-journey-into-ionmonkey-root-causing-cve-2019-9810/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/
https://bugs.chromium.org/p/chromium/issues/detail?id=762874
https://bugs.chromium.org/p/project-zero/issues/detail?id=1710
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://github.com/saelo/pwn2own2018#stage-0
http://phrack.org/issues/70/9.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1820
https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2020/CVE-2020-6418.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1699
https://bugs.chromium.org/p/project-zero/issues/detail?id=1802

Optimization
Analysis

Other

“Breaks”

Type-Check
Elimination

Type
Inference

Temporal
Memory
Safety

o Register .
_______ Allocation T~

CVE-2019-8623 CVE-2018-12386
CVE-2019-8518 4 -7
7 - -
- LICM =" --
= (loop-invariant code - , s
motion) 7
d
P 4
GVN ——"
(global value numbering) BC E
(bo_unds-c_heck
AI|aS elimination)
Analysis
N - a2 Range
const x = ’ Analysis

for (let i = 0; i < 100; +i++) {

cees
a[x] = 1337;

Write Barrier
Elision GC

Modelling

https://bugs.chromium.org/p/chromium/issues/detail?id=762874
https://bugs.chromium.org/p/project-zero/issues/detail?id=1710
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://github.com/saelo/pwn2own2018#stage-0
http://phrack.org/issues/70/9.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1820
https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2020/CVE-2020-6418.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1699
https://bugs.chromium.org/p/project-zero/issues/detail?id=1802
https://www.zerodayinitiative.com/blog/2017/8/24/deconstructing-a-winning-webkit-pwn2own-entry
https://doar-e.github.io/blog/2019/06/17/a-journey-into-ionmonkey-root-causing-cve-2019-9810/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/
https://ssd-disclosure.com/ssd-advisory-firefox-javascript-type-confusion-rce/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1789
https://bugs.chromium.org/p/project-zero/issues/detail?id=1775

Optimization Register

— o
—— — —
—— -
—

Analysis Allocation
CVE-2018-12386
o e E—
“Breaks” _ Type 7
- —— 3 L7 Safety - - _ _ LICM —___,f
/ o (loop-invariant code o
/ motion)
I -~
I ~~o_
--------- GVN
Type-CheCk (global value numbering)
Elimination CVE-2019-9810 <
CVE-2019-17026 Alias _ -
A 7 Analysi o
\ [Analysis
\
\ ‘(Type , - A
Inference , ~ _-7
CVE-2018-4233 ’
CVE-2018-17463 /
CVE-2019-11707 ug 762874 (2017)
CVE-2020-6418 crbug 880207 (2018)
CVE-2019-13764
\
\
CVE-2020-9802 ‘\
1
. . CVE-2021-30598
Temporal Write Barrier CVE 209130599 . _ W
- o — owering
Memory < Elision S GC 1
Safety Modelling CVE-2021-21220 J

CVE-2019-8622

CVE-2019-4442 J

https://bugs.chromium.org/p/chromium/issues/detail?id=762874
https://bugs.chromium.org/p/project-zero/issues/detail?id=1710
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://github.com/saelo/pwn2own2018#stage-0
http://phrack.org/issues/70/9.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1820
https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2020/CVE-2020-6418.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1699
https://bugs.chromium.org/p/project-zero/issues/detail?id=1802
https://www.zerodayinitiative.com/blog/2017/8/24/deconstructing-a-winning-webkit-pwn2own-entry
https://ssd-disclosure.com/ssd-advisory-firefox-javascript-type-confusion-rce/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1789
https://bugs.chromium.org/p/project-zero/issues/detail?id=1775
https://doar-e.github.io/blog/2019/06/17/a-journey-into-ionmonkey-root-causing-cve-2019-9810/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-one.html
https://bugs.chromium.org/p/chromium/issues/detail?id=1196683
https://bugs.chromium.org/p/chromium/issues/detail?id=1234764
https://bugs.chromium.org/p/chromium/issues/detail?id=1234770

Optimization

Analysis

Other

“Breaks”

CVE-2018-4233
CVE-2018-17463
CVE-2019-11707
CVE-2020-6418

Temporal
Memory
Safety

_______ Register
———————— Allocation

CVE-2019-8518

CVE-2019-8623

CVE-2018-12386

|

Modelllng 1

CVE-2019-8622

CVE-2019-4442 J

Spatial

7 - -
* -~ _ LICM == - Memory
(Ioop—irr:]\:)e;ir;r;t code o P - S af ety
/7
7/
o _ 7
———————— GVN -
(global value numbering) BC E .
CVE-2019-9810 4 (bounds-check \
VE-2019-1702 2 - elimination)
e | Alias --- CVE-2017-2547 Array Length
§ Analysis T \\ Computation
CSE ! 4
\\ Runtime P - (comm;?n::ta)ﬁégl)'ession ~ ~ Range. o 7
State ’ Analysis
CVE-2019-8506 A crbug 762874 (2017)
CVE-2021-30551)) . \ crbug 880207 (2018)
CVE-2021-30561C Pureness . \ | CVE-2019-13764
VE-2021-30632 Analysis py \ N
CVE-2020-9802 Patte_m - \\
Matching |
p
. . CVE-2021-30598
L Write Barrier CVE-2021-30599 J Lowering 1
Elision {
\

CVE-2021-21220 J

https://googleprojectzero.blogspot.com/2020/09/jitsploitation-one.html
https://bugs.chromium.org/p/chromium/issues/detail?id=762874
https://bugs.chromium.org/p/project-zero/issues/detail?id=1710
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://github.com/saelo/pwn2own2018#stage-0
http://phrack.org/issues/70/9.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1820
https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2020/CVE-2020-6418.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1699
https://bugs.chromium.org/p/project-zero/issues/detail?id=1802
https://bugs.chromium.org/p/chromium/issues/detail?id=1196683
https://www.zerodayinitiative.com/blog/2017/8/24/deconstructing-a-winning-webkit-pwn2own-entry
https://ssd-disclosure.com/ssd-advisory-firefox-javascript-type-confusion-rce/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1789
https://bugs.chromium.org/p/project-zero/issues/detail?id=1775
https://bugs.chromium.org/p/chromium/issues/detail?id=1234764
https://bugs.chromium.org/p/chromium/issues/detail?id=1234770
https://doar-e.github.io/blog/2019/06/17/a-journey-into-ionmonkey-root-causing-cve-2019-9810/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1753
https://bugs.chromium.org/p/chromium/issues/detail?id=1216437
https://bugs.chromium.org/p/project-zero/issues/detail?id=2197
https://securitylab.github.com/research/in_the_wild_chrome_cve_2021_30632/
https://securitylab.github.com/research/in_the_wild_chrome_cve_2021_30632/

Optimization

Analysis

Other

“Breaks”

7/
/

/
/
1

Type-Check
Elimination

A

\

Register
Allocation

CVE-2019-8623
CVE-2019-8518

CVE-2018-12386

4

—
55_{

N

CVE-2018-4233
CVE-2018-17463
CVE-2019-11707
CVE-2020-6418

7
LICM

(loop-invariant code
motion)

e GVN _
(global value numbering) BCE <
CVE-2019-9810 ‘ (bounds-check \
CVE-2019-17026 i _- elimination)
| Allasl R CVE-2017-2547 Array Length
§ Analysis 7~ ‘\ Computation
Type CSE ! A
Inference | " Runtime 7T\ oo sbmgresson | Range _-7
State)/ Analysis
CVE-2019-8506 | i crbug 762874 (2017)
CVE-2021-30551 . ;) \ crbug 880207 (2018)
CVE-2021-30561C Pureness , \ | CVE-2019-13764
VE-2021-30632 Analysis , \ .
7
CVE-2020-9802 Patte.rn - .
7 Matching |
-
. . CVE-2021-30598
Write Barrier CVE_2021_30599J Lowering W
Elision N GC
~
Modelling CVE-2021-21220 J

CVE-2019-4442
CVE-2019-8622

https://googleprojectzero.blogspot.com/2020/09/jitsploitation-one.html
https://bugs.chromium.org/p/chromium/issues/detail?id=762874
https://bugs.chromium.org/p/project-zero/issues/detail?id=1710
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-chrome-infinity-bug.html
https://github.com/saelo/pwn2own2018#stage-0
http://phrack.org/issues/70/9.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1820
https://googleprojectzero.github.io/0days-in-the-wild//0day-RCAs/2020/CVE-2020-6418.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1699
https://bugs.chromium.org/p/project-zero/issues/detail?id=1802
https://bugs.chromium.org/p/chromium/issues/detail?id=1196683
https://bugs.chromium.org/p/project-zero/issues/detail?id=1753
https://bugs.chromium.org/p/chromium/issues/detail?id=1216437
https://bugs.chromium.org/p/project-zero/issues/detail?id=2197
https://securitylab.github.com/research/in_the_wild_chrome_cve_2021_30632/
https://securitylab.github.com/research/in_the_wild_chrome_cve_2021_30632/
https://www.zerodayinitiative.com/blog/2017/8/24/deconstructing-a-winning-webkit-pwn2own-entry
https://ssd-disclosure.com/ssd-advisory-firefox-javascript-type-confusion-rce/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1789
https://bugs.chromium.org/p/project-zero/issues/detail?id=1775
https://bugs.chromium.org/p/chromium/issues/detail?id=1234764
https://bugs.chromium.org/p/chromium/issues/detail?id=1234770
https://doar-e.github.io/blog/2019/06/17/a-journey-into-ionmonkey-root-causing-cve-2019-9810/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/
https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-firefox-jit-bug/

Exploitation

Choose (arbitrary) victim type
Choose (arbitrary) target type
Choose (arbitrary) operation
Trigger bug to confuse objects

Exploitation
- Choose (arbitrary) victim type
- Choose (arbitrary) replacement type
- Trigger bug and GC to cause UaF

Exploitation
- Choose (arbitrary) victim array
- Choose (arbitrary) OOB index
- Choose read or write access
- Trigger bug to corrupt memory

JS Outside JIT

Bytecode
Compiler

CVE-2022-0102 J

JIT
Compiler(s)

Interpreter

CVE-2021-30517
CVE-2021-38001

J

e Plenty of complexity elsewhere
e Few bug patterns, many “1-off’ bugs

See prev. slides :) J

Wasm
Compiler(s)

CVE-2021-30734 J

Runtime

(objects, globals, constructors,
functions, methods, ...)

CVE-2021-1789
CVE-2021-21225

CVE-2021-38003

—

Garbage
Collector
(GC)

CVE-2021-37975 J

https://bugs.chromium.org/p/chromium/issues/detail?id=1251366#c11
https://blog.ret2.io/2021/06/02/pwn2own-2021-jsc-exploit/
https://bugs.chromium.org/p/chromium/issues/detail?id=1203122
https://bugs.chromium.org/p/chromium/issues/detail?id=1260577
https://www.welivesecurity.com/2022/01/25/watering-hole-deploys-new-macos-malware-dazzlespy-asia/
https://tiszka.com/blog/CVE_2021_21225.html
https://bugs.chromium.org/p/chromium/issues/detail?id=1263462
https://securitylab.github.com/research/in_the_wild_chrome_cve_2021_37975/

Exploitation & Mitigations

Exploit Flow Circa 2016

Bug

Create Fake
JSObject

Corrupt
Existing
JSObject

—

Arbitrary Memory
Read & Write

>

JIT
Overwrite
“Shellcode”
Sandbox
Escape

http://phrack.org/issues/70/3.html#article

What About Classical Mitigations?

- ASLR: Usually easy to construct a leak via type confusion or
OOB (second bug not required)

- DEP/NX: JIT provides easy ways to map shellcode
- Stack Cookies: Most JS bugs are heap based

Can OOB read and write with same bug

N

Other Data

"Modern" Mitigations

When most people think of modern mitigations they think of Control Flow Integrity (CFl)

Armv8.3+: Pointer Authentication (PAC) and Branch Target Identification (BTlI)
Intel: Shadow Stack and Control-flow Enforcement Technology (CET)

Windows: Control Flow Guard (CFG)

"Modern" Mitigations - Not Quite There Yet

When most people think of modern mitigations they think of Control Flow Integrity (CFl)

Armv8.3+: Pointer Authentication (PAC) and Brareh—targetidentiication{B+H
rter-Shadow-Stack-and-Contre-HowEnrfercementtechnetegy(GEH

JSC supports PAC
V8 does not yet have full support for CET, CFG, or PAC

https://bugs.chromium.org/p/chromium/issues/detail?id=1268074
https://bugs.chromium.org/p/chromium/issues/detail?id=584575#c29
https://source.chromium.org/chromium/chromium/src/+/main:v8/BUILD.gn;drc=7305d25652be8f1aa261c20003349461bb634cec;l=1043

Pointer Authentication

Newer iOS devices and M1 Macbooks benefit from Armv8's Pointer Authentication

- PAC™: signs the pointer, writes cryptographic signature to upper bits
- AUT™: verifies the pointer

Mostly used to protect code pointers, but may be used for data as well

OXx00007fc75ae25b20 Oxa9b6414141414141

: :

Oxa9b67fc75ae25b20 Ox8000414141414141

https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html

Bypassing Pointer Authentication

PAC bypasses can be considered similar to bugs; ie patched quickly if disclosed
Example Bypass Methods

- Pointer Forgery: Writable memory which later gets signed [ref]
- Swap or use signed pointers which lack context

ADRP X16, #_pow_ptr_3@PAGE ML Wi

LDR X16, [X16,#_pow_ptr_3@PAGEOFF] «—

PACIZA X16

M 0x66c0000041414141
Additionally, V8 currently supports PAC, but not in JITed code [ref]

Arbitrary
Write
Primitive

https://googleprojectzero.blogspot.com/2020/09/jitsploitation-three.html
https://bugs.chromium.org/p/chromium/issues/detail?id=919548

"Scripted” Code Execution

If you can't get arbitrary asm code, you may be able to call existing functionality
Build control flow with manipulated calls / actions made from JavaScript

Required sandbox escape functionality usually already exists!

Good Example: ObjectiveC Selector Calls [ref][ref]

Function
)) JS Bound Using Data
corrupted_web_obj.do_action() API for IPC /
Object ObjC Call

https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-3.html
https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-Hack-Different-Pwning-IOS-14-With-Generation-Z-Bug-wp.pdf

The Rise Of Data-Only Attacks

On PAC devices and as CFl rolls out, shellcode/rop exec is becoming harder...
However, this is usually not the endgame of a JS exploit
Exploits may attempt to attack cross-process data integerty / confidentiality

- Corrupt IPC data / messages / state to exploit a sandbox bug
- Read sensitive data stored within the process itself

These attacks do not rely on code exec, only memory read and write

Exploitation Tricks: Winning Races With Linked Lists

A lot of data attacks become races: Either

- You complete the write in time
- You smash some other data and crash...

We can abuse linked list structures to stall this race [ref]

Wait until Perform
program hits write to
3 loop target data

Repair linked list and

Corrupt link list to allow thread to resume

form a cycle

https://googleprojectzero.blogspot.com/2020/09/jitsploitation-three.html

Attacking Cross-Origin

We have control of all the data in
the compromised process

- Force the process to load
sensitive data

- Inject JavaScript into other
website -> hijack session

- Abuse persistent data features
in other websites [ref]

Parent Browser Process

A

Y

IPC

Tab 1:
attacker.com

1frame
google.com

Tab 2:
google.com

https://www.youtube.com/watch?v=a0yPYpmUpIA

Mitigating Cross Origin Attacks

Chrome and Firefox have enabled

"Site |solation” Parent Browser Process
- Iframes are in separate Il‘;
processes
- Requests and access enforced Tab 1: Tab 2:
by the network IPC attacker.com oogle.com
iframe
google.com

https://www.chromium.org/Home/chromium-security/site-isolation/
https://bugzilla.mozilla.org/show_bug.cgi?id=1732358

Multiple Endgames

Bug

Create Fake
JSObject

Corrupt
Existing
JSObject

—

Arbitrary Memory
Read & Write

7
o

Mitigating Arbitrary Read / Write

Arbitrary read/write is a very powerful primitive

Thus, vendors are creating mitigations to make it more difficult

Pointer Caging - Code restricts pointers to specific regions of memory

JavaScriptCore's GigaCage

GigaCage prevents pointers being used to corrupt sensitive memory

class JSArrayBufferView {
using VectorPtr = CagedPtr<Gigacage::Primitive, void, tagCagedPtr>;
VectorPtr m_vector;

CagedPtr forces all pointer accesses to remain in a specific "GigaCage" region

JavaScriptCore's GigaCage

Int Max Offset
-
V4
| Buffer GigaCage
Calculated
Offsets
Cannot Access
Memory Outside GigaCage
A A A
] /
!
JSArrayBuffer ’ e -7
you p - - -
Caged

Pointers

|s GigaCage Effective?

Required to protect a "vulnerable" pointer:

- Explicit caged typing of the pointer
- Correct uncaging implementation when accessing (such as in the JIT)

There are a lot of objects and a lot of pointers

- Attackers just need to find single uncaged pointer they can r/w from
- This is made easier by faking object state

|s GigaCage Effective?

Current easiest method: make a fake JSArray...[ref]

JSArray
7
JSCell (Type Info) Properties
Array Length Non Zero
Butterfly (Data Ptr)
Elements Target Data
For RIW

Slightly limited R/W, but allows corrupting more complex structures elsewhere

https://googleprojectzero.blogspot.com/2020/09/jitsploitation-two.html

Moving Towards A Heap Sandbox

Attackers will continue to find objects with corruptible pointers
Why not constrain the entire JS Heap?

- JavaScript manages many "external pointers" to browser memory

Moving Towards A Heap Sandbox

Attackers will continue to find objects with corruptible pointers

Why not constrain the entire JS Heap?

Solution: Hold these pointers outside the heap and reference with index #

Future V8 Heap Sandbox

All JS objects confined to sandbox memory
All other sensitive memory is outside:

- External pointers (and type) in table
- JIT compiler structures and code
- Any reference to other memory

Exploit now relies on unsound behavior of
external objects and code it has handles to

(similar to a sandbox escape...)

V8 Sandbox (e.g. 1TB)

WASM Memory Cage

ArrayBuffer1

40-bit offsets from sandbox base

V8 Heap Region (4GB)

HeapObj1
32-bit offset
(compressed pointer)

HeapObj2

HeapObj4

HeapObj5

Index External Pointer Table

Type + Pointer

Type + Pointer
ExternalObj1

https://docs.google.com/document/d/1FM4fQmIhEqPG8uGp5o9A-mnPB5BOeScZYpkHjo0KKA8/edit#
https://docs.google.com/document/d/1FM4fQmIhEqPG8uGp5o9A-mnPB5BOeScZYpkHjo0KKA8/edit#

Exploit Flow Today

Bug

Fake Own
JSObject

Corrupt
Existing
JSObject

<

Arbitrary Memory

Read & Write

%

|

Limited Memory
Read & Write

What Have We Learned

Fewer bug classes, instead more “1-off” bugs, more complex JIT bugs
No significant changes to “early” exploitation phase (Same primitives available)
Current mitigations are not fully effective or applied evenly

Future mitigations seem more promising! (But still not bulletproof)

