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Fig. 1: Motivation. Objects made from different materials can exhibit distinct behaviors under interaction. Even within the same object
category, varying physical parameters like stiffness can lead to different behaviors. Examples shown here include handling cotton rope and
cable, as well as arranging granular piles such as coffee beans and toy blocks. Although the initial configuration and action are the same,
different physical parameters result in distinct final states, necessitating the need for online adaptation for effective manipulation. To this end,
we introduce AdaptiGraph, a unified graph-based neural dynamics framework for real-time modeling and control of various materials with
unknown physical properties. AdaptiGraph integrates a physical property-conditioned dynamics model with online physical property
estimation. Our framework enables robots to adaptively manipulate diverse objects with varying physical properties and dynamics.

Abstract—Predictive models are a crucial component of many
robotic systems. Yet, constructing accurate predictive models
for a variety of deformable objects, especially those with
unknown physical properties, remains a significant challenge.
This paper introduces AdaptiGraph, a learning-based dynamics
modeling approach that enables robots to predict, adapt to, and
control a wide array of challenging deformable materials with
unknown physical properties. AdaptiGraph leverages the highly
flexible graph-based neural dynamics (GBND) framework, which
represents material bits as particles and employs a graph neural
network (GNN) to predict particle motion. Its key innovation
is a unified physical property-conditioned GBND model capable
of predicting the motions of diverse materials with varying
physical properties without retraining. Upon encountering new
materials during online deployment, AdaptiGraph utilizes a
physical property optimization process for a few-shot adaptation
of the model, enhancing its fit to the observed interaction data.
The adapted models can precisely simulate the dynamics and
predict the motion of various deformable materials, such as ropes,
granular media, rigid boxes, and cloth, while adapting to different
physical properties, including stiffness, granular size, and center

* Denotes equal contribution.

of pressure. On prediction and manipulation tasks involving a
diverse set of real-world deformable objects, our method exhibits
superior prediction accuracy and task proficiency over non-
material-conditioned and non-adaptive models. The project page
is available at https://robopil.github.io/adaptigraph/.

I. INTRODUCTION

Learning predictive models, also known as system identifi-
cation, is a crucial component of many robotic tasks. Whereas
classical methods rely on the explicit parameterization of the
system state and struggle with systems that have high degrees
of freedom, a significant body of work over the last decade has
attempted to learn models directly from visual observations.
Prior approaches have learned predictive models based on
pixels [11, 18] or latent representations of images [15, 16].
However, such representations often overlook the structure of
the environment and do not generalize well across different
camera poses, object poses, robots, object sizes, and object
shapes. Recently, a series of studies have employed Graph
Neural Networks (GNN) to model environments as 3D particles
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and their pairwise interactions [23, , , 47]. A graph
representation has proven effective in capturing relational bias
and predicting complex motions of deformable objects, but
prior works typically only focus on a single material and would
require extensive training to model an object of new material
or with unknown physical properties. Hence, it is an important
challenge to provide such graph-based models to adapt to
objects and tasks involving diverse materials and varying
physical properties, such as manipulating ropes with different
stiffness and granular media with different granularity (Fig. 1).

In this work, we present a unified framework for modeling
the dynamics of objects with different materials and physical
properties. In addition to classifying objects into discrete
material types such as rigid objects, ropes, etc., we further
consider a range of intra-class physical property variations in
each material type. We propose to encode this variation using
a continuous variable which we call the physical property
variable, and integrate the variable into a Graph-Based Neural
Dynamics (GBND) framework (Fig. 1). The physical property
variable indicates the important intrinsic properties of each
material category, including stiffness for deformable objects
and the center of pressure position for rigid objects. By
encoding the material type and physical property variables
into particles in the graph, the model learns material-specific
dynamic functions that predict different physical behaviors
for objects with different physical properties. We then employ
a test-time adaptation method to reason about the physical
properties of novel objects. Specifically, the robot actively
interacts with the novel object, observes its response, and
estimates its physical properties to optimize the model’s fit
to the observed reactions. The estimation is performed in a
few-shot manner and can be directly applied to planning and
trajectory optimization for downstream manipulation tasks.

In our experiments, we verify this framework on four
types of objects: rigid objects, granular objects, rope-like
objects, and cloth-like objects. Experiments show that our
framework can distinguish and model the dynamics of objects
across a broad range of physical properties, for instance, from
very soft ropes like yarn and shoelaces to very stiff ropes
like cables, and from very fine-grained granular matter like
coffee beans to very coarse-grained ones like toy blocks
(Fig. 1). The model is trained on diverse data collected
with a simulator and tested with online adaptation on real
objects. The results demonstrate that (1) our adaptation module
provides consistent and interpretable estimates of the objects’
physical property variables, and (2) by conditioning on the
estimated physical property variable, the model can carry
out more accurate dynamics estimation and more efficient
manipulation, especially for objects with extreme or out-of-
distribution physical properties.

II. RELATED WORK

A. Model Learning for Robotic Manipulation

Analytical physics-based models facilitate a wide span of
robotic manipulation tasks [17, 34, 53]. However, building
accurate physics models is often infeasible in the real world

due to unobservable physics properties such as mass, friction,
and stiffness, occluded surfaces of geometry, sensitivity to
parameter estimates, and the high computational expense of
simulating deformable objects. To mitigate these issues, recent
approaches apply learning-based techniques to obtain dynamics
models directly from sensory inputs [7, 33, 51, 18, 11, 2].
Graph-based representations and GNNs have been proven
effective in modeling the complex behaviors of non-rigid
objects due to their ability to capture spatial relational bias [3,
, 23, 27, 37, 47]. Prior work has explored the application
of graph-based dynamics models on a variety of material
types, including rigid bodies [23, 19, 29], plasticine [39, 40],
clothes [36, 27, 35, 30], fluids [22, 37], and granular matter [47].
However, nearly all of these approaches focus on a single
type of material and fail to consider variation in physical
properties, thus limiting their generalization and adaptation
capabilities. In contrast, our method considers a wider range
of materials and variations in physical properties in a single
property-conditioned graph-based neural dynamics models, and
this enables our approach to adaptively estimate the unknown
physical properties of unseen objects through interaction.

B. Physical Property Estimation and Few-Shot Adaptation

Estimating and adapting to the physical properties of
unseen objects is an inherent challenge in various robotic
applications. Previous works have attempted to infer physical
properties by tweaking parameters in physics-based simula-
tions [8, 44, 25, 12, 42, 49] or utilizing extra modalities,
e.g., tactile signal [38, 45, 52], but these approaches have
a high demand for the object’s full state information, or
require extra sensors. In comparison, adaptively learning
explicit physical property variables [1, 22, 50, 6, 24, 30] or
low-dimensional latent representations that implicitly encode
physical properties [21, 10] in a neural network only requires
partial observations and few-shot exploratory interactions as
input. A line of work goes further by using the large vision-
language models to infer physical properties solely from static
observation [13, 46], but these estimations are rough and do
not involve actual interactions. For estimation/adaptation from
interactions, previous efforts were still limited to simulations
or focused only on single types of materials, e.g., rigid objects.
There is also a dilemma in choosing the representation form:
explicit variables suffer from domain gaps such as the sim-
to-real gap, yet latent representation has relatively lower
interpretability. In contrast, our approach incorporates a graph-
structured model within an inverse optimization framework,
offering interpretability, generalizability to objects beyond the
training distribution, and applicability to a broader array of
material types, including rigid boxes, ropes, cloths, and granular
substances, in the real-world scenario.

III. METHODS

We first introduce the problem formulation in Sec. III-A.
Then, we introduce the perception module and the structure
of our physical property-conditioned graph-based dynamics
model in Sec. III-B. We discuss the test-time adaptation



Rope

Rigid box

¢: Center of
Pressure (CoP)

(a) Material-conditioned graph-based neural dynamics

Rigid box

Propagation
" o7, 2
| A A o
h ¢: Granularity m ¢: Stiffness Decoder '/ t+1 t+1
Granular object Cloth f+ Material-conditioned GBND model Granular object Cloth
1
Current state and action :
:
1
1
1
1
1
=l ]
.2 —_ ' —
£ v é =~
Z 2P0 __ B
5 Zt+1 - f(ztauta ¢’0) 5
2
L . A
8.4 ...... :---mlnECD(Zt+17zt+1) t
—-
a 1
= [}
=] 1
2 :
=9} 'r L]
= U] - TR e |
é Y
Sampled physical parameters 5Pn o 5% — - h* -
p{quy g } Zt+1 - f(ztautaqsn) Zt—l—l _f(zhut’Qb )
0y, »¥Pn

Prediction with sampled ¢’S

Prediction with optimal d)*

Fig. 2: Overview of proposed framework: AdaptiGraph. (a) Our graph-based dynamics model f is conditioned on the discrete material
type and continuous physical parameters ¢. ¢ is encoded as the node features, which will be propagated and updated in the model training
process. Our model can accurately predict the future state 21 for a variety of objects with different physical properties. (b) Our framework
performs physical property estimation for few-shot adaptation. This is achieved through an inverse optimization process to estimate the
optimal physical parameters as predicted by the learned dynamics model f. The optimal physical parameter ¢* is identified by minimizing
the cost function, which is defined as the Chamfer Distance between the predicted graph state and the actual future graph state.

algorithm for physics property estimation in Sec. III-C. Finally,
in Sec. III-D, we introduce how we perform closed-loop control
for downstream manipulation tasks.

A. Problem Formulation

Our aim is to learn a dynamics model, f, that is conditioned
on the material type M and continuous physical property
variable ¢, and develop a test-time few-shot adaptation scheme
to infer the physical property variable for unseen objects.
Specifically, the dynamics model predicts how the environment
will change if the robot applies a given action:

21 :f(zt7ut;¢7M)7 (D

where M indicates the material type (e.g., rigid, granular, rope,
cloth), ¢ indicates material-specific physical property variables,

and wuy, z¢, 2441 are the robot action, current environment state
at time ¢, and the next state at time ¢ + 1, respectively. In
our approach, we train the dynamics model to minimize the
accumulated future prediction loss.

By conditioning on M and ¢, the model learns to predict
material-dependent physical behaviors, based on which we can
perform physical property estimation through the following
optimization problem:

T

¢* = arg m(gn Z cost(Z441, 2t41),
t=1

(@)

where T is the iteration number indicating the number of
interactions with the unseen object, and cost(-, -) is the cost
function measuring the discrepancy between the predicted



future state Z;, 1 and the observed state z;y1.

B. Material-Conditioned Graph-based Neural Dynamics Model

We propose to instantiate the dynamics model with a graph
neural network. Following prior work on graph-based neural
dynamics (GBND) [22, 47, 39, 40], we define the environment
state as a graph: z, = G, = (W1, &), where V; is the vertex
set representing object particles, and &; denotes the edge set
representing interacting particle pairs at time step ¢. Given the
point cloud input, the object particle positions are determined
by the farthest point sampling method [32], which ensures
sufficient coverage of the object’s geometry. We construct
edges between particles based on a spatial distance threshold d.
We also sample particles on the robot end-effector and construct
relations between robot particles and object particles.

The main improvement of our model over previous works
based on GBND is our material- and physical property-
conditioning module (Fig. 2a). Suppose a vertex v; ; € V; has
material M; and physical property variable ¢;. We incorporate
this material information into the vertex features along with the
3D position information over h history timesteps x; ;—p.; and
the vertex attribute ¢, which indicates whether the particle
belongs to an object or the robot end-effector. Formally,
Vig = (Tit—nt,C 4 Piy M;) € Vi The history positions
implicitly encode the velocity information. Empirically, we
choose h = 3. The relation features between a pair of particles
is denoted as e+ = (w,u,cf ;) € &, where 1 < w,u < |V
are the receiver particle index and the sender particle index
of the k*" edge respectively. The edge attribute cj, , contains
information such as whether the sender and receiver belong to
the same or different objects.

The constructed vertex and edge features are first fed into
the vertex encoder f};"“ and the edge encoder fg"¢ respectively
to get the latent vertex and edge embeddings h.,, + and A, +:

enc

o, =[5 (vie),  hd .= f¢ 3)

Then, an edge propagation network f2"°” and vertex propa-
gation network fI"°” performs iterative update of the vertex
and edge embeddings to perform multi-step message passing.
Specifically, for{ = 0,1,2,--- , L—1, a single message passing
step is as follows:

(vw,tv Uu,t)~

Wt = FEP (bl 1o ), ©))
WobL =P (hl, ., Y B, (5)
JEN (vie)

where N (v; ;) indicates the index set of edges in which vertex
1 is the receiver at time ¢, and L is the total number of message
passing steps. Finally, one vertex decoder fdec predicts the
system’s state at the next time step: 0; 441 = dec(hﬁh ).
Translation equivariance. Translation equivariance is a
desired property for dynamics models. Formally, for any global
3D translation added to the particle locations, the predictions
should also be translated identically. We enforce translation
equivariance by passing the position difference of receiver and
sender particles to the edge encoder fg", instead of passing
absolution particle positions to the vertex encoder fy*¢.

Training. To regulate the cumulative dynamics prediction
error, we supervise the model’s prediction results on K
prediction steps and perform backpropagation through time
to optimize model parameters. In practice, we choose K = 3
for all tasks for balancing efficiency and performance. We use
MSE loss on predicted object particle positions as the loss
function:

'C:ZHZtﬂ—f(2t7ut;¢7M)H§7 (6)
t

To obtain training data at scale, we generate diverse object
trajectories by randomizing robot actions and object configu-
rations using physics-based simulators. Most importantly, we
randomize the material configuration for each instance in the
dataset. To achieve this, we identify the physics property ¢ and
randomize the property over a wide range of feasible values.

C. Few-Shot Physical Property Adaptation

After learning the material-conditioned GBND model, we
deploy the model to objects with unknown physical properties
in the real world. Inspired by human’s ability to reason about
objects’ physical properties by interacting with them, we design
an inverse optimization pipeline through few-shot curiosity-
driven interaction.

Specifically, to estimate the physical property variable, the
robot actively interacts with the object. In each iteration, it
selects the action that maximizes the predicted displacement of
the object. Intuitively, the action that maximizes displacement
is likely to reveal more information about the object’s physical
properties than random actions would.

After each interaction, the robot updates its estimate of the
object by minimizing the dynamics prediction error from pre-
vious interactions. As the robot undergoes several interactions,
the estimation of physical property tends to stabilize, reaching
the final optimized value.

In our experiments, we adopt a fixed number of iterations
for adaptation. We measure the displacement of the object by
computing the Chamfer Distance (CD) between the current
state z; and the predicted state Z;:

=D minle—yl3+ > min lle—yl3, )

TEV: ye yevt

ﬁCD Zt, Zt

where f)t and f)t denote the vertex sets at state z; and Z;,
respectively. The actions for curiosity-driven interactions are
optimized using the Model-Predictive Path Integral (MPPI) [48]
trajectory optimization algorithm to maximize the above
Chamfer Distance.

For inverse optimization at the ¢*” interaction step, we adopt
gradient-free optimizers including Bayesian Optimization (BO)
for single-dimensional physical property variables and CMA-ES
for multi-dimensional variables. We instantiate the optimization
problem described in Eq. 2 by specifying the cost function
cost(Z;+1, zi+1) as the Chamfer Distance between the dynamics
prediction and the true outcome after each interaction:

tth



t—1

¢, = arg min D Lep(Fit, zit),
1=0

®)

where Z;11 = f(zi, ui; ¢, M).

For some materials whose physical properties span a large
range (e.g., stiffness for ropes), the test object can potentially
fall outside the training distribution of the model. Our material-
conditioned model allows for generalization beyond the training
domain by directly setting the domain of ¢? at the adaptation
stage to be an extension of the maximal range of ¢ in the
training data. Specifically, the minimum value and maximum
value for (b is ¢min_0-2(¢max_¢min) and ¢max +0~2(¢ma:c_
Omin)» Where @paq and @iy, are the maximum and minimum
value of ¢ in the training dataset.

D. Closed-Loop Model-Based Planning

Using the estimated physics parameter g?), the learned model f
adapts to new objects, yielding lower dynamics prediction errors
on the few-shot, curiosity-driven online interaction dataset.
Thus, we can also use the adapted model to perform closed-
loop planning for material-specific manipulation tasks within a
Model Predictive Control (MPC) framework [5]. The improved
dynamics prediction accuracy after few-shot adaptation will
help the robot manipulate the object more efficiently and
effectively towards goal configurations.

Concretely, the model-based control pipeline is defined as
follows: given the state space Z and the action space U, the
cost function is a mapping from Z x U to R. For each starting
state zg € Z, we iteratively sample actions {u;}7_; in the
action space, apply the learned dynamics model to predict the
outcome, and apply the MPPI trajectory optimization algorithm
for the action sequence {u;} that minimizes the cost function.
In our experiments, the cost function includes a task-related
term that measures the distance from the current state to the
desired target, along with other penalty terms for infeasible
actions and collision avoidance. Please refer to Sec. B.2 of the
supplementary material for details.

IV. EXPERIMENTS

In this section, we evaluate the proposed framework across
a diverse range of object manipulation tasks. Our experiments
are designed to answer the following questions: (1) Is the
GBND model capable of accurately predicting the movements
of objects with varied physical properties? (2) Can the test-
time adaptation module effectively estimate real-world physical
properties of objects through few-shot interactions? (3) To what
extent does the integration of the adaptation module enhance
the model’s ability for model-based planning in the downstream
manipulation tasks?

A. Evaluation Materials and Corresponding Tasks

To demonstrate the modeling power of our framework for
diverse materials, we implement one task for each of the
4 material categories: rigid box pushing, rope straightening,
granular pile gathering, and cloth relocating.
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Fig. 3: Real-world setup. (a) Our study involves 22 objects cat-
egorized into four types of materials, each with distinct physical
characteristics: (i) 9 varieties of ropes, such as cotton ropes and
cables, (ii) 9 granular materials, including items like toy blocks and
coffee beans, (iii) 5 pieces of cloth made from different fabrics like
cotton and synthetic fibers, (iv) 2 boxes of varying shapes, whose
centers of pressure we alter by placing weights inside them. (b) The
dashed white circles show four calibrated RGB-D cameras mounted
at four corners of the table. The robot is outfitted with specialized
end effectors to interact with the objects in its operational area. (c)
We employ three different tools for specific tasks: (1) a flat pusher
for granular piles gathering, (2) a cylindrical pusher for pushing
rigid boxes and straightening ropes, (3) an xArm gripper for cloth
relocating.

Rigid Box Pushing. The task is to use a point contact to
push a box to a target position and orientation, which demands
precise control over the translation and rotation motions in
the presence of uncertainty of the center of pressure [54]. The
physical property variable is defined to be the normalized 2D
position of the center of mass from the top view. As illustrated
in Fig. 2a, it is a 2-dimensional variable ¢ = [c,, ¢,| with
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Fig. 5: Quantitative results on dynamics prediction. We validate
our model’s effectiveness on a test set of 200 objects with distinct
physical properties for each material type in simulation. Across all
types of materials, our approach surpasses the baseline with respect
to both the precision and consistency of predictions.

range ¢, ¢, € (—0.5,0.5). We use the mean squared error as
the cost function.

Rope Straightening. The task is to rearrange the rope to a

target configuration on the tabletop. We consider the stiffness
of the rope as the physical property variable and define it as a
normalized continuous variable ¢ € (0,1) where ¢ = 0 and
¢ = 1 correspond to the minimal and maximal stiffness in the
simulator, respectively.

Granular Pile Gathering. The target is defined as a region
on the tabletop, and the task is to gather the granular piles
in an arbitrary initial distribution into the target region. We
consider the granular size/granularity as the physical property
variable and use a normalized variable ¢ € (0, 1) to represent
the size of a single grain in the pile.

Cloth Relocating. The task is to use grippers to grasp the
cloth and drag it on the table to place the cloth in the target
configuration. We use a continuous variable ¢ € (0,1) to
represent the stiffness of the cloth, which affects whether a
piece of cloth will wrinkle or fold during a drag.

B. Environment and Evaluation Setup

Simulation. Simulations of deformable and granular materials
are conducted using NVIDIA FleX [22, 31], a position-based
simulation framework designed to model interactions between
objects of varying materials across multiple tasks, including
pushing granular objects [47], straightening ropes [26], and
unfolding clothing [14]. Additionally, Pymunk [4] is utilized
for simulating boxes that vary in shape and center of pressure.
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Fig. 6: Experimental results on physical property estimation. Through the inverse optimization process, we estimate the physical properties
of real-world objects. For each material type, we display the optimization trajectories alongside their associated costs, measured by the Chamfer
Distance, for two objects with notably contrasting physical attributes. The rightmost column demonstrates that our estimated values align with
human perceptions regarding the perceptual order of objects based on their physical property values, such as stiffness and granularity.

For each material type, a dataset consisting of 1000 episodes
is generated, with each episode featuring 5 random robot-
object interactions. Within each episode, an object is assigned
random physical properties (such as stiffness and granule size)
that fall within a pre-defined range. To simulate interactions
between the robot and the object, five random trajectories,
involving either pushing or pulling actions, are created for every
object. Throughout these interactions, data on the positions of
particles and the robot’s end-effector are gathered, which are
then utilized for model training. More details on the simulation
environment and data collection can be found in Sec. B.1 of
the supplementary material.

Real World. Fig. 3 presents the general setup in both the
simulator and the real world. In the real-world experiments,
we use a UFACTORY xArm 6 robot with 6 DoF and xArm’s
parallel gripper. For rigid box pushing and rope straightening
tasks, we substitute the original grippers with a cylinder
stick while we utilize a flat pusher for the granular pile
manipulation task. These tools are 3D-printed and the same with
the simulation setup to mitigate the sim-to-real gap. We fix four
calibrated RealSense D455 RGBD cameras at four locations
surrounding the workspace to capture the RGBD images at
15Hz and 1280x720 resolution. The robot manipulates objects
within a 70 cmx45 cm planar workspace.
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Fig. 7: Qualitative results on closed-loop feedback planning. We present a qualitative comparison of MPC performance by contrasting our
method across four tasks with the baseline model that does not employ physical property adaptation. Visualizations shown here demonstrate
that our method effectively achieves the target configuration, whereas the baseline, even with more action steps, still exhibits a noticeable

discrepancy compared to the target.

Implementation Details. In all experiments, we assume the
material type M to be known, and the particles of the same
object share the same M and physical property variable ¢. To
extract object point clouds from raw RGB-D inputs, we deploy
the GroundingDINO [28] and Segment Anything [20] model
to detect and segment the table surface and objects. For the
target object, we fuse the segmented partial point cloud from
4 views and apply a farthest point sampling method to a fixed
pointwise distance threshold. For the cylinder stick and gripper,
we use one particle to represent the end effector position, and
for the flat granular pusher, we use 5 points to represent the
end effector position and geometry.

Baselines. To demonstrate the importance of parameter
conditioning, we consider two baseline methods in our main
experiments: (1) GNN uses a graph neural network with the
same architecture of our model, which is trained separately
for each material category, but not conditioned on the physics
parameter ¢. (2) Ours w/o Adaptation is an ablated version of
our material-adaptive model by using only the mean physical
property variable ¢ as input in deployment. In Sec. A of the

appendix, we include additional comparisons by finetuning
the GNN baseline and adapting a physics-based simulator to
demonstrate the effectiveness of our proposed conditioning
method and the benefits of learned dynamics models.

C. Forward Dynamics Prediction

Fig. 4 shows the qualitative comparisons between our
material-conditioned GBND model and the baseline model
Ours w/o Adaptation. The comparisons reveal that, with
estimated physical property, the model’s prediction matches the
interaction outcome more accurately. For instance, in the rope
scenario, the baseline model’s prediction fails to capture both
the below-average stiffness of the yarn object and the above-
average stiffness of a polymer rope. In contrast, our method
successfully accounts for variations in their motions, exhibiting
more precise forecasts of unusual behaviors. Likewise, our
model surpasses the baseline in scenarios involving materials
with extreme physical properties, such as rigid boxes that differ
in center of pressure, granular materials of various sizes, and
clothes of differing stiffness.
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Fig. 8: Quantitative results on planning. For each task, we use the same target configuration and initial configuration for the baseline
method and our approach. We repeat each experiment-model pair 5 times and visualize (i) the median error curve w.r.t. planning steps (area
between 25 and 75 percentiles are shaded) and (ii) the success rate curve w.r.t error thresholds. Our approach consistently outperforms the
baseline method by being more accurate and using fewer action steps.

Fig. 5 further validates our model’s effectiveness on a
simulated test set of 200 objects each with distinct physical
properties. Our approach surpasses both baselines, GNN and
Ours w/o Adaptation, demonstrating superior accuracy and
stability for all the material types addressed in our study. Par-
ticularly, for rigid boxes, our model significantly outperforms
the baselines with a near-perfect prediction accuracy.

D. Physical Property Estimation

For physical property estimation, we randomly initialize the
object location on the tabletop and perform 10 interactions.

Rigid Box. We use two boxes with different sizes: the sugar
box (175mmx89mm) and the cracker box (210mmx 158mm).
We initialize the center of pressure (CoP) to be at 4 different
locations for each box by putting weights at different locations
inside the box. A visualization of all CoPs’ normalized positions
and our predicted CoP positions is shown in Fig. 6a. From the
figure, we can observe that for all 8 data points, the predicted
CoP positions are close to the ground truth CoP position.
Moreover, the heatmap error shows that the low-error region
for the CoP location forms a single global minima, and the
predicted CoP positions converge to around the minimum value
after around 5 interaction steps.

Rope. We test our model on 9 different types of ropes. As
shown in Fig. 6b, the model can extrapolate beyond the training
data range [0.0, 1.0] and estimate out-of-range values for ropes
with extreme stiffness/softness. The mean CD on the interaction
observations gives clear and unique minimum points, and the
stiffness ranking of the different types of ropes is consistent

with the actual stiffness from human perception.

Granular. As shown in Fig. 6¢, we test our model on 9
different types of granular objects by selecting representative
objects of each granularity level, ranging from approximately
Iem to 3cm. Results show that the predicted granularity ranking
is consistent with the actual granular size. The model correctly
predicts granola as the smallest grains and the toy blocks as
the largest grains.

Cloth. As shown in Fig. 6d, we test our model on 5 different
cloth instances, each with a different fabric material. The
model correctly identifies the modal as the softest cloth (lowest
stiffness). As another soft material, the flannel cloth is also
estimated to be softer than cotton and microfiber cloths. While
the training dataset does not contain any plastic-like materials,
the model generalizes to a piece of plastic sheet and correctly
predicts that it is very stiff.

Furthermore, in Sec. C.1 of the supplementary material,
we present additional experiments that consider multiple
parameters, namely the stiffness and friction of ropes. The
results demonstrate that our method can be extended to recover
more than one type of physical property simultaneously and
yield better accuracy in dynamics prediction.

E. Model-Based Planning

We further demonstrate that our material-conditioned GBND
model and physical property adaptation can be integrated into
an MPC framework to achieve a series of robotic manipulation
tasks. Our experiments cover 4 distinct tasks outlined in
Sec. IV-A, with a maximum limit of 10 planning steps



imposed. Across all material types, our approach consistently
meets the objectives within the allotted planning steps, unlike
the baseline approach Ours w/o Adaptation, which fails to
achieve the goals due to its disregard for physical properties.
For instance, in the rigid box pushing task, the baseline
method incorrectly assumes the geometric center as the center
of pressure, leading to inaccurate predictions of the box’s
straightforward movement post-push. Conversely, our method
dynamically adjusts the center of pressure estimations during
the interactions, thereby reaching the desired configuration in
just three steps. Furthermore, as depicted in Fig. 1, the dynamics
of pushing granular objects of different sizes vary significantly
- larger granules push forward while smaller ones tend to stack
and leave a trail. The baseline method, treating the motion of toy
blocks and average granular piles similarly, fails to accumulate
them in the target zone. Our method, however, identifies and
adapts to the varied dynamics of granular materials, successfully
completing the task.

Fig. 8 offers quantitative results comparing the performance
of our method against the baseline method Ours w/o Adapta-
tion, focusing on efficiency and error tolerance. Across four
distinct tasks, our approach demonstrates superior performance,
achieving lower errors within a constrained number of planning
steps and attaining a higher success rate under a stringent error
margin.

V. CONCLUSION AND FUTURE WORK

We present AdaptiGraph, a unified graph-based neural
dynamics framework for modeling multiple materials with
unknown physical properties. We propose to condition the
dynamics model on physical property variables and perform
online few-shot physical property estimation. Experiments
show that AdaptiGraph can precisely simulate the dynamics of
multiple deformable materials, and adapt to objects with varying
physical properties during deployment. We demonstrate the
effectiveness of our framework across a wide range of objects
in manipulation tasks.

AdaptiGraph is a flexible framework. Currently, we train our
model on four material types (ropes, granular objects, rigid
boxes, and cloth) and a single type of physical property for each
material. A future direction of our work is to extend our method
to include more object materials and a more comprehensive
set of physical properties that determine object dynamics. It
is also possible to model heterogeneous object interactions
using our framework by learning the dynamics model on a
material-conditioned heterogeneous graph.
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A COMPARISON WITH ADDITIONAL BASELINES
A.1 Ablation on Material Conditioning

Expanding on Fig. 5 from the main paper, we introduce an
additional baseline, Unified GNN, to study the importance of
material type conditioning. As outlined in Tab. I, we establish
the following baselines: (1) Unified GNN, a singular GNN
model trained on a combined dataset of rope, cloth, and
granular materials, without any conditioning on material types
or physical properties; (2) Separate GNN, which employs
a graph neural network with the same architecture as our
model but lacks conditioning on physical parameters, and is
independently trained for each material category; (3) Ours w/o
Adaptation, an ablated version of our material-adaptive model
conditioned on the mean physical property variable ¢.

The quantitative findings are displayed in Fig. 9. Within
this assessment, the Unified GNN has the lowest performance,
with the highest variance, showing that it fails to model the
complex dynamics brought by distinct material types and
physical properties. The Seperate GNN baseline performs better
on individual material types than the Unified GNN, reaching
comparable performance with Ours w/o Adaptation. However,
the lack of physical property adaptability has led to inaccuracies.
Overall, Ours has achieved the best performance in all material
types. The results have demonstrated the relative importance
of material conditioning, physical property conditioning, and
online adaptation in dynamics prediction performance.

A.2  Adaptation Using Different Base Models

In our main paper, we have showcased the superior per-
formance of our model in terms of dynamics prediction
error when compared to two baseline models: GNN, which
does not use physical property conditioning, and Ours w/o
Adaptation, where the online adaptation module is removed. In
this section, we further compare our model to (1) simulators
incorporating physical property adaptation and (2) fine-tuning
unconditional GNN. We evaluate their dynamics prediction
error after adaptation in few-shot real-world interactions.

Settings. We employ the same simulators used for generating
our training data: FleX [22, 31] for deformable objects and

Unified  Separate Ours w/o
Method GNN  GNN  Adaptation O
Cond. on material type? X v v v
Cond. on physical property? x 4 v v
Online adaptation? X } 4 4 v

TABLE I: Difference in baseline models. We ablate the online
adaptation, material type conditioning, and continuous physical
property conditioning modules in the listed baselines. The quantitative

results are shown in Fig. 9.
Unifyied Sepérate Oursvwlo
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GNN GNN Adaptation GNN GNN  Adaptation
(b) Cloth

(a) Rope

0.25 4 0.06 q

0.20 4 0.05

0.15 4 0.04

CD (m)
CD (m)

0.10 A 0.03

0.05 A 0.02

0.00 -

T T
Ours Ours

0.030

0.025 A

0.020 -

CD (m)

L

Unified Seperate Ours w/o
GNN GNN Adaptation

(c) Granular object

v

T
Ours

0.010

Fig. 9: Quantitative results for ablation study. We assessed our
method and the baselines, as outlined in Tab. I, over 200 objects
possessing diverse physical parameters across rope, cloth, and granular
materials.

Pymunk [4] for rigid boxes. Given the observed point cloud,
we map the point cloud to object states in simulation with
a perception model and then use the simulators to perform
dynamics rollout and optimization-based physical property
estimation.

We design category-specific perception models to mitigate
the sim-to-real gap. For boxes, we extract the 4 corners of
the box from the top view and create an identical 2D box in
Pymunk. For ropes, we apply mesh reconstruction based on
alpha shapes [9] to derive the rope mesh in the FleX simulator.
For clothes and granular objects, we extract the contour of
the point cloud’s projection on the table surface, and construct
object instances, i.e., a piece of cloth or granular pieces, that
exactly cover the contour region.

Results. From Fig. 10, we can observe that our method,
with online adaptation, exhibits the lowest dynamics prediction
error. It achieves an error reduction of 90.8% for rigid boxes,
7.9% for ropes, 4.0% for clothes, and 9.0% for granular
objects compared to our model without adaptation. Notably,
the error reduction ratio surpasses that achieved by fine-tuning
an unconditional GNN-based dynamics model. Compared
with simulator-based physical property adaptation, our model
demonstrates 6.0% lower dynamics prediction error for rigid
boxes, 5.2% for ropes, 10.3% for clothes, and 8.7% for granular
objects. We attribute this improvement to the inherent system
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Fig. 10: Quantitative comparison with baselines adaptation approaches. We report the mean and standard error of the dynamics prediction
errors after online adaptation on 5 interactions. The numbers denote the mean value of each bar. For both material categories, our method
achieves the lowest error across all methods after adaptation. Error metrics: rigid box - MSE, others - CD.

identification error and the instability of the simulator. Using
a learning-based dynamics model directly on point clouds
enhances our model’s robustness to noisy visual inputs.

Moreover, our model is significantly faster than simulators.
Running the Bayesian optimization algorithm for 50 iterations
takes approximately 7 seconds for our model on a desktop
computer equipped with an 19-13900K CPU and an NVIDIA
GeForce RTX 4090 GPU, whereas it takes approximately 900
seconds for the FleX simulator.

B ADDITIONAL IMPLEMENTATION DETAILS

B.1 Simulation and Data Collection

For training our GBND model, we generate datasets en-
compassing variable physical properties in simulators. In
FleX [22, 31], we render the robot workspace and the XxArm6
robot mesh through OpenGL [41] from four camera angles to
closely mirror our real-world configuration. In Pymunk [4], the
robot pusher is represented as a circular shape with a radius of
Iem. Fig. 11 shows the simulation setup for our data collection.
The subsequent paragraphs detail the data generation process
for each material type in the simulation.

Rigid Box. As shown in Fig. 11a, a circular rigid pusher
interacts with a rigid box from random positions and angles.
The length of the rigid box is uniformly sampled from 150~300
mm and the width is uniformly sampled from 50~200 mm.
The center of pressure (CoP), represented by a 2-dimensional
normalized coordinate in (—0.5,0.5)2, is sampled uniformly
over the box surface. The friction coefficient between the box
and the table is fixed as a control variable. We generate 1000
data episodes, each containing 1 pushing action on 1 box with
random size and CoP.

Rope. As shown in Fig. 11b, we use a cylinder pusher with
a radius of lcm to randomly interact with a simulated rope.
The workspace in the simulation measures 90 cmx70 cm. We
uniformly randomize the length, thickness, and stiffness of the
rope. We collect 1000 episodes of data, each comprising 5
continuous random pushes on one rope.

Cloth. The cloth simulation environment is created following
the approach used in SoftGym [26], as shown in Fig. 1lc.
For the cloth properties, we vary the stretch stiffness (which
determines resistance to elongation), bend stiffness (resistance
to bending), and shear stiffness (resistance to sliding or twisting
deformations). We randomly create rectangular clothes with
lengths and widths uniformly distributed from 19 to 21 cm
and 31 to 34 cm, respectively. We collect data across 1000
episodes, with each episode involving 5 continuous random
interactions on one piece of cloth.

Granular Object. Adhering to the setup in [47], we use
irregular polygonal meshes to represent granular objects, as
shown in Fig. 11d. The scale of the granules is uniformly
sampled in 1~3 cm. We also randomize the number of granular
objects and the initial coverage area of the pile. The collected
data consists of 1000 episodes, each comprising 5 continuous
random interactions on one granular pile.

B.2 Model-Based Planning

We apply the MPPI trajectory optimization algorithm for
model-based planning. Given the dynamics model z;1; =
f(z¢,us) (here we omit the material and physical property
conditions for convenience), the cost function we minimize is:

©)

where the task term ¢(zr, z*) measures the distance from the
current state to the target z*, and the penalty term I(zg, uo.7—1)
produces high cost for infeasible actions.

T (uo:r—1) = (27, 2%) + (20, vo:7-1)5

Task term. For rope straightening and cloth relocating, the
cost term is defined as the Chamfer Distance between the
current state zp and the target state:

¢(zr,2") = CD(z1,2")

For granular pile gathering, we use the nearest distance dist.« (+)
from object particles to the target rectangle:

! > dist.- (2),

- |ZT| rezr

(10)

¢(2r,2") (1)
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(a) Rigid box (b) Rope

(c) Cloth (d) Granular object

Fig. 11: Simulation environment visualization. NVIDIA FleX is employed to create simulations of environments featuring ropes, cloths,
and granular objects, incorporating a robot for interactions within a unified workspace. Additionally, we utilize Pymunk for simulating

environments for rigid boxes with varying center of pressure locations.

Heuristics (Ours) Uncertainty-Driven

Object

Estimation ¢ Variance 0'72rB Estimation ¢ Variance 072”3
Rope 1 1.09 0.029 1.20 0.024
Rope 2 -0.02 0.025 -0.01 0.035
Rope 3 -0.05 0.030 0.00 0.029
Rope 4 0.88 0.020 0.83 0.016
Rope 5 0.67 0.018 0.63 0.019

TABLE II: Uncertainty-driven identification results. We show the
estimated parameter ¢ using both interaction selection methods for
10 interactions and the variance of the belief distribution o2  after
optimization. Better results are in bold.

For rigid box pushing, since we have the correspondence
between the observed box corners and the target corners, we
use the Mean Squared Error (MSE):

¢(zr,2*) = MSE(z7, 2¥). (12)

Penalty term. For all tasks, the penalty cost is defined as

1(z0, up:r—1) = max 1{z ¢ W}

reVr ( 1 3)
+ max ]]-{”xeef - xoij < dmin}7

Teef,Zobj € V0

where W is the robot workspace; V; is the particle set in state
25 Teer and xqp; represent end-effector and object particles,
respectively. Thus, the penalty term penalizes actions that make
the object particles move out of the workspace and the actions
that will make the end-effector contact the object in zy. We set
dmin = 2cm except for clothes where dy,;, = 0 as the grasping
action allows contact.

C DISCUSSION AND POTENTIAL EXTENSIONS
C.1 Multiple Properties Recovering

Expanding on one-dimensional physical parameter condi-
tioning for deformable objects, we designed an experiment to
show that our method can also be applied to more than one
physical property.

We consider ropes with 2-dimensional physical proper-
ties: stiffness S and friction coefficient F'. We generate the
same amount of data as our previous setting in the Nvidia
FleX [22, 31] simulator with varying stiffness and friction
and train a model conditioned on both properties. Then, we
apply the model to ropes in the real world and perform property
estimation and forward dynamics prediction. Results are shown
in Fig. 12. As we can observe, the model can give reasonable
estimates by predicting high friction in w/ sheet cases and
low friction in w/o sheet cases. The stiffness estimations for
all three ropes with and without sheets are also consistent.
The dynamics prediction error for the 2D model (conditioned
on both stiffness and friction) is generally lower than the
1D model (conditioned on stiffness only), showing that the
dynamics prediction will be more accurate by incorporating
more relevant properties.

C.2  Identification with Uncertainty

The uncertainty of the physics parameters could be an
important indicator measuring the estimation’s confidence.
Minimizing the uncertainty can also be used as an objective
when selecting interactions [43]. In comparison, our method
selects actions that produce maximum displacement on object
particles. In this experiment, we compare an uncertainty-driven
interaction selection scheme with our heuristics-driven scheme.

We can define the belief state over the parameter space based
on the dynamics prediction error:

7TB(¢) _ %]E(zi:i+1;u'i)eI €7CD(ZI‘+17f(z1',ui;d>,M))/-r} . (14)
where 7(¢) is the probability density of physics parameter ¢
under belief B, I is the set of interaction data, CD represents
Chamfer Distance, 7 is a temperature hyper-parameter which
we set to 0.05, and Z is a normalizing factor. Parameters
that give a lower dynamics prediction error will have higher
probability density mp. With this definition, a natural way to
measure the uncertainty of a belief B is by the uncertainty in
the dynamics prediction outcomes, given current state z and
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Fig. 12: Multiple physical properties estimations. We test a total of 3 ropes (A: polymer, high stiffness; B: yarn, low stiffness; C: paracord,
mid-level stiffness) on 2 different surface materials, w/ sheet in which a rubber sheet is applied to increase friction, and w/o sheet in which
the rope is directly in contact with the table. For each combination, we show the estimated friction F' and stiffness S (column a), the error
landscape over the parameter space (column b, estimation results highlighted with yellow triangles), and the dynamics prediction error after
adaptation, compared to the 1-dimensional stiffness-only model (column c).

control action u:

Eg.g'nmp [CD (f (2,30, M), f(z,u;¢', M))]. - (15)

Intuitively, by selecting an action u that can maximize the
uncertainty in the above equation, the interaction result will
most effectively discriminate parameters sampled from the
belief and thus be more effective in reducing the variance of
mp post-adaptation. In practice, we sample N parameters from
mp and calculate the above equation as an MPPI objective.

Results of using this uncertainty-driven interaction selection
approach are provided in Tab. II. We compare it with our
heuristics-based approach and test on 5 different ropes. The
estimated parameters g?) are consistent, and there is no consistent
advantage in post-adaptation variance o2 , over one another.
Given that the heuristics-based approach is computationally
faster, it is more suitable for our identification tasks.
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