

OpenRules, Inc.

www.OpenRules.com

July-2025

OPENRULES®
DECISION INTELLIGENCE

PLATFORM

User Manual

for Software Developers

How to Integrate Business Decision

Models into IT Systems

http://www.openrules.com/

OpenRules, Inc. User Manual for Developers

2

Table of Contents

Introduction .. 5

Decision Models Organization ... 6

Creating Custom Decision Model .. 6

How Business Analysts Deal with Decision Models ... 7

Glossary .. 7

Environment... 8

Test Cases .. 9

Building and Testing Decision Model .. 9

Configuration File “project.properties” ... 10

File “test.bat” .. 10

Testing Results ... 11

Generated Reports and JSON tests .. 12

Internal Use of Maven .. 12

Using Java inside Decision Models ... 14

Java Objects inside Decision Models .. 14

Java Snippets inside Decision Tables .. 14

Using 3rd Party Java Methods .. 16

Java Snippets inside Table “Code” ... 19

Executing Decision Model from Java ... 19

Running Decision Model against Java Objects .. 19

Running Decision Model against Excel Test Cases.. 20

Running Decision Model against JSON ... 21

Code Generation ... 24

Build and Compile .. 24

Structure of the Generated Code.. 24

Logging ... 25

OpenRules, Inc. User Manual for Developers

3

Execution Path ... 26

Decision Model Deployment ... 28

Decision Model Execution Using Java API .. 29

Invocation API .. 29

API for Executed Rules ... 31

Deploying Decision Model as AWS Lambda Function ... 34

Configuring AWS Lambda .. 34

Deploying AWS Lambda ... 35

Testing AWS Lambda ... 36

Auto-generated Java Test ... 36

Auto-generated JSON Test Cases for POSTMAN... 36

Executing AWS Lambda in Batch Mode ... 38

AWS Lambda Settings .. 38

Building AWS Lambda for AWS Pipelines ... 39

Deploying Decision Model as MS Azure Function .. 39

Configuring MS Azure Function ... 39

Azure Function local testing ... 43

Deploying Azure Function .. 44

Testing Azure Function .. 45

Deploying Decision Models as RESTful Web Services ... 45

Creating RESTful Decision Service ... 45

Building RESTful Decision Service .. 46

Testing RESTful Decision Service .. 46

Executing Auto-generated JSON Test Cases from POSTMAN .. 48

Executing RESTful Service in Batch Mode .. 49

Case Sensitivity of JSON Attributes .. 50

Creating RESTful Decision Service with SpringBoot .. 50

OpenRules, Inc. User Manual for Developers

4

Building RESTful Decision Service .. 51

Testing RESTful Decision Service .. 52

Executing Auto-generated JSON Test Cases from POSTMAN .. 53

Executing RESTful Service in Batch Mode .. 54

SpringBoot Decision Services with Additional Security ... 55

Packaging Decision Models as a Docker Image .. 55

Building Docker Image ... 55

Running Docker .. 55

Testing Docker from POSTMAN .. 56

Exporting Docker Image ... 58

Using Docker Image on a 3rd party Machine .. 59

Comparing OpenRules REST and SpringBoot Deployment Options 59

Additional Deployment Properties .. 59

Rules-based Service Orchestration ... 61

Useful Tools ... 64

Generating OpenRules Tables in Excel.. 64

Search and Edit Multiple Excel Files... 66

Technical Support .. 67

OpenRules, Inc. User Manual for Developers

5

INTRODUCTION

OpenRules® helps enterprises develop operational decision services for their decision-

making business applications. OpenRules provides a set of decision intelligence

software tools. It allows business analysts to develop, test, deploy, and continue to

maintain operational business decision models.

OpenRules is oriented toward business analysts (subject matter experts) allowing them

to:

• Create business decision models in Excel files using decision tables and other

standard decisioning constructs to represent sophisticated business decision logic.

• Test/Debug/Execute Decision Models and Analyze the produced decisions.

• Deploy decision models as ready-to-be-executed decision microservices on-cloud

or on-premises.

• Connect Decision Service to a relational database.

• Learn Business Rules from your historical data.

• Find Optimal Decisions.

OpenRules includes the following tools:

- Integrated Decision Modeling Environment

- Superfast Rule Engine

- Rule Learner for rules discovery

- Rule Solver for decision optimization

- Rule DB for integration with databases

OpenRules provides a special User Manual for Business Analysts that describes

how not-technical people can do it. This manual is oriented to software developers who

can help business analysts to do all these tasks plus to integrate tested decision models

into their IT systems using different deployment options. We strongly recommend

software developers first to familiarize themselves with the first two chapters,

“Installing OpenRules Software” and “Introductory Decision Service.”

https://openrulesdecisionmanager.com/openrules-explorer/
https://openrules.blog/2021/06/15/comparing-rule-engines-performance/
https://rulelearner.com/
https://rulesolver.com/
https://ruledb.com/
https://openrules.com/pdf/OpenRulesDecisionManager.UserManualForBusinesAnalysts.pdf

OpenRules, Inc. User Manual for Developers

6

DECISION MODELS ORGANIZATION

After the installation, take a look at the simplest decision project “Hello” in the folder

“openrules.samples”. It is completely oriented to business people with no programming

expertise. As many other decision models, it has a typical decision model structure:

➢ rules – a folder called “Rules Repository” with the following Excel files:

• DecisionModel.xlsx with the Environment table that refers to all Excel files

that compose this decision model;

• Glossary.xlsx with the table Glossary that describes all decision variables

used by this decision model;

• Rules.xlsx with decision tables that implement business logic;

• Test.xlsx with tables that describe test cases.

➢ project.properties – a file that describes the project’s properties

➢ test.bat – a batch file used to build and execute this decision model (for Mac and

Linux the proper file is “test”). There is also file “build.bat” that is used for build

only, but business people do not use it as “test.bat” does everything they need.

Sometimes, when they receive some build errors, it’s better to run “build.bat” as

it includes the Maven’s flag “-e“ to produce more explanations.

➢ clean.bat – a batch file to clean up the project in situations when you want to re-

build it, e.g. after installation of the new OpenRules release.

➢ explore.bat – a batch file to start OpenRules Explorer

➢ pom.xml – a configuration file that contains information about the project and

configuration details used by Maven to build the project.

CREATING CUSTOM DECISION MODEL

To create a new decision model, you may simply copy any existing sample-project such

as “Hello” into a new folder, say “MyProject”, and make the following change in the file

“pom.xml” (see line 7):

<artifactId>Hello</artifactId>

replace to

<artifactId>MyProject</artifactId>

https://openrulesdecisionmanager.com/graphical-decision-modeling/

OpenRules, Inc. User Manual for Developers

7

Also, make sure that you are using the latest release of OpenRules (e.g. 11.1.0) by

setting

<openrules.version>11.1.0</openrules.version>

You may place your project anywhere on your hard drive. Then you may double-click on

“test.bat” to make sure it works, and then start making changes in your Excel files and

“project.properties”.

HOW BUSINESS ANALYSTS DEAL WITH DECISION MODELS

As a developer, you may want to know what business analysts are supposed to do by

looking at the introductory decision model “Vacation Days” described in the User

Manual for Business Analysts. You should understand the structure of tables “Glossary”

and “Environment” that play an important role in the integration of business and IT.

Glossary

Every decision model requires that decision variables (goals and input variables) are

described in the special table called “Glossary”. Here is an example of a glossary

described in the file “VacationDays/rules/Glossary.xlsx”:

The signature row “Glossary glossary” should have all columns inside it to be merged.

The first column “Variable Name” contains the names of decision variables exactly how

they were used inside the decision tables.

The second column “Business Concept” contains the name of a business concept to

which these variables belong. It usually corresponds to a Java class (already existing or

generated by OpenRules) and thus should not contain spaces. Note that merging cells

https://openrules.com/pdf/OpenRulesDecisionManager.UserManualForBusinesAnalysts.pdf
https://openrules.com/pdf/OpenRulesDecisionManager.UserManualForBusinesAnalysts.pdf

OpenRules, Inc. User Manual for Developers

8

inside the second column “Employee” indicates that all variables on the left belong to

this concept.

The third column “Attribute” provides technical names for all decision variables – they

usually correspond to the attribute names inside the corresponding Java classes or

JSON structures. The name should follow the Java Beans naming convention.

The fourth column “Type” describes the expected type of each decision variable such as

“String” for text variables, “int” for integer variables, “double” or “float” for real

variables, “Boolean” for logical variables, “String[]” for an array of text variables, etc.

These types should be valid Java types or other business concepts but a business analyst

doesn’t have to even know this fact and just memorize the most frequently used

keywords such as String, int, double, Boolean, Date.

A glossary may contain optional columns such as:

• “Description” with a plain English explanation of the term

• “UsedAs” with possible values Input, Output, InOut, Temp, Const

• “Domain” lists possible values of the variable, e.g. 1-120 for Age, Single, Married

for Gender.

These columns could be very helpful to understand the decision model.

You may notice that some decision variables (goals and sub-goals) are hyperlinked to

point to the decision tables (worksheets) that specify these goals. A click on the variable

inside the glossary will immediately open the xls-file and the table that specifies this

variable. It’s easy to do using Excel Hyperlinks and is very convenient for the future

maintenance of your decision models when you want to find out “what is defined where”.

Usually, a business model has one glossary. But if it’s too big, you may split it into

several tables of the type “Glossary”. For example, the sample project

“InsurancePremium” contains 3 files “GlossaryClient.xlsx”, “GlossaryDriver.xlsx”, and

“GlossaryCar.xlsx” with separate Glossary tables for glossaryClient, glossaryDriver, and

glossaryCar.

Environment

https://en.wikipedia.org/wiki/JavaBeans

OpenRules, Inc. User Manual for Developers

9

There is one more important file “VacationDays/rules/DecisionModel.xlsx” that

describes the structure of the decision model in the table “Environment”:

This table states that our decision model includes files “Glossary.xlsx” and “Rules.xlsx”.

Your model can use multiple xls- and xlsx-files located in different folders, and you can

define them all in the Environment table relative to the file “DecisionModel.xlsx”. If your

entire decision model is described in one Excel file, you don’t need to define the

Environment table at all. You can use the wildcard characters like **/*.xlsx to include

all Excel files in all sub-directories of your rules repository.

Note. Along with “include” the Environment table may use “import.java” and

“import.static” to add references to 3rd party Java classes – see below.

Test Cases

A decision model may include test-cases described in an Excel file such as

“VacationDays/rules/Test.xlsx”. The table “DecisionTest”

describes 6 test-cases. The first column “#” defines the name of the test. The second and

third columns “ActionDefine” defines the Employee's attributes you want to test. The

column “ActionExpect” specifies the expected values of the decision variable “Vacation

Days”.

Building and Testing Decision Model

OpenRules provides a decision engine capable to build, test, and deploy business

decision models on-premise or on-cloud. There are several bat-files in every project

OpenRules, Inc. User Manual for Developers

10

folder such as “VacationDays” that help a business user to execute OpenRules decision

engine to build/test decision models.

Configuration File “project.properties”

After you complete the design of your decision model and its test cases, you need to

adjust the standard file “project.properties”. An example of such a file was provided for

the introductory model as follows:

Usually, you need only two properties:

• model.file – it is usually the file “DecisionModel.xlsx” that describes the

structure of your model in the Environment table

• test.file – the name of the file that contains your test cases (it could be omitted if

you test your model directly from Java or as a service)

There could be several optional properties:

• run.class – the name of a Java class that will be used instead of the standard

OpenRules class; see an example in the project “HelloJava”;

• trace=On/Off – to show/hide all executed rules in the execution protocol;

• report=On/Off – to generate or not the HTML-reports that show all executed

rules (and only them) with explanations why they were executed;

More properties could be added for different deployment options. If you add the same

properties that were defined in the Environment table to the “project.properties”, they

will take a precedence.

File “test.bat”

The file “VacationDays/test.bat” is used to build and test your decision model (on Mac

and Linux instead of “test.bat” you use the file “test”). This file is the same for all

standard decision models and you don’t even have to look inside this file. When you

double-click on this file, it will do the following:

OpenRules, Inc. User Manual for Developers

11

1) If the model hasn’t been built yet or some files where changed, it will execute these

steps:

a. Analyze all files included in your decision model and check the model for

possible errors;

b. If there are errors, it will show the errors pointing to the reasons and the

proper place in Excel files;

c. If there are no errors, it will generate Java classes (in the folder “target”)

needed internally to execute this decision model;

d. The generated Java classes will be compiled preparing the decision model for

execution.

2) After a successful build, the decision model will be executed against test cases

described in the “Test.xlsx”.

You will also find the file “VacationDays/build.bat” that can be used to build the

decision model as well, but it will execute the model only after rebuild.

Testing Results

During the execution, you will see the execution protocol similar to the shown on the

next page. This execution protocol was produced with “trace=On” and it shows all

executed rules with references to their locations in Excel, e.g.

It also shows all decision variables involved in the executed rules with their values

before and after rule execution. The attributes that were changed are highlighted in

blue.

If OpenRules finds a mismatch (highlighted in red) between the expected and produced

results it will show the problem in the following way:

OpenRules, Inc. User Manual for Developers

12

Then you should decide if you made mistakes in your rules or the expected results.

Generated Reports and JSON tests

After the execution, you also may look at the generated HTML reports that explains

which rules were executed and why (assuming the property report=On). The report is

generated in a user-friendly HTML format in the folder “target/reports” – one html-file

for each test case. You also will see the HTML report “target/reports/project-

files.html”.

If your file “project.properties” defines the property “deployment” OpenRules will

generate a set of JSON files in the folder “target/jsons” that correspond to all Excel-

based tests.

Internal Use of Maven

OpenRules actively uses Apache Maven as a build tool. All OpenRules Decision Manager

projects are mavenized. Below is an example of a typical pom.xml file (from the sample

project “Hello”).

Note that it is important to use

OpenRules provides its own Maven’s plugin that is included in all “pom.xml” files:

https://maven.apache.org/

OpenRules, Inc. User Manual for Developers

13

Hello/pom.xml:

The files “test.bat”, “build.bat”, and “clean.bat” are simple batch files created for the

convenience of a business analyst who isn’t expected to know anything about Maven.

These files use Apache Maven that should be pre-installed. As a developer familiar with

https://maven.apache.org/download.cgi

OpenRules, Inc. User Manual for Developers

14

Maven, you always may run Maven’s commands directly from a command line.

OpenRules uses an automated vulnerability check that utilizes the NVD, the U.S.

government repository. So, OpenRules releases always upgrade the used 3rd party

packages to avaiod recently found vulnerabilities. You may find the latest list of

dependencies here.

USING JAVA INSIDE DECISION MODELS

Java Objects inside Decision Models

Business people usually define their test-cases in Excel using tables of the types

DecisionData, Glossary, and DecisionTest. Instead as a developer, you may define

business concepts as Java classes. For example, in the sample-project

“VacationDaysJava” there is a Java class “Employee” located in the class

“Employee.java” of the package “vacation.days”. It is a simple Java bean with the same

attributes as defined in the Glossary, and all getters and setters. Note that this Java

class should be located in the same package which is defined in “model.package” the

table “Environment” in the file “DecisionModel.xlsx”:

Now, the decision model will use the new Java class as a data type and will check that

its attributes are the same as defined in the Glossary. When you execute “test.bat”, it

will rebuild the model and will produce the same results using the same test-instances.

Java Snippets inside Decision Tables

OpenRules allows a user to write various arithmetic and logical expressions directly

inside decision table cells. For instance the project the sample project “PatientTherapy”

contains this decision table:

https://nvd.nist.gov/
https://openrulesdecisionmanager.com/resources/3rd-party-software/

OpenRules, Inc. User Manual for Developers

15

However, OpenRules also allows a user to add snippets of Java directly in Excel-based

tables starting with “:=”. Here is an example:

OpenRules recognizes that content of the cell as a Java snippet if you start it with “:=”.

The expression itself can be any valid Java snippet including standard Java functions.

This snippet may refer to decision variables defined in the Glossary using so-called

macroses like ${Patient Age} or ${Patient Weight}. If you want to refer to a business

concept you may use a special macro with the indicator “O”, e.g. the macro $O{Patient}

can be used in the snippet := System.out.log($O{Patient{.toString()); to print the object

“Patient”.

Inside the Java expressions you may use any operator "+", "-", "*", "/", "%" and any other

valid Java operator. You may freely use parentheses to define the desired execution

order. You also may use any standard party Java methods and functions, e.g.

Math.min(${Line A}, ${Line B})

OpenRules also supports special tables of the type “Method” or “Code” to put a piece of

Java directly in Excel. For example, you can create this table of the type “Method”

OpenRules, Inc. User Manual for Developers

16

Then call this method can be invoked by using this table:

The first statement in the table “CreatinineClearanceFormula” creates a double variable

“pcc” using a formula with macros like ${Patient Weight}. The second statement returns

the value of pcc rounded to 2 digits after the decimal point. You may use any valid Java

statement (including if-then-else and for-loop) inside the Method’s body.

As you can see, after the keyword “Method”, you may put a regular Java signature. The

“void” after the keyword means that this method doesn’t return anything. You may put

as many parameters as you wish after the method’s name – here we use only one

parameter (Decision decision).

You may replace the above two table with one table of the type “Code”:

It explicitly set the calculated and rounded value of pcc to the variable “Patient

Creatinine Clearance”. It assumes only one parameter “decision” of the type Decision

used in the second statement. However, this table should be explicitly invoked from the

main method.

Using 3rd Party Java Methods

To use your own or any 3rd party Java methods, you need to add them to the

Environment table using “import.java” or “import.static”. For example, the standard

project “PermitEligibility” uses Java methods defined in the optional OpenRules

package “com.openrules.tools” included into the standard installation. So, the proper

table “Environment” for this project is defined as follows:

OpenRules, Inc. User Manual for Developers

17

Here ”import.java” provides your decision model access to all methods of the class

“com.openrules.tool.DataInterval” while “import.static” provides access to static

methods of the class “com.openrules.tool.Dates”. If you forget to add these import-

statements in the Environment table, you will receive compilation errors in the

generated code:

Another good example is the standard project “SpatialRules” that uses a large 3rd party

library. 3 jar-files for the JTS library from Vivid Solutions have been included into the

project’s classpath. The project include its own simplified Java interface to this JTS

library implemented in the Java package “com.openrules.spatial”. To make all these

Java methods accessible from the decision model, the project uses the following table:

Let’s consider one more standard example “RulesRepository” in which all rules tables

deal with the Java object Appl defined in the Java package “myjava.packA1”. Therefore,

the proper Environment table inside file Main.xlsx (see above) contains a property

"import.java" with the value "myjava.packA1.*":

OpenRules, Inc. User Manual for Developers

18

The property "import.java" allows you to define all classes from the package following

the standard Java notation, for example "hello.*". You may also import only the specific

class your rules may need, as in the example above. You can define a separate property

"import.java" for every Java package used or merge the property "import.java" into one

cell with many rows for different Java packages. Here is a more complex example:

Environment

import.static com.openrules.tools.Methods

import.java

my.bom.*

my.impl.*

my.inventory.*

com.openrules.ml.*

my.package.MyClass

com.3rdparty.*

include
../include/Rules1.xlsx

../include/Rules2.xlsx

Naturally the proper jar-files or Java classes should be in the classpath of the Java

application that uses these rules.

You can use the wildcard characters like “*”, “?”, or “**’ to refer to different xls, xlsx, or

Java files. For instance, you can write “**/*.xlsx” to include all Excel files in all sub-

directories of your rules repository.

If you want to use static Java methods defined in some standard Java libraries and you

do not want to specify their full path, you can use the property "import.static". The

static import declaration imports static members from Java classes, allowing them to be

used in Excel tables without class qualification. For example, many OpenRule® sample

projects use static methods from the standard Java library com.openrules.tools that

OpenRules, Inc. User Manual for Developers

19

includes class Methods. So, many Environment tables have property "import.static"

defined as "com.openrules.tools.Methods". This allows you to write

 out("Rules 1");

instead of

 Methods.out("Rules 1");

Java Snippets inside Table “Code”

You can put your Java snippet inside a special table of the type “Code”, e.g.

This table is equivalent to the table with the signature

“Method void SolveOptimizationProblem(Decision decision)”.

EXECUTING DECISION MODEL FROM JAVA

The decision model “VacationDaysJava” includes different examples of how to invoke the

decision model from a Java application.

Running Decision Model against Java Objects

The following Java launcher defined in the class “src/test/java/vacation.days/Main.java”

executes the decision model “VacationDaysJava” against a Java object:

OpenRules, Inc. User Manual for Developers

20

It creates a DecisionModel “model” using the Java class “DecisionModelVacationDays”

that was generated during “test.bat”. Then this model creates the “goal”, an instance of

the standard class Goal. Then it creates a test-instance of the class Employee, puts this

employee to the decision model using the method goal.use(“Employee”, employee), and

executes the decision model using the method goal.execute().

If you want to see the trace information in the console, use

goal.put(“trace”,”On”);

If you want to generate an html report, use

goal.put(“report”,”On”);

Running Decision Model against Excel Test Cases

The file “Test.xlsx” includes the following Data table:

OpenRules, Inc. User Manual for Developers

21

It defines 6 employees. We can use these employees to test our decision model

“VacationDaysJava” from Java using the following Java launcher defined in the class

“src/test/java/vacation.days/Test.java”:

The object “model” and “goal” are defined as in the previous launcher. During the

“test.bat”, OpenRules generated a special Java class “emploeesArray” (by adding the

word “Array” to the name “employees” used in the above Data table. So, in this launcher

we create an array of Java objects “employees” using

Object[] employees = employeesArray.get();

Then it executed the goal for each employee from this array.

Running Decision Model against JSON

Let’s assume that you have a test employee defined in the file “data/employee.json” in

the JSON format:

OpenRules, Inc. User Manual for Developers

22

The Java class “src/test/java/vacation.days/MainJSON.java” provides an example how to

execute the decision model “VacationDaysJava” against this JSON object:

Here we again create a decision model and its goal. Then we use an ObjectMapper that

comes with an open-source package “jackson” to convert an object from the file

“data/employee.json” to a Java object employee. After executing the decision model for

this object, we save the resulting employee in the new file “data/employeeResponse.json”:

The file “data/Request.json” contains an array of employees in the JSON format:

https://github.com/FasterXML/jackson

OpenRules, Inc. User Manual for Developers

23

The Java class “src/test/java/vacation.days/MainJsonArray.java” executes the decision

model “VacationDaysJava” for all of them:

OpenRules, Inc. User Manual for Developers

24

It also saves the calculated results in the file “data/Response.json” as an array of JSON

objects.

CODE GENERATION

Build and Compile

When a business analyst executes “test.bat” (or “build.bat”) for the first time or when

some files inside the decision project were changed, OpenRules converts the decision

model in its Java representation into Java. A business user should not even know about

the generated code, but as a developer, you may want to know about the structure of the

generated code. Still, you never should make any changes in the generated code!

When OpenRules builds the model by generating executable Java code, it goes through

two steps:

1) Build

2) Compile.

OpenRules is trying to catch as many problems as possible during the “Build” step to

inform a user about possible errors using business-friendly terms and pointing to the

exact place in Excel where an error occurred. However, sometimes the errors could be

tricky and only Java compiler will catch them, and in this case you, as a developer,

should be able to help by looking at the error in the generated code.

Structure of the Generated Code

The generated code is placed into the folder “target” with 2 major sub-folders:

• target/generated-sources/main/java – with all Java classes needed to execute

the decision model

• target/generated-test-sources/test/java – with only those Java classes which

are based on the test-cases and needed to execute these test cases against the

decision model. You don’t need these classes after the decision model is

integrated into your IT environment and deployed.

OpenRules, Inc. User Manual for Developers

25

These folders each contain two packages which names are defined by the property

“model.package” in the table Environment (see file “DecsionModel.xlsx”). For example,

for the project “VacationDays” these folders are:

• vacation.days – contains an external interface

• vacation.days.openrules - contains an internal implementation.

The most important generated class is called “VacationDays” located in the package

“vacation.days” of the folder “target/generated-sources/main/java”. It is used by the Java

tests such as “src/test/java/vacation.days/Main.java” shown in previous sections.

For all business concepts defined in all glossaries, OpenRules will generate the

corresponding Java classes. For example, in the project “VacationDays” there is only one

business concept “Employee” in the Glossary, so OpenRules will generate Java class

“Employee.java” placed in the package “vacation.days” of the folder “target/generated-

sources/main/java”.

All rules will have the proper Java representation inside the package

“vacation.days.openrules” of the folder “target/generated-sources/main/java”.

There is one more generated folder “target/generated-sources/main/resources” that

contains “metadata” files used internally for more efficient rules execution.

Note. When you add OpenRules decision project inside an IDE such as Eclipse, make

sure that the project classpath includes the generated folders:

• target/generated-sources/main/java

• target/generated-sources/main/resources

• target/generated-sources/test/java

Logging

OpenRules Decision Manager utilizes the commonly-used open-source package SLF4J™

for logging. By default OpenRules already includes the latest log4j-slf4j-impl but you

always may add your preferred implementation by adding the proper dependency in

your “pom.xml”, e.g.:

https://www.spf4j.org/

OpenRules, Inc. User Manual for Developers

26

You should also make sure that the standard logging configuration file such as

“log4j2.xml” is included in your classpath, e.g. by placing it in the source folder

“src/main/resources”.

EXECUTION PATH

In many cases, during the build, OpenRules automatically generates the so-called

“execution path” as a sequence of all tables that should be executed to calculate the final

goal. For example, when OpenRules analyses the decision model “VacationDays”, it

automatically builds an execution path as a sequence of goals (or decision tables that

determine these goals):

1. SetEligibleForExtra5Days

2. SetEligibleForExtra3Days

3. SetEligibleForExtra2Days

4. CalculateVacationDays

Alternatively, a user may define the execution path manually using the table of the type

“Decision”:

The table “Decision” by default has two columns “Decisions” and “Execute Decision

Tables”. The first column contains the display names of all sub-decisions – they simply

describe the goals/sub-goals. The second column contains the exact names of decision

tables that implement these sub-decisions. The decision table names cannot contain

spaces or special characters (except for “underscore”).

To run this “execution path” instead of the automatically defined one you need to modify

the property

https://logging.apache.org/log4j/2.x/manual/configuration.html

OpenRules, Inc. User Manual for Developers

27

 model.goal=”DetermineVacationDays”

in the Environment table or overwritten in the file “project.properties”. It will produce

the same results.

However, some decision models may have a more complex structure when an execution

path cannot be automatically built. In this case, the build protocol will include a

warning that the same decision variable can be determined by 2 or more decision tables,

and OpenRules could not know which of them should be executed first. In such cases, a

user should specify the execution sequence in the table of the type “Decision”.

The table “Decision” can use conditions to specify when a certain decision table should

and should not be executed. For example, consider a situation when the first sub-

decision validates your data and a second sub-decision executes complex calculations but

only if the preceding validation was successful. Here is an example of such a decision

from the tax calculation decision model “1040EZ”:

Since this table “Decision Apply1040EZ” uses an optional column “Condition”, we must

add a second row with the keywords “Condition”, “ActionPrint”, and “ActionExecute”.

This table uses a decision variable “1040EZ Eligible” that is defined by the first

(unconditional) sub-decision “Validate”. We assume that the decision

“ValidateTaxReturn” should set this decision variable to TRUE or FALSE. Then the

second sub-decision “Calculate” will be executed only when “1040EZ Eligible” is TRUE.

When it is FALSE, this decision, “Apply1040EZ”, will simply print “Do Not Calculate”.

Note. You may use many conditions of the type “Condition” defined on different decision

variables. Similarly, you may use an optional condition “ConditionAny” which instead of

decision variables can use any formulas defined on any known objects. It is also possible

OpenRules, Inc. User Manual for Developers

28

to add custom actions using an optional action “ActionAny”.

The real-world decision models can be very complex and it might be impossible to

automatically discover an execution path, e.g. when the same model has several

independent goals that should be determined during the same run. In these cases, the

tables of the type “Decision” become very important to express complex inter-goal

relationships.

DECISION MODEL DEPLOYMENT

OpenRules provides all the necessary facilities to simplify the integration of business

decision models with modern enterprise-level applications. Tested decision models may

be easily deployed on-premise or on-cloud as described in the following schema:

OpenRules, Inc. User Manual for Developers

29

Decision Model Execution Using Java API

After you build and test your decision model, it is ready to be incorporated in any Java-

based application using a simple Java API internally generated for this decision model.

Examples of a simple Java API for invocation of the decision model can be found in the

project “VacationDaysJava” in the folder src/test/java. They uses the generated Java

classes saved in the folder “target”.

Invocation API

The sample “SampleJavaEmployee” demonstrates how to invoke a decision service from

Java:

OpenRules, Inc. User Manual for Developers

30

Java classes “com.openrules.core.DecisionModel” and “com.openrules.core.Goal” are the

standard OpenRules classes included in the automatically installed OpenRules jar-files.

Each decision model generates a special subclass of the DecsionModel such as

“VacationDays” when you call “built.bat”. So, in the above code we created an instance of

the DecisionModel:

 DecisionModel model = new VacationDays();

Then we created a goal the main (default) goal of this decision model:

OpenRules, Inc. User Manual for Developers

31

 Goal goal = model.createGoal();

We direct this goal to use some Java objects (such an Employee) by calling the method

 goal.use(“business-concept-name”,object);

where business-concept-name should be correspond to the one defined in the Glossary. In

this example we create an employee and passed it to the goal:

goal.use(“Employee”,object);

And then we executed this goal by calling

 goal.execute();

Then we printed the attribute employees.getVacationDays() modified by our decision

model.

Several other sample classes demonstrate how to execute decision model against:

- test cases defined in Excel – see SampleExcelEmployees

- test cases read from a Json file – see SampleJsonEmployees.

API for Executed Rules

OpenRules provides a special Java API to allow a Java program (client) to access all

executed rules after the goal execution (like those rules which are shown in the

generated html-reports). You can find the proper example in the class

“SampleShowExecutedRules” of the standard project “VacationDaysJava” – see below.

Before executing the goal, a client may add a new ExecutionListener to the goal:

 ExecutionListener listener = new ExecutionListener();

 goal.addListener(listener);

Then after the goal’s execution, a client can ask this listener to show all executed rules

using the method listener.getExecutedRules().

OpenRules, Inc. User Manual for Developers

32

In this case, the executed rules will be displayed as below:

OpenRules, Inc. User Manual for Developers

33

The standard OpenRules class ExecutedRule provides easy access to all rule elements

including getDecisionTableName(), getRuleNumber(), getRuleRange(), getConditions(),

getActions(), getVariables(), getSourceUri():

To understand how to use these accessors, look at the above printout of the executed

rules which was created using the method:

The old and new values for all variables were displayed by analyzing all variables know

in the glossary and the map ‘variables” of the type Map<String, Object[]> where the first

OpenRules, Inc. User Manual for Developers

34

parameter is a name of the decision variable, and the second parameter is an array of

values of this variable before and after the execution.

Note. ExecutionListener should not be used in production mode as it impacts the

performance of the rule engine

Deploying Decision Model as AWS Lambda Function

AWS Lambda functions are among the most popular deployment options for modern

microservices.

Configuring AWS Lambda

To do AWS deployment, you should already have an active AWS account and define your

security credentials (access key ID and secret access key) which should not be shared

with anybody.

Let’s consider how to deploy the introductory decision model “VacationDays” as an AWS

Lambda function. Look at the standard project “VacationDaysLambda” to learn how

to do it:

1. Add additional properties to the configuration file “project.properties”:

Note that this project uses the same rules repository that was created in the

project “../VacationDays”. The property “aws.lambda.bucket” defines a new or

existing AWS S3 bucket name.

2. Make sure that your file “pom.xml” includes the dependency to “openrules-aws”:

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/

OpenRules, Inc. User Manual for Developers

35

Deploying AWS Lambda

Double-click on the provided file “deployLambda.bat”.

The decision model will be deployed, and the console log will show the invoke URL for

the deployed decision service also known as “endpoint URL” (highlighted in the

following example):

By default, the name of the generated web service is created based on the property

“model.name”. In this case the name “VacayionDays” was automatically converted tp “vacation-

days”. If you want to use your own name, you may define the property “model.endpoint”. e.g. if you

define

 model.property=custom-vacation-service

then the generated endpoint will look as http://localhost:8080/custom-vacations-service

If you previously deployed your model as a Lambda function, it is possible that

sometimes you will receive the following error:

“AWS lambda deployment failure: The statement id (gw-lambda) provided already exists.

Please provide a new statement id, or remove the existing statement.”

http://localhost:8080/custom-vacations-service

OpenRules, Inc. User Manual for Developers

36

In this case, you need to run the provided “undeployLambda.bat” and try again.

Testing AWS Lambda

If your model includes test cases (usually defined in the Excel file “Test.xlsx” as defined

by the property “test.file”), then OpenRules generates several files to simplify testing of

your decision service deployed as an AWS Lambda function. You can test your service

using:

1) Automatically generated Java tests

2) Generated JSON interfaces with POSTMAN.

Auto-generated Java Test

When you execute “deployLambda.bat” (or “buildLambda.bat”) OpenRules generates the

file “testLambda.bat” that already includes the above “invoke URL”. When you click on

this file, it remotely executes ALL test cases defined in the Excel file “Test.xlsx” against

just deployed AWS Lambda!

Auto-generated JSON Test Cases for POSTMAN

When you execute “build.bat” (or “test.bat”), OpenRules generates JSON files created

from test cases defined in the Excel file “Test.xlsx”. The generated JSON files are placed

into the folder “jsons” one file for each test case.

You may use these JSON files to test your Lambda with the commonly used POSTMAN.

The proper POSTMAN’c view is shown below:

https://www.getpostman.com/
https://www.getpostman.com/

OpenRules, Inc. User Manual for Developers

37

Here we placed the endpoint URL (saved in the file “testLambda.bat” into the URL field

afte the “Post”. In the filed request Body we used the following JSON test:

OpenRules, Inc. User Manual for Developers

38

It was copied from the generated file “jsons/testCases-Test A.json”. You can try to run

this POSTMAN yourself by pushing the button “Send”. After executing this Lambda

several times, you will see that a pure execution time on the AWS cloud for any test is

less than 1 millisecond, while based on your connection speed the round-trip time with

sending a request and receiving a response takes on average around 45 milliseconds.

Executing AWS Lambda in Batch Mode

Sometimes, for efficiency reason, you may want to combine several JSON requests in

one batch to execute them together. OpenRules automatically generates such a batch in

the file “jsons/testCasesBatch.json”. To execute this batch from POSTMAN, you can

place the content of this json file into POSTMAN body and use the same endpoint URL.

If your batch array includes many elements, you will see an essential performance

improvement to compare with one-by-one execution.

AWS Lambda Settings

Optionally, you may use additional settings to specify more details about your AWS

deployment preferences. For example, by default, we use the word “test” (inside the

invoke URL) as your deployment stage. But you may redefine it as “dev”, “prod”, or any

similar word using this setting:

 aws.api.stage=test

By default, your deployed service will be publicly accessible, but it is possible to make it

private. Usually, people keep their AWS Credentials (access key ID and secret access

key) in the default file ~/.aws/credentials. However, alternatively, you may define

them directly in the file “project.properties”:

 aws.access.key.id=<aws-access-key-id>

 aws.secret.access.key=<aws-secret-access-key>

NOTE 1. If you receive error messages that you don’t have enough authorizations to

deploy and run your AWS Lambda function, contact your IT department and request

that your AWS user role has permissions to read and modify API Gateway resources, to

create and modify IAM roles, and full access to AWS Lambda API.

NOTE 2. If you decide to undeploy your decision service and clean up your AWS, just

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html

OpenRules, Inc. User Manual for Developers

39

click on the file “undeployLambda.bat“.

Building AWS Lambda for AWS Pipelines

Nowadays enterprises configure their AWS Lambda functions using various tools and

frameworks for continuous integration and continuous delivery (CI/CD). Instead of

relying on “one-click” deployment with “deployLambda.bat” they may prefer to use

existing CI/CD pipeline configured by their IT department. In this case, OpenRules can

package the lambda’s code as a zip file that can be uploaded to their AWS environment

and configured following their software delivery pipeline. OpenRules plugin has a goal

‘openrules:buildLambda’ that can be used to generate such a zip file. You can invoke the

plugin in your build script or you can use ‘buildLambda.bat’. Here is an example of the

execution protocol:

Deploying Decision Model as MS Azure Function

MS Azure Function is another popular deployment option for modern microservices.

Configuring MS Azure Function

You may read the guide “Azure Functions for Java Developers” to learn how to install

and use MS Azure.

Let’s consider how to deploy the introductory decision model “VacationDays” as Azure

function. Look at the standard project “VacationDaysAzure” to learn how to do it:

1. Add additional properties to the configuration file “project.properties”:

https://azure.microsoft.com/en-us/services/functions/?&ef_id=CjwKCAjwiLGGBhAqEiwAgq3q_gmHY0Q1L1v8_POwLpp1pd_PDZ0rDwNWLBim_aREfZx0UoEP87JfAhoCZhAQAvD_BwE:G:s&OCID=AID2100131_SEM_CjwKCAjwiLGGBhAqEiwAgq3q_gmHY0Q1L1v8_POwLpp1pd_PDZ0rDwNWLBim_aREfZx0UoEP87JfAhoCZhAQAvD_BwE:G:s&gclid=CjwKCAjwiLGGBhAqEiwAgq3q_gmHY0Q1L1v8_POwLpp1pd_PDZ0rDwNWLBim_aREfZx0UoEP87JfAhoCZhAQAvD_BwE
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-java?tabs=bash%2Cconsumption

OpenRules, Inc. User Manual for Developers

40

Note that this project uses the same rules repository that was created in the

project “../VacationDays”.

2. All Azure properties are defined in the file “pom.xml”.

1) Its properties include:

Please pay attention to <functionAppName> element above. The value is

a name of the Azure function and must be globally unique. It means that

when you try to run the VacationDaysAzure sample you have to change

the function name.

2) You need these dependencies:

3) You need a plugin similar to this one:

OpenRules, Inc. User Manual for Developers

41

OpenRules, Inc. User Manual for Developers

42

OpenRules, Inc. User Manual for Developers

43

Azure Function local testing

First run “package.bat' that builds azure function, then, after a successful build, double-

click on the provided file “runLocalServer.bat”

Now, you can run an automatically generated tests using testLocalServer.bat

OpenRules, Inc. User Manual for Developers

44

You can also use POSTMAN and json samples from ‘jsons’ folder to run the tests:

Deploying Azure Function

Double-click on the provided file “deployFunction.bat”.

The decision model will be deployed, and the console log will show the invoke URL for

the deployed decision service (highlighted in the following example):

OpenRules, Inc. User Manual for Developers

45

Testing Azure Function

After successful Azure Function deployment, copy the function URL - highlighted in

above view. You can use this URL in POSTMAN to run the same test you ran when you

worked with local deployment.

Deploying Decision Models as RESTful Web Services

OpenRules provides powerful while simple mechanisms for the deployment of business

decision models as RESTful web services. You may choose between two deployment

options for the creation of RESTful decision services:

1) OpenRules REST – a lightweight implementation that utilizes Undertow

2) SpringBoot – an implementation that utilizes SpringBoot.

We will explain how to use these approaches to convert our business decision model

“VacationDays” into a RESTful Web Service that can accept HTTP requests at

http://localhost:8080/vacations-days and will respond with proper responses in the JSON

format.

Creating RESTful Decision Service

The sample project “VacationDaysRest” demonstrates the simplest way of deploying

the decision model “VacationDays” as a RESTful web service. Its configuration file

“project.properties” looks as follows:

https://undertow.io/
https://spring.io/projects/spring-boot
http://localhost:8080/vacations-days

OpenRules, Inc. User Manual for Developers

46

As you can see, it uses the same rules repository “../VacationDays/rules” with the

deployment type defined as “rest”.

Building RESTful Decision Service

OpenRules created a special Maven plugin “openrules:packageRest” that converts a

decision model to a RESTful web service. As usual, the batch file “build.bat” included in

the project “VacationDaysRest” will build the decision model and test it against the

provided Excel test cases. However, it also will generate the file “VacationDaysRest-

1.0.0.jar” in the folder “target”:

Additionally, “build.bat” generates JSON files created using test cases defined in the

Excel file “Test.xlsx”. The generated JSON files are placed into the folder “jsons” one

file for each test case.

Testing RESTful Decision Service

OpenRules also created a special Maven plugin “openrules:runRest” that can be used to

run the generated RESTful service on the local server. The standard batch file

“runLocalServer.bat” (or “runLocalServer” on Mac/Linux) can start that the service

using the OpenRules REST server on port 8080:

OpenRules, Inc. User Manual for Developers

47

OpenRules also created a special Maven plugin “openrules:testRest” that can be used to

test the generated RESTful service using Excel-based test cases by invoking them using

the automatically generated class “vacation.days.rest.VacationDaysTestClient”. It can

be invoked using the Maven command:

mvn openrules:testREST -DtestClassName=vacation.days.rest.VacationDaysTestClient

-DtestUrl=http://localhost:8080/vacation-days

For convenience, OpenRules provided the batch file “testLocalServer.bat” that

executes this command. When you run this command, it will produce:

OpenRules, Inc. User Manual for Developers

48

Executing Auto-generated JSON Test Cases from POSTMAN

Instead of “testLocalServer.bat” you may test this RESTful decision service with

POSTMAN. The proper POSTMAN’c view is shown below:

https://www.getpostman.com/

OpenRules, Inc. User Manual for Developers

49

Here we use http://localhost:8080/vacation-days as the endpoint URL and the generated

JSON test from the generated file “jsons/testCases-Test A.json”.

Executing RESTful Service in Batch Mode

The above POSTMAN sample shows the execution of one JSON request. Sometimes, for

efficiency reason, you may want to combine several JSON requests in one batch to

execute them together. OpenRules also generates such a batch in the file

http://localhost:8080/vacation-days

OpenRules, Inc. User Manual for Developers

50

“jsons/testCasesBatch.json”. To execute this batch from POSTMAN, you can place the

content of this json file into POSTMAN body and add to the endpoint URL the suffix

“/batch”. If your batch array includes many elements, you will see an essential

performance improvement to compare with one-by-one execution.

Case Sensitivity of JSON Attributes

You also may control the case sensitivity of JSON attributes by adding the property “json.naming” in

your file “project.properties”. By default, the attribute names follow the standard JavaBeans naming

convention for JSON properties. However, if you add the property

json.naming=same_as_glossary

JSON properties will use the same names as specified in the Glossary, e.g. the property “employee”

can start with a capital letter.

Creating RESTful Decision Service with SpringBoot

Mmm

Support for SpringBoot 3 and JDK 17+. Based on multiple requests, we now allow

our customers to build OpenRules-based microservices using SpringBoot, both version

2.x and SpringBoot 3.x. SpringBoot-3 is backward incompatible with SpringBoot-2 and

requires Java 17+ and “jakarta” instead of “javax“.

OpenRules Release 11.0.0 maintains backward compatibility by automatically

recognizing which JDK and SprinBoot versions are being used and generating the

proper Java code. The standard installation OpenRules 11.0.0 allows our customers to

choose the preferred version of SpringBoot (if any) using the following sample projects:

• VacationDaysSpringBoot (for SpringBoot 3.1.0)

• VacationDaysSpringBoot2 (for the old SpringBoot 2.7.13)

• VacationDaysSpringBootSecure (for SpringBoot 3.1.0)

• VacationDaysSpringBootSecure2 (for the old SpringBoot 2.7.13)

See an implementation example of “SecurityConfig.java” in the projects

“VacationDaysSpringBootSecure” and “VacationDaysSpringBootSecure2”.

https://blogs.oracle.com/javamagazine/post/java-json-serialization-jackson
https://blogs.oracle.com/javamagazine/post/java-json-serialization-jackson
https://blogs.oracle.com/javamagazine/post/transition-from-java-ee-to-jakarta-ee

OpenRules, Inc. User Manual for Developers

51

Thus, with release 10.* OpenRules supports all JDK starting from 1.8 and higher, and

all SpringBoot versions.

bbb

The sample project “VacationDaysSpringBoot” demonstrates how to deploy the

decision model “VacationDays” as a RESTful web service using SpringBoot-3 which

requires JDK version 17+. If you want to use SpringBoot-2 with earlier versions of JDK

(like Java 1.8) you may look at another project “VacationDaysSpringBoot2”.

 Its configuration file “project.properties” looks as follows:

As you can see, it uses the same rules repository “../VacationDays/rules” with the

deployment type defined as “spring-boot”.

Building RESTful Decision Service

The project “VacationDaysSpringBoot” has a special “pom.xml” that includes

“dependencies” and “plugins” provided by SpringBoot. As usual, the batch file

“build.bat” will build the decision model and test it against the provided Excel test

cases. However, it will also generate the file “VacationDaysSpringBoot-1.0.0.jar” in the

folder “target”:

https://spring.io/projects/spring-boot

OpenRules, Inc. User Manual for Developers

52

Additionally, “build.bat” generates JSON-files converted to the JSON format from the

Excel format using test cases defined in the Excel file “Test.xlsx”. The generated JSON-

files are placed into the folder “jsons” one file for each test case.

Testing RESTful Decision Service

For this project OpenRules relies on the standard Maven plugin “spring-boot:run” that

can be used to run the generated RESTful service on the local server. The standard

batch file “runLocalServer.bat” (or “runLocalServer” on Mac/Linux) can start the

generated RESTful service on the local server using SpringBoot:

OpenRules created a special Maven plugin “openrules:testRest” that can be used to test

the generated RESTful service using Excel-based test cases by invoking them using the

automatically generated class “vacation.days.rest.VacationDaysTestClient”. It can be

OpenRules, Inc. User Manual for Developers

53

invoked using the Maven command:

mvn openrules:testREST -DtestClassName=vacation.days.springboot.VacationDaysTestClient

-DtestUrl=http://localhost:8080/vacation-days

For convenience, OpenRules provided the batch file “testLocalServer.bat” that

executes this command. When you run this command, it will produce:

Executing Auto-generated JSON Test Cases from POSTMAN

Instead of “testLocalServer.bat” you may test this RESTful decision service with

POSTMAN. The proper POSTMAN’c view is shown below:

https://www.getpostman.com/

OpenRules, Inc. User Manual for Developers

54

Here we use http://localhost:8080/vacation-days as the endpoint URL and the generated

JSON test from the generated file “jsons/testCases-Test A.json”.

Executing RESTful Service in Batch Mode

The above POSTMAN sample shows the execution of one JSON request. Sometimes, for

efficiency reason, you may want to combine several JSON requests in one batch to

http://localhost:8080/vacation-days

OpenRules, Inc. User Manual for Developers

55

execute them together. OpenRules also generates such a batch in the file

“jsons/testCasesBatch.json”. To execute this batch from POSTMAN, you can place the

content of this json file into POSTMAN body and add to the endpoint URL the suffix

“/batch”. If your batch array includes many elements, you will see an essential

performance improvement to compare with one-by-one execution.

SpringBoot Decision Services with Additional Security

The standard installation OpenRules 11.0.0 include two more sample project that

demonstrate how to use additional security:

• VacationDaysSpringBootSecure (for SpringBoot 3.1.0)

• VacationDaysSpringBootSecure2 (for the old SpringBoot 2.7.13)

The key difference between these projects (beside pom.xml files) can be seen in the

implementation of the “SecurityConfig.java”.

Packaging Decision Models as a Docker Image

You can similarly and easily package our RESTful web service as a Docker image

whether you use project “VacationDaysRest” or “VacationDaysSprinBoot”.

Building Docker Image

First of all, you need to install and start your Docker Desktop. Then you may execute

the standard batch file “buildDocker.bat” (or “buildDocker” on Mac/Linux) that will

package your RESTful web service as a Docker image. Internally it utilizes Google

Container Tool “Jib” which is a Maven plugin for building Docker images for Java

applications. When you run “buildDocker.bat” it will automatically download install all

necessary files and will create a Docker image.

Running Docker

Then you may switch to a command line and enter

>docker images

It will show all docker images that may look as below:

https://www.docker.com/
https://hub.docker.com/editions/community/docker-ce-desktop-windows
https://github.com/GoogleContainerTools/jib
https://maven.apache.org/

OpenRules, Inc. User Manual for Developers

56

To start our Docker to serve different requests on the local port 8080, we need to enter

the following command:

>docker run -ti -p 8080:8080 vacation-days

Alternatively, we may use “runDocker.bat”.

The start of the container will look as follows:

This container will wait for requests on port 8080.

Testing Docker from POSTMAN

Now we can use POSTMAN with the endpoint URL http://localhost:8080/vacation-days to

send a test request:

OpenRules, Inc. User Manual for Developers

57

The console will show that our POSTMAN’s request was executed against our Docker

image:

OpenRules, Inc. User Manual for Developers

58

You may check running Docker images:

>docker ps

You may stop a running image:

>docker kill e46319a43d1b

So, this example demonstrates how the OpenRules-based decision model can be deployed

as a Docker container and be executed locally.

Exporting Docker Image

Now we are ready to export our Docker image. From command line enter command:

>docker images

You may save this image “b064f2da0ed1”:

>docker save b064f2da0ed1 >vacation-days.image

The generated file “vacation-days.image” can be used with any of the following container

registries:

- Google Container Registry (GCR)

- Amazon Elastic Container Registry (ECR)

- Docker Hub Registry

OpenRules, Inc. User Manual for Developers

59

- Azure Container Registry (ACR).

It can be done by your software developers following this manual.

Using Docker Image on a 3rd party Machine

To install this image on any machine with already running Docker Desktop, you may

use the following command:

>docker load -i vacation-days.image

>docker images (to see the image ID)

>docker tag <image-id> vacation-days

>docker run -p 8080:8080 -t vacation-days

Then we started POSTMAN with URL http://localhost:8080/vacation-days and the

above JSON request.

Comparing OpenRules REST and SpringBoot Deployment

Options

Both deployment options (OpenRules REST and SpringBoot) create RESTful decision

services with minimal overhead for user experience. The OpenRules REST option

creates a smaller package and in some cases shows better performance than SpringBoot

with Tomcat. As you see below, the generated jar files for the RESTful service have

quite different sizes:

• VacationDaysRest-1.0.0 – ~6Mb

• VacationDaysSpringBoot-1.0.0 ~19Mb

Both options works very well for serving REST based decision services. You can choose

either option based on your preferences and expertise.

Additional Deployment Properties

The file “project.properties” may include additional deployment:

https://github.com/GoogleContainerTools/jib/tree/master/jib-maven-plugin

OpenRules, Inc. User Manual for Developers

60

1. model.endpoint – it allows you to define custom names for your deployed decision

services. You also may define this property in the Environment table.

1. jackson.default-property-inclusion – it can take the following values:

• non_null – the default value meaning only variables with non-null values

will be included in the decision service response

• always meaning all variables will be always included in the decision service

response independently of their values (of course, unless they are specified as

‘out‘ in the Glossary column “Used As”)

• non_default meaning only variables with non-default values will be included

in the decision service response. The default values for numbers are 0, for

Booleans – false, and String – “”, and for all other types – null

• non_empty similar to non_null but additionally it will ignore empty String

variables.

2. jackson.default-object-inclusion – it can take the following values:

• non_null – the default value meaning only objects that contain non-null

properties will be included in the decision service response

• always meaning all objects with at least one ‘out‘ property (even if it is null)

will be included in the decision service response.

3. jackson.serialization.write_dates_as_timestamps – it allows you to change the

default way for presentation of dates in the generated JSON files and in the decision

service response:

• true – the default value meaning all Dates will be represented as numbers of

milliseconds since January 1st, 1970

• false – all Dates will be represented using a more user-friendly Date

timestamp defined by ISO 8601 such as 2021-08-22T17:05:27+00:00.

4. json.naming – it can take the following values:

• default – uses the standard Jackson naming convention for JSON properties

• same_as_glossary – JSON properties use the same names as specified in

the Glossary.

https://www.w3.org/TR/NOTE-datetime
https://blogs.oracle.com/javamagazine/post/java-json-serialization-jackson

OpenRules, Inc. User Manual for Developers

61

RULES-BASED SERVICE ORCHESTRATION

OpenRules provides business users with abilities to build and deploy operational

decision microservices. It empowers business users with an ability to assemble new

decision services by orchestrating existing decision services independently of how they

were built and deployed. The service orchestration logic is a business logic too, so it’s

only natural to apply the decision modeling approach to orchestration. To orchestrate

different services you may create a special orchestration decision model that

describes under which conditions such services should be invoked and how to react to

their execution results.

OpenRules decision tables have special action-columns of the type “ActionExecute”

that is usually used to execute different services upon certain conditions without

worrying how they were implemented and deployed. To describe such external services

OpenRules added a special new table “DecisionService“. You may download a special

workspace “openrules.loan” that implements a library of decision services described in

the Loan Origination example from the DMN Section 11.

The workspace “openrules.loan” constains several decision models with two main goals

“BureauStrategy” and “Routing” deployed as external decision services:

https://openrulesdecisionmanager.com/business-decision-models/domain-specific-libraries-of-decision-models/
https://openrulesdecisionmanager.com/business-decision-models/domain-specific-libraries-of-decision-models/
https://openrules.wordpress.com/2017/06/21/loosely-coupled-decision-models-for-loan-origination/
http://www.omg.org/spec/DMN
https://openrules.files.wordpress.com/2020/10/loanoriginationgoals.png

OpenRules, Inc. User Manual for Developers

62

The high-level goal “Loan Origination Result” is an example of the orchestration

decision models.

If you open this decision model in OpenRules Explorer, it will be displayed using et

following diagram:

This decision model is not aware of the internal structure of these two decision services

which are shown as green rectangles. However, we can see the decision table

“LoanOriginationResult” that invokes these services and business concepts (pink

rounded rectangles) used by these services.

The orchestration logic here is relatively simple:

Execute decision service “BureauStrategy” that should determine the goal “Bureau

Strategy”. If Bureau Strategy is DECLINE, then set Loan Origination Result to

DECLINE, and stop. If Bureau Strategy is not DECLINE, then execute decision service

“Routing” that will determine the goal “Routing”. If Routing is DECLINE, then set Loan

Origination Result to DECLINE. If Routing is REFER, then set Loan Origination Result

to REFER. If Routing is ACCEPT, then set Loan Origination Result to ACCEPT.

This logic can be naturally presented in the following table:

OpenRules, Inc. User Manual for Developers

63

Here the third column “ActionExecute” may execute two decision services:

“BureauStrategyService” and “RoutingService”. The actual implementation of these

services is described in the following table:

The column “Service Type” defines these services as REST web services and provides

their endpoints – in this particular case both services were deployed as AWS Lambda

functions, the default OpenRules deployment destination (it was done with an instant

click). The table “DecisionService” may have the 4th (optional) column

that describes the parameters of each service that correspond to the business concepts

defined in eth common Glossary. If the column “Business Objects” is omitted (like in the

above table), all business objects will be passed to all decision services even if

“BureauStrategyService” doesn’t need BureauData.

Along with REST web services, OpenRules supports other types of services. For

example, you may get essentially faster execution by taking advantage of the fact that

your services are deployed as AWS Lambdas by using their ARN addresses as endpoints:

If your decision services are deployed as AWS Lambda functions you even don’t have to

https://openrules.files.wordpress.com/2020/10/loanoriginationresultrules.png
https://openrules.files.wordpress.com/2020/10/loanoriginationresultservices.png
https://openrules.files.wordpress.com/2020/10/loanoriginationresultobjects.png
https://openrules.files.wordpress.com/2020/10/loanoriginationresultarns.png

OpenRules, Inc. User Manual for Developers

64

provide the complete ARN addresses, and can simply write their names as in the

following table:

OpenRules will automatically expand the name like “BureauStrategy” to

“arn:aws:lambda:us-east-1:395608014566:function:BureauStrategy”.

Another supported type of services is regular Java classes automatically generated by

OpenRules from decision models:

You also may invoke any static Java method, e.g. use Service Type “JavaMethod” and

Service Endpoint “loan.origination.EmailService:send” to send an automatically

generated email to the Applicant.

USEFUL TOOLS

Generating OpenRules Tables in Excel

Sometimes our customers want to generate OpenRules tables in Excel programmatically,

e.g. when they use their own GUI for rules creation and edeiting. OpenRules includes a

simple Java API for generation of the standard decision tables. It is called ExcelGenerator

and has several convenient methods.

To add a new decision table, use

https://openrules.files.wordpress.com/2020/10/loanoriginationresultlambdas-1.png
https://openrules.files.wordpress.com/2020/10/loanoriginationresultjavaclasses-2.png

OpenRules, Inc. User Manual for Developers

65

To add a simple Glossary use

To add any array of strings to a separate sheet use

To save these tables into an Excel file use

Here is an example:

This code will generate fdile “Generated.xlsx” with one decision table:

To use this API inside your Java program, you only need to add the following dependency to

your pom.xml:

OpenRules, Inc. User Manual for Developers

66

Contact support@openrules.com is you want to learn more about ExcelGenerator or to

expand its functionality.

Search and Edit Multiple Excel Files

OpenRules users will find that a free tool called “IceTeaReplacer” can be very useful for

doing search&replace in OpenRules repositories. Here is a functional description from their

old website:

IceTeaReplacer is a simple, yet a powerful tool to search inside multiple Microsoft’s Office

Word (doc, docx), Excel (xls, xlsx) files within a directory (and it’s subdirectories) and

replace provided phrase. Options available:

▪ Perform search before replacing

▪ Match whole word only

▪ Ignore word case

▪ Do backup before replace

▪ Deselect files on which you don’t want to perform replace.

Here is an example of its graphical interface:

It seems that IceTeaReplacer” website is not available anymore. However, as it was freely

available awhile ago without any limitations for its use and distribution, you may send a

mailto:support@openrules.com
http://www.icetear.com/
http://www.icetear.com/
https://openrules.files.wordpress.com/2012/10/iceteareplacer.png
http://www.icetear.com/

OpenRules, Inc. User Manual for Developers

67

request to support@openrules.com and we may share a link for its download.

TECHNICAL SUPPORT
Direct all your technical questions to support@openrules.com or this Discussion Group.

Read more at http://openrules.com/services.htm.

mailto:support@openrules.com
mailto:support@openrules.com
https://groups.google.com/forum/#!forum/openrules
http://openrules.com/services.htm

