
kubernetes

#kubernetes

Table of Contents

About 1

Chapter 1: Getting started with kubernetes 2

Remarks 2

Versions 2

Examples 3

Installing Minikube 3

Requirements 3

Installation 3

Usage 4

Install on Google Cloud 5

Configure kubectl 5

Google Cloud (Container Engine) 5

Minikube 5

Kubectl in command line 6

Hello World 7

Chapter 2: Calling Kubernetes API 10

Examples 10

Using Kubernetes Go Client - Outside of Cluster 10

List replicasets by given deployment with kubernetes go client 10

Rollback with the revision of replicasets using kubernetes go client 12

Rolling update with repliasets using kubernetes go client 13

Using Kubernetes Go Client - Inside of Cluster 15

Chapter 3: Kubernetes in production 16

Introduction 16

Examples 16

Deploy zookeeper cluster in production using kubernetes and ceph 16

Credits 20

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: kubernetes

It is an unofficial and free kubernetes ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official kubernetes.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/kubernetes
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with kubernetes

Remarks

Kubernetes is an open-source platform for automating deployment, scaling, and operations of
application containers across clusters of hosts, providing container-centric infrastructure.

With Kubernetes, you are able to quickly and efficiently respond to customer demand:

Deploy your applications quickly and predictably.•
Scale your applications on the fly.•
Seamlessly roll out new features.•
Optimize use of your hardware by using only the resources you need.•

Why do I need Kubernetes and what can it do?

Kubernetes can schedule and run application containers on clusters of physical or virtual
machines. However, Kubernetes also allows developers to ‘cut the cord’ to physical and virtual
machines, moving from a host-centric infrastructure to a container-centric infrastructure, which
provides the full advantages and benefits inherent to containers. Kubernetes provides the
infrastructure to build a truly container-centric development environment.

Kubernetes satisfies a number of common needs of applications running in production, such as:

co-locating helper processes, facilitating composite applications and preserving the one-
application-per-container model,

•

mounting storage systems,•
distributing secrets,•
application health checking,•
replicating application instances,•
horizontal auto-scaling,•
naming and discovery,•
load balancing,•
rolling updates,•
resource monitoring,•
log access and ingestion,•
support for introspection and debugging, and•
identity and authorization.•

This provides the simplicity of Platform as a Service (PaaS) with the flexibility of Infrastructure as a
Service (IaaS), and facilitates portability across infrastructure providers.

Versions

https://riptutorial.com/ 2

Version Release Date

1.7 2017-06-28

1.6 2017-02-22

1.5 2016-12-13

1.4 2016-09-26

1.3 2016-07-06

1.2 2016-03-17

1.1 2015-09-09

1.0 2015-07-18

Examples

Installing Minikube

Minikube creates a local cluster of virtual machines to run Kubernetes on.It is the simplest method
to get your hands dirty with Kubernetes on your local machine.

Documentation for Minikube can be found at http://kubernetes.io/docs/getting-started-
guides/minikube/

Requirements

On macOS, xhyve driver, VirtualBox or VMware Fusion hypervisors•
On Linux, VirtualBox or KVM hypervisors•
On Windows VirtualBox or Hyper-V hypervisors•
VT-x/AMD-v virtualization enabled•

To check if virtualization support is enabled, run the appropriate command from below. The
command will output something if virtualization is enabled.

On Linux
cat /proc/cpuinfo | grep 'vmx\|svm'
On OSX
sysctl -a | grep machdep.cpu.features | grep VMX

Installation

Minikube is a single binary. Thus, installation is as easy as downloading the binary and placing it

https://riptutorial.com/ 3

https://github.com/kubernetes/kubernetes/tree/release-1.7
https://github.com/kubernetes/kubernetes/tree/v1.6.0-rc.1
http://blog.kubernetes.io/2016/12/kubernetes-1.5-supporting-production-workloads.html
http://blog.kubernetes.io/2016/09/kubernetes-1.4-making-it-easy-to-run-on-kuberentes-anywhere.html
http://blog.kubernetes.io/2016/07/kubernetes-1.3-bridging-cloud-native-and-enterprise-workloads.html
http://blog.kubernetes.io/2016/03/Kubernetes-1.2-even-more-performance-upgrades-plus-easier-application-deployment-and-management-.html
http://blog.kubernetes.io/2015/11/Kubernetes-1-1-Performance-upgrades-improved-tooling-and-a-growing-community.html
https://github.com/kubernetes/kubernetes/releases/tag/v1.0.1
http://kubernetes.io/docs/getting-started-guides/minikube/
http://kubernetes.io/docs/getting-started-guides/minikube/
https://github.com/kubernetes/minikube/blob/master/docs/drivers.md#xhyve-driver
https://www.virtualbox.org/wiki/Downloads
https://www.vmware.com/products/fusion.html
https://www.virtualbox.org/wiki/Downloads
https://github.com/kubernetes/minikube/blob/master/docs/drivers.md#kvm-driver
https://www.virtualbox.org/wiki/Downloads
https://github.com/kubernetes/minikube/blob/master/docs/drivers.md#hyperV-driver

in your path.

Specify the version of minikube to download.
Latest version can be retrieved from
https://github.com/kubernetes/minikube/releases
VERSION=v0.16.0

If on Linux
OS=linux
If on OSX
OS=darwin

URL to download minikube binary from
URL=https://storage.googleapis.com/minikube/releases/$VERSION/minikube-$OS-amd64

Download binary and place in path.
curl -Lo minikube $URL
chmod +x minikube
sudo mv minikube /usr/local/bin/

Usage

To start a new cluster:

minikube start

This will create a new cluster of local virtual machines with Kubernetes already installed and
configured.

You can access the Kubernetes dashboard with:

minikube dashboard

Minikube creates a related context for kubectl which can be used with:

kubectl config use-context minikube

Once ready the local Kubernetes can be used:

kubectl run hello-minikube --image=gcr.io/google_containers/echoserver:1.4 --port=8080
kubectl expose deployment hello-minikube --type=NodePort
curl $(minikube service hello-minikube --url)

To stop the local cluster:

minikube stop

To delete the local cluster, note new IP will be allocated after creation:

minikube delete

https://riptutorial.com/ 4

Install on Google Cloud

Kubernetes was originally developed by Google to power their Container Engine. As such,
Kubernetes clusters are a first class citizen at Google.

Creating a Kubernetes cluster in the container engine requires gcloud command from the Google
Cloud SDK. To install this command locally, use one of the following options:

use the interactive installer (the easiest way for the newcomers):•

curl https://sdk.cloud.google.com | bash
exec -l $SHELL
gcloud init

download the SDK from https://cloud.google.com/sdk/ and run the appropriate install file.

For example, to install in Linux (x86_64):

•

curl -Lo gcloud-sdk.tar.gz https://dl.google.com/dl/cloudsdk/channels/rapid/downloads/google-
cloud-sdk-142.0.0-linux-x86_64.tar.gz
tar xvf ./gcloud-sdk.tar.gz
./google-cloud-sdk/install.sh
gcloud init

Once gcloud is installed, create a Kubernetes cluster with:

Give our cluster a name
CLUSTER_NAME=example-cluster

Number of machines in the cluster.
NUM_NODES=3

gcloud container clusters create $CLUSTER_NAME --num_nodes=$NUM_VMS

Configure kubectl

A Kubernetes cluster is controlled using the kubectl command. The method of configuring kubectl
depends on where Kubernetes is installed.

Google Cloud (Container Engine)

To install kubectl using the Google Cloud SDK:

gcloud components install kubectl

To configure kubectl to control an existing Kubernetes cluster in Container Engine:

gcloud container clusters get-credentials $CLUSTER_NAME

https://riptutorial.com/ 5

https://cloud.google.com/container-engine/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/

Minikube

When using minikube, the kubectl binary needs to be manually downloaded and placed in the
path.

Version of Kubernetes.
K8S_VERSION=$(curl -sS https://storage.googleapis.com/kubernetes-release/release/stable.txt)
Operating System. Can be one of {linux, darwin}
GOOS=linux
Architecture. Can be one of {386, amd64, arm64, ppc641e}
GOARCH=amd64

Download and place in path.
curl -Lo kubectl http://storage.googleapis.com/kubernetes-
release/release/${K8S_VERSION}/bin/${GOOS}/${GOARCH}/kubectl
chmod +x kubectl
sudo mv kubectl /usr/local/bin/

The minikube binary automatically configures kubectl when starting a cluster.

minikube start
kubectl is now ready to use!

Kubectl in command line

After you have a running cluster you can manage it with the kubectl command. Most of the
commands you can get with the kubectl --help command, but I show you the most common
commands, for manage and getting info about your cluster, nodes, pods, services and labels.

For getting information about the cluster you can user the following command

kubectl cluster-info

It will show you the running address and port.

For getting short information about the nodes, pods, services, etc. or any resources which got a
place on the cluster you can use the following command

kubectl get {nodes, pods, services, ...}

The output mostly one line per resource.

For getting detailed description about the resources you can use the describe flag for the kubectl

kubectl describe {nodes, pods, ...}

https://riptutorial.com/ 6

The deployed apps are only visible inside the cluster, so if you want to get the output from outside
the cluster you should create a route between the terminal and kubernetes cluster.

kubectl proxy

It will open a API, where we can get everything from the cluster. If you want to get the name of the
pods for getting information about, you should use the following command:

kubectl get pods -o go-template --template '{{range .items}}{{.metadata.name}}{{"\n"}}{{end}}'

It will list the pods for later usage.

curl http://localhost:8001/api/v1/proxy/namespaces/default/pods/{pod_name}/

Two other common command is the getting logs and the execute a command from/in the
containerized app.

kubectl logs {pod_name}
kubectl exec {pod_name} {command}

Configuring tab completion for your shell can be done with:

source <(kubectl completion zsh) # if you're using zsh
source <(kubectl completion bash) # if you're using bash

or more programatically:

source <(kubectl completion "${0/-/}")

Hello World

Once your Kubernetes cluster is running and kubectl is configured you could run your first
application with a few steps. This can be done using the imperative commands which doesn't
need configuration files.

In order to run an application you need to provide a deployment name (bootcamp), the container
image location (docker.io/jocatalin/kubernetes-bootcamp:v1) and the port (8080)

$ kubectl run bootcamp --image=docker.io/jocatalin/kubernetes-bootcamp:v1 --port=8080

Confirm that it worked with:

$ kubectl get deployments
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
bootcamp 1 1 1 1 6s

https://riptutorial.com/ 7

https://kubernetes.io/docs/concepts/tools/kubectl/object-management-using-imperative-commands/

To expose your application and make it accessible from the outside run:

$ kubectl expose deployment/bootcamp --type="LoadBalancer" --port 8080

Confirm that it worked with:

$ kubectl get services
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes 10.0.0.1 <none> 443/TCP 3m
bootcamp 10.3.245.61 104.155.111.170 8080:32452/TCP 2m

To access the services, use the external IP and the application port e.g. like this:

$ export EXTERNAL_IP=$(kubectl get service bootcamp --
output=jsonpath='{.status.loadBalancer.ingress[0].ip}')
$ export PORT=$(kubectl get services --output=jsonpath='{.items[0].spec.ports[0].port}')
$ curl "$EXTERNAL_IP:$PORT"
Hello Kubernetes bootcamp! | Running on: bootcamp-390780338-2fhnk | v=1

The same could be done manually with the data provided in:

$ kubectl describe service bootcamp
Name: bootcamp
Namespace: default
Labels: run=bootcamp
Selector: run=bootcamp
Type: LoadBalancer
IP: 10.3.245.61
LoadBalancer Ingress: 104.155.111.170
Port: <unset> 8080/TCP
NodePort: <unset> 32452/TCP
Endpoints: 10.0.0.3:8080
... events and details left out

$ export NODE=104.155.111.170
$ export PORT=8080

Once this worked you can scale up your application with:

$ kubectl scale deployments/bootcamp --replicas=4

And check the result with:

$ kubectl get deployments
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
bootcamp 4 4 4 4 30s

$ curl "$EXTERNAL_IP:$PORT"
Hello Kubernetes bootcamp! | Running on: bootcamp-390780338-2fhnk | v=1
$ curl "$EXTERNAL_IP:$PORT"
Hello Kubernetes bootcamp! | Running on: bootcamp-390780338-gmtv5 | v=1

Mind the changing pod id.

https://riptutorial.com/ 8

In order to push out a new application version run:

kubectl set image deployments/bootcamp bootcamp=jocatalin/kubernetes-bootcamp:v2

And confirm it with:

$ curl "$EXTERNAL_IP:$PORT"
Hello Kubernetes bootcamp! | Running on: bootcamp-284539476-gafwev3 | v=2

Cleaning up is finally done with:

$ kubectl delete deployment bootcamp
$ kubectl delete service bootcamp

Read Getting started with kubernetes online: https://riptutorial.com/kubernetes/topic/4099/getting-
started-with-kubernetes

https://riptutorial.com/ 9

https://riptutorial.com/kubernetes/topic/4099/getting-started-with-kubernetes
https://riptutorial.com/kubernetes/topic/4099/getting-started-with-kubernetes

Chapter 2: Calling Kubernetes API

Examples

Using Kubernetes Go Client - Outside of Cluster

package main

import (
 "fmt"

 "k8s.io/client-go/1.5/kubernetes"
 "k8s.io/client-go/1.5/pkg/api/v1"
 "k8s.io/client-go/1.5/tools/clientcmd"
)

func main() {
 config, err := clientcmd.BuildConfigFromFlags("", <kube-config-path>)
 if err != nil {
 return nil, err
 }

 c, err := kubernetes.NewForConfig(config)
 if err != nil {
 return nil, err
 }

 // Get Pod by name
 pod, err := c.Pods(v1.NamespaceDefault).Get("my-pod")
 if err != nil {
 fmt.Println(err)
 return
 }

 // Print its creation time
 fmt.Println(pod.GetCreationTimestamp())
}

List replicasets by given deployment with kubernetes go client

package main

import (
 "k8s.io/kubernetes/pkg/api"
 unver "k8s.io/kubernetes/pkg/api/unversioned"
 "k8s.io/kubernetes/pkg/apis/extensions"
 "k8s.io/kubernetes/pkg/client/restclient"
 client "k8s.io/kubernetes/pkg/client/unversioned"
 "log"
 "os"
 "strings"
)

var logger *log.Logger

https://riptutorial.com/ 10

const (
 SERVER string = "http://172.21.1.11:8080"
 RevisionAnnotation = "deployment.kubernetes.io/revision"
)

func init() {
 logger = log.New(os.Stdout, "", 0)
}

func getReplicaSetsByDeployment(c *client.Client, deployment *extensions.Deployment)
([]extensions.ReplicaSet, error) {

 namespace := deployment.Namespace
 selector, err := unver.LabelSelectorAsSelector(deployment.Spec.Selector)
 if err != nil {
 return nil, err
 }
 options := api.ListOptions{LabelSelector: selector}
 rsList, err := c.Extensions().ReplicaSets(namespace).List(options)

 return rsList.Items, nil
}

func getDeploymentByReplicaSet(namespace string, c *client.Client, rs *extensions.ReplicaSet)
([]extensions.Deployment, error) {

 selector, err := unver.LabelSelectorAsSelector(rs.Spec.Selector)
 if err != nil {
 return nil, err
 }
 options := api.ListOptions{LabelSelector: selector}
 dps, err := c.Extensions().Deployments(namespace).List(options)
 if err != nil {
 return nil, err
 }

 return dps.Items, nil
}

func getDeploymentByReplicaSetName(namespace string, c *client.Client, rs
*extensions.ReplicaSet) (*extensions.Deployment, error) {

 name := rs.Name
 index := strings.LastIndex(name, "-")
 deploymentName := name[:index]

 dp, err := c.Extensions().Deployments(namespace).Get(deploymentName)
 if err != nil {
 return nil, err
 }

 return dp, nil
}

func main() {

 config := &restclient.Config{
 Host: SERVER,
 }

 c, err := client.New(config)

https://riptutorial.com/ 11

 if err != nil {
 logger.Fatalf("Could not connect to k8s api: err=%s\n", err)
 }

 list, err := c.Extensions().Deployments(api.NamespaceDefault).List(api.ListOptions{})
 if err != nil {
 logger.Fatalf("Could not list deployments: err=%s\n", err)
 }

 logger.Printf("Deployment -------> ReplicaSet: ")

 for _, deployment := range list.Items {
 rses, err := getReplicaSetsByDeployment(c, &deployment)
 if err != nil {
 logger.Fatalf("GetReplicaSetsByDeployment Error: err=%s\n", err)
 }

 for _, rs := range rses {
 logger.Printf("ReplicaSet assioated with Deployment: rs-name=%s, revision=%s, dp-
name=%s\n",
 rs.Name, rs.Annotations[RevisionAnnotation], deployment.Name)
 }
 }

 logger.Printf("\n\nReplicaSet -------> Deployment: ")
 rsList, err := c.Extensions().ReplicaSets(api.NamespaceDefault).List(api.ListOptions{})
 if err != nil {
 log.Fatalf("Could not list ReplicaSet")
 }

 for _, rs := range rsList.Items {
 dp, err := getDeploymentByReplicaSetName(api.NamespaceDefault, c, &rs)
 if err != nil {
 logger.Fatalf("GetDeploymentByReplicaSet Error: err=%s\n", err)
 }

 logger.Printf("Deployment assioated with ReplicaSet: rs-name=%s, revision=%s, dp-
name=%s\n",
 rs.Name, rs.Annotations[RevisionAnnotation], dp.Name)
 }
}

Rollback with the revision of replicasets using kubernetes go client

package main

import (
 //"k8s.io/kubernetes/pkg/api"
 "k8s.io/kubernetes/pkg/client/restclient"
 "log"
 "os"
 // unver "k8s.io/kubernetes/pkg/api/unversioned"
 "k8s.io/kubernetes/pkg/apis/extensions"
 client "k8s.io/kubernetes/pkg/client/unversioned"
)

var logger *log.Logger

var annotations = map[string]string{

https://riptutorial.com/ 12

 "Image": "nginx:1.7.9",
 "UserId": "2",
 "kubernetes.io/change-cause": "version mismatch",
}

const (
 DEPLOYMENT string = "nginx-test"
 REVERSION int64 = 4
 SERVER string = "http://172.21.1.11:8080"
 RevisionAnnotation = "deployment.kubernetes.io/revision"
)

func init() {
 logger = log.New(os.Stdout, "", 0)
}

func rollBack(c *client.Client, dp *extensions.Deployment, revision int64) error {

 dr := new(extensions.DeploymentRollback)
 dr.Name = dp.Name
 dr.UpdatedAnnotations = annotations
 dr.RollbackTo = extensions.RollbackConfig{Revision: revision}

 // Rollback
 err := c.Extensions().Deployments("ops").Rollback(dr)
 if err != nil {
 logger.Printf("Deployment Rollback Error: err=%s\n", err)
 return err
 }

 return nil
}

func main() {
 config := &restclient.Config{
 Host: SERVER,
 }

 c, err := client.New(config)
 if err != nil {
 logger.Fatalf("Could not connect to k8s api: err=%s\n", err)
 }

 dp, err := c.Extensions().Deployments("ops").Get(DEPLOYMENT)
 if err != nil {
 logger.Fatalf("Could not list deployments: err=%s\n", err)
 }

 rollBack(c, dp, REVERSION)

}

Rolling update with repliasets using kubernetes go client

package main

import (
 // "k8s.io/kubernetes/pkg/api"
 // unver "k8s.io/kubernetes/pkg/api/unversioned"

https://riptutorial.com/ 13

 "k8s.io/kubernetes/pkg/apis/extensions"
 "k8s.io/kubernetes/pkg/client/restclient"
 client "k8s.io/kubernetes/pkg/client/unversioned"
 "k8s.io/kubernetes/pkg/util/intstr"
 "log"
 "os"
)

var logger *log.Logger

const (
 //DEPLOYMENT string = "nginx-deployment"
 DEPLOYMENT string = "nginx-test"
 RevisionHistoryLimit int32 = 5
 SERVER string = "http://172.21.1.11:8080"
 RevisionAnnotation string = "deployment.kubernetes.io/revision"
)

func init() {
 logger = log.New(os.Stdout, "", 0)
}

func rollingUpdate(c *client.Client, dp *extensions.Deployment) error {

 // New a DeploymentStrategy
 ds := new(extensions.DeploymentStrategy)
 ds.Type = extensions.RollingUpdateDeploymentStrategyType
 ds.RollingUpdate = new(extensions.RollingUpdateDeployment)
 ds.RollingUpdate.MaxUnavailable = intstr.FromInt(int(dp.Spec.Replicas))

 dp.Spec.Strategy = *ds

 // Image
 //dp.Spec.Template.Spec.Containers[0].Image = "nginx:1.9.7"
 dp.Spec.Template.Spec.Containers[0].Image = "nginx:1.9"

 // Update
 //_, err := c.Extensions().Deployments(api.NamespaceDefault).Update(dp)
 _, err := c.Extensions().Deployments("ops").Update(dp)
 if err != nil {
 logger.Printf("Update Deployment Error: err=%s\n", err)
 return err
 }
 return nil
}

func main() {
 config := &restclient.Config{
 Host: SERVER,
 }

 c, err := client.New(config)
 if err != nil {
 logger.Fatalf("Could not connect to k8s api: err=%s\n", err)
 }

 //dp, err := c.Extensions().Deployments(api.NamespaceDefault).Get(DEPLOYMENT)
 dp, err := c.Extensions().Deployments("ops").Get(DEPLOYMENT)
 if err != nil {
 logger.Fatalf("Could not list deployments: err=%s\n", err)
 }

https://riptutorial.com/ 14

 rollingUpdate(c, dp)

}

Using Kubernetes Go Client - Inside of Cluster

package main

import (
 "fmt"

 "k8s.io/client-go/1.5/kubernetes"
 "k8s.io/client-go/1.5/pkg/api/v1"
 "k8s.io/client-go/1.5/rest"
)

func main() {
 config, err = rest.InClusterConfig()
 if err != nil {
 return nil, err
 }

 c, err := kubernetes.NewForConfig(config)
 if err != nil {
 return nil, err
 }

 // Get Pod by name
 pod, err := c.Pods(v1.NamespaceDefault).Get("my-pod")
 if err != nil {
 fmt.Println(err)
 return
 }

 // Print its creation time
 fmt.Println(pod.GetCreationTimestamp())
}

Read Calling Kubernetes API online: https://riptutorial.com/kubernetes/topic/5926/calling-
kubernetes-api

https://riptutorial.com/ 15

https://riptutorial.com/kubernetes/topic/5926/calling-kubernetes-api
https://riptutorial.com/kubernetes/topic/5926/calling-kubernetes-api

Chapter 3: Kubernetes in production

Introduction

Introduce how to use kubernetes in production environment

Examples

Deploy zookeeper cluster in production using kubernetes and ceph

Dockerize zookeeper-3.4.6

Create a Dockerfile:

Image: img.reg.3g:15000/zookeeper:3.4.6

FROM img.reg.3g:15000/jdk:1.7.0_67

MAINTAINER lth9739@gmail.com

USER root

ENV ZOOKEEPER_VERSION 3.4.6

ADD Dockerfile /

ADD zookeeper/ /opt/

COPY zoo.cfg /opt/zookeeper/conf/zoo.cfg

RUN mkdir -p /opt/zookeeper/{data,log}

WORKDIR /opt/zookeeper

VOLUME ["/opt/zookeeper/conf", "/opt/zookeeper/data", "/opt/zookeeper/log"]

COPY config-and-run.sh /opt/zookeeper/bin/

EXPOSE 2181 2888 3888

CMD ["/opt/zookeeper/bin/config-and-run.sh"]

See more details

Deploy zookeeper replica controller into kubernetes cluster

You can use this command to deploy the replica-controller of zookeeper:

kubectl create -f zookeeper-rc-1.json

https://riptutorial.com/ 16

https://github.com/fabric8io/fabric8-zookeeper-docker

{
 "apiVersion": "v1",
 "kind": "ReplicationController",
 "metadata": {
 "labels": {
 "component": "zookeeper"
 },
 "name": "zookeeper-1"
 },
 "spec": {
 "replicas": 1,
 "selector": {
 "server-id": "1",
 "role": "zookeeper-1"
 },
 "template": {
 "metadata": {
 "labels": {
 "server-id": "1",
 "role": "zookeeper-1"
 },
 "name": "zookeeper-1"
 },
 "spec": {
 "containers": [
 {
 "env": [
 {
 "value": "1",
 "name": "SERVER_ID"
 },
 {
 "value": "5",
 "name": "MAX_SERVERS"
 }
],
 "image": "img.reg.3g:15000/fabric8/zookeeper:latest",
 "name": "zookeeper-1",
 "ports": [
 {
 "containerPort": 2181,
 "name": "client",
 "protocol": "TCP"
 },
 {
 "containerPort": 2888,
 "name": "followers",
 "protocol": "TCP"
 },
 {
 "containerPort": 3888,
 "name": "election",
 "protocol": "TCP"
 }
],
 "volumeMounts": [
 {
 "mountPath": "/opt/zookeeper/data",
 "name": "zookeeper-1"
 }
]

https://riptutorial.com/ 17

 }
],
 "restartPolicy": "Always",
 "volumes": [
 {
 "name": "zookeeper-1",
 "rbd": {
 "monitors": [
 "10.151.32.27:6789",
 "10.151.32.29:6789",
 "10.151.32.32:6789"
],
 "pool": "rbd",
 "image": "log-zookeeper-1",
 "user": "admin",
 "secretRef": {
 "name": "ceph-secret-default"
 },
 "fsType": "ext4",
 "readOnly": false
 }
 }
]
 }
 }
 }
}

Deploy zookeeper service into kubernetes cluster

You can use this command to deploy the service of zookeeper:

kubectl create -f zookeeper-svc-1.json

{
 "kind": "Service",
 "apiVersion": "v1",
 "metadata": {
 "name": "zookeeper-1",
 "labels": {
 "name": "zookeeper-1"
 }
 },
 "spec": {
 "ports": [
 {
 "name": "client",
 "port": 2181,
 "targetPort": 2181
 },
 {
 "name": "followers",
 "port": 2888,
 "targetPort": 2888
 },
 {
 "name": "election",
 "port": 3888,

https://riptutorial.com/ 18

 "targetPort": 3888
 }
],
 "selector": {
 "server-id": "1"
 }
 }
}

Zookeeper cluster

If you want get a zookeeper cluster with 5 nodes, you can write zookeeper-rc-2/3/4/5.json and
zookeeper-svc-2/3/4/5.json files as described above and use kubectl command to deploy them
into kubernetes cluster.

Read Kubernetes in production online: https://riptutorial.com/kubernetes/topic/9153/kubernetes-in-
production

https://riptutorial.com/ 19

https://riptutorial.com/kubernetes/topic/9153/kubernetes-in-production
https://riptutorial.com/kubernetes/topic/9153/kubernetes-in-production

Credits

S.
No

Chapters Contributors

1
Getting started with
kubernetes

cledoux, Community, Dimitris, idvoretskyi, jayantS, jkantihub,
mohan08p, Ogre Psalm33, pagid, PumpkinSeed, webdizz

2
Calling Kubernetes
API

litanhua, Rush

3
Kubernetes in
production

litanhua

https://riptutorial.com/ 20

https://riptutorial.com/contributor/558820/cledoux
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/258843/dimitris
https://riptutorial.com/contributor/2759417/idvoretskyi
https://riptutorial.com/contributor/1056133/jayants
https://riptutorial.com/contributor/6657633/jkantihub
https://riptutorial.com/contributor/4671027/mohan08p
https://riptutorial.com/contributor/13140/ogre-psalm33
https://riptutorial.com/contributor/116932/pagid
https://riptutorial.com/contributor/4383715/pumpkinseed
https://riptutorial.com/contributor/6997914/webdizz
https://riptutorial.com/contributor/7589131/litanhua
https://riptutorial.com/contributor/881626/rush
https://riptutorial.com/contributor/7589131/litanhua

	About
	Chapter 1: Getting started with kubernetes
	Remarks
	Versions
	Examples
	Installing Minikube

	Requirements
	Installation
	Usage
	Install on Google Cloud
	Configure kubectl

	Google Cloud (Container Engine)
	Minikube
	Kubectl in command line
	Hello World

	Chapter 2: Calling Kubernetes API
	Examples
	Using Kubernetes Go Client - Outside of Cluster
	List replicasets by given deployment with kubernetes go client
	Rollback with the revision of replicasets using kubernetes go client
	Rolling update with repliasets using kubernetes go client
	Using Kubernetes Go Client - Inside of Cluster

	Chapter 3: Kubernetes in production
	Introduction
	Examples
	Deploy zookeeper cluster in production using kubernetes and ceph

	Credits

