OPEN
L

RULES

OPENRULES®

DECISION INTELLIGENCE
PLATFORM

User Manual
for Software Developers

How to Integrate Business Decision
Models into IT Systems

OpenRules, Inc.

www.OpenRules.com

July-2025

http://www.openrules.com/

OpenRules, Inc. User Manual for Developers

Table of Contents

INErOAUCTION ..ottt e ettt e ettt e ettt e e st e e e e 5
Decision Models Organizationoooiiiiiiiiiiiiiiiiiieee ettt e e e e e 6
Creating Custom Decision MOdel...............ooooiiimiiiiiiiiiiiiee e 6
How Business Analysts Deal with Decision Models...............ccccoeeeeiiiiiiiiiiiiie e, 7
GlOSSATY oo 7
ENVITONIMENE. ..cettiiiiiiiiiciee ettt e e e ettt e e e e sttt e e e e e st e e e e e e e e 8
TTESE CASES ..vteeeniiite ettt ettt ettt e e ettt e e ettt e e ettt e e e bttt e e ettt e et e e ebtaeee e 9
Building and Testing Decision MOodeluuuiiiiiiiiiiiiiiiiee et e e et e e e e e e eaavaeees 9
Configuration File “Project. proPeIties”uuuuuieerrerreeeeeeeeeeererreerrerrrrererrreresrreaerer—a—..—————————————————. 10
FHLE “EESEDALE” ..o ettt e e 10
TeStING RESULLS ..uuniiiiiiiie et e e e e e e e e bt e e e e e e e eeaa b eeeeeaaesssaaaeaaeaeees 11
Generated Reports and JSON teSES ..uuuuiiii it e e e e e e e eeees 12
Internal Use Of IMABVENoiiiiiiiiiiiiiiie et ettt e et e e ettt e e e nteee e 12
Using Java inside Decision Models..............ccoooooiiiiiiiiiiiii e 14
Java Objects inside Decision Models...........ciiiiiiiiiiiiiiiiiie e e e 14
Java Snippets inside DeciSion Tablesciiiiiiiiiiiiiiiiie e 14
Using 3t Party Java MethodS.ooeeeiiiiiiiiiiiece et e e e e e e aa s 16
Java Snippets inside Table “Code” ..o 19
Executing Decision Model from Java...........cccccooeiiiiiiiiiiiiiie e 19
Running Decision Model against Java ObJeCtSuuvieeiiiiiiiiiiiiiie e 19
Running Decision Model against Excel Test Cases........ccoovviiiiiiiiiiiiiiii, 20
Running Decision Model against JSONccccoiiiiiiiii 21
C0ode GENETAtION.........eviiiiiiiiiiiiiiii ettt e e e e ettt ettt e e e s e aaabtbeeeeeeeeeaane 24
Build and Compile.........oovuiiiiiiiiiee e e e 24
Structure of the Generated Code..........cooiiiiiiiiiiiiiii e 24
OGN oo 25

OpenRules, Inc. User Manual for Developers

Execution Path ... e 26
Decision Model Deployment...............ooeeiiiiiiiiiiiiiiiii ettt e e e eeans 28
Decision Model Execution Using Java APIL..............ccooooiiiiiiiiiii e 29
TNVOCALION APT ..oiiniiiiiii ettt et ettt e e 29
API for Executed RULEScoouiiiiiiiiii e 31
Deploying Decision Model as AWS Lambda Function 34
Configuring AWS LAMDAouiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeessessssassssssssssssssesssssssssssssasrararraa——. 34
Deploying AWS Lambdauuuunnuniniiiiiii e e e s e aanan 35
Testing AWS Lambdaooooooiiiiiiiii 36
AUto-generated JAVA TESEuuuuuuuuiiiiiii e e ann 36
Auto-generated JSON Test Cases for POSTIMAN. ... 36
Executing AWS Lambda in Batch IMode............oviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeveeveaevereaeeaessasasesesaaeaaees 38
AWS Lambda Settings........oooooiiiiiiii 38
Building AWS Lambda for AWS Pipelinesuuiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeee e e e e e e e 39
Deploying Decision Model as MS Azure Function... 39
Configuring MS AzZure FUNCEIONiiiiiiiiiiiiiiiiiiiiiie ettt eeeeaeeeeeeeaasaaasasassaasssesasaessaasaeaaees 39
Azure Function 10Cal tESTINGuuuiiei i e e e et e e e e e e aaaaaaas 43
Deploying Azure FUNCEIONcooiiiiiiiiiiie e e e e et e e e e e e e e st e e e aaaeees 44
Testing AZUre FUNCEIONoiiiiiiiiiiie et e e e e e e e e e e e e e e et e e aaaaaees 45
Deploying Decision Models as RESTful Web Services...............cccccoei, 45
Creating RESTful DecisSion ServiCe............ccoooieiiiiiiiiiiiiiieii et 45
Building RESTIUL DECISION SEIVICE ...uuuuieiiiiiiiiiiiieeeeeeeeeeiee e e e e e e e e e e e et eeeeaaeees 46
Testing RESTIUl DECISION SEIVICE ...uuuuiiiiiiiiiiiiiieeeeeeeeeeiie e ettt e e e et eee e e e e e e e et eeeeeeeees 46
Executing Auto-generated JSON Test Cases from POSTMANouviiiiiiiiiiiiiiiiiiiieiiereeieeeeieienenns 48
Executing RESTful Service in Batch Modeuoiiiiiiiiiiiiiiiieiicceee e 49
Case Sensitivity of JSON AEEIDULES ..oovvvuieiiiiiiiiiiee e e 50
Creating RESTful Decision Service with SpringBoot................ccc.oiiiiiiiieee 50

OpenRules, Inc. User Manual for Developers

Building RESTIUL DECISION SEIVICE ...uuuuiieiiiiiiiiieee e et e e eeeeee e e eeetee e e e e e e e ieeeeeeeeeees 51
Testing RESTIUL DECISION SEIVICE ...uuuuniiiiiiiiiiiiiee e e eeeeeecee e et e e e et e e e e e e e e eeeeeeeaaeees 52
Executing Auto-generated JSON Test Cases from POSTMAN.........ooviiiiiiiiiiiiiiiiieeeeeeeeeen 53
Executing RESTful Service in Batch Modeouueeiiiiiiiiiiiiiee e 54
SpringBoot Decision Services with Additional SeCUritycooeeeiiiiiiiiiiiieeeeeiiiiieieee e 55
Packaging Decision Models as a Docker Imagecccocoeiiiiiiiiiiiiiiiiiiciiccceecceeeeeeeeeeee e 55
Building DocKer TIMA@Euuuuneiiiiiiiiiiiiiie ettt e e e e e e ea vt e e e e e e eeaas e e e eaeaeassanaaaeaaaees 55
RUNNING DOCKET ...ttt e e e e e ettt e e e e e e e eesastaaeeeeeaeessannnnaeaaaaeens 55
Testing Docker from POSTMANcoooiiiiiiiiii 56
Exporting DocKer TMAZEuuuuieiiiiiiiiiiiiie e e e et e e e e e e e e e st e e e e e e e araaaaas 58
Using Docker Image on a 3™ party Machine.............coooeeiiiiiiiiiiiiiiieeccceeciie e 59
Comparing OpenRules REST and SpringBoot Deployment Options..............ccccceeeeeeiennnn. 59
Additional Deployment Properties...........ccccovviiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeseasararersrerarrarr—————————. 59
Rules-based Service Orchestration..........ccooouuiiiiiiiiiiiiiiiic e 61
USEIUL TOOLS ...ttt e ettt e ettt e e ettt e e e et e e e et e e e saaaaeeeas 64
Generating OpenRules Tables in EXCel...........ooiiiiiiiiiiiiiiiii e 64
Search and Edit Multiple EXcCel FIles.........cooiiiiiiiiiiiiiiiie et 66
TECRNICAL SUPDOT Tooiiiiiiiiiiiiiiiiiiiieie ettt et eeeeeeeeeeeee e aaaesaessssssaassssssssssssssssasssssssssssssssasssssennnes 67

4©

OpenRules, Inc. User Manual for Developers

INTRODUCTION

OpenRules® helps enterprises develop operational decision services for their decision-
making business applications. OpenRules provides a set of decision intelligence
software tools. It allows business analysts to develop, test, deploy, and continue to
maintain operational business decision models.
OpenRules is oriented toward business analysts (subject matter experts) allowing them
to:

e Create business decision models in Excel files using decision tables and other

standard decisioning constructs to represent sophisticated business decision logic.

e Test/Debug/Execute Decision Models and Analyze the produced decisions.

e Deploy decision models as ready-to-be-executed decision microservices on-cloud

or on-premises.

e Connect Decision Service to a relational database.

e Learn Business Rules from your historical data.

e Find Optimal Decisions.

OpenRules includes the following tools:

- Integrated Decision Modeling Environment

- Superfast Rule Engine

- Rule Learner for rules discovery
- Rule Solver for decision optimization

- Rule DB for integration with databases

OpenRules provides a special User Manual for Business Analysts that describes

how not-technical people can do it. This manual is oriented to software developers who
can help business analysts to do all these tasks plus to integrate tested decision models
into their IT systems using different deployment options. We strongly recommend
software developers first to familiarize themselves with the first two chapters,

“Installing OpenRules Software” and “Introductory Decision Service.”

50

https://openrulesdecisionmanager.com/openrules-explorer/
https://openrules.blog/2021/06/15/comparing-rule-engines-performance/
https://rulelearner.com/
https://rulesolver.com/
https://ruledb.com/
https://openrules.com/pdf/OpenRulesDecisionManager.UserManualForBusinesAnalysts.pdf

OpenRules, Inc. User Manual for Developers

DECISION MODELS ORGANIZATION

After the installation, take a look at the simplest decision project “Hello” in the folder
“openrules.samples”. It is completely oriented to business people with no programming
expertise. As many other decision models, it has a typical decision model structure:
» rules - a folder called “Rules Repository” with the following Excel files:
e DecisionModel.xlsx with the Environment table that refers to all Excel files
that compose this decision model,;
e Glossary.xlsx with the table Glossary that describes all decision variables
used by this decision model;
e Rules.xlsx with decision tables that implement business logic;
e Test.xlsx with tables that describe test cases.

> project.properties — a file that describes the project’s properties

> test.bat — a batch file used to build and execute this decision model (for Mac and
Linux the proper file is “test”). There is also file “build.bat” that is used for build
only, but business people do not use it as “test.bat” does everything they need.
Sometimes, when they receive some build errors, it’s better to run “build.bat” as

it includes the Maven’s flag “-e“ to produce more explanations.

> clean.bat — a batch file to clean up the project in situations when you want to re-

build it, e.g. after installation of the new OpenRules release.

» explore.bat — a batch file to start OpenRules Explorer

» pom.xml — a configuration file that contains information about the project and

configuration details used by Maven to build the project.

CREATING CUSTOM DECISION MODEL

To create a new decision model, you may simply copy any existing sample-project such
as “Hello” into a new folder, say “MyProject”, and make the following change in the file

“pom.xml” (see line 7):
<artifactId>Hello</artifactId>
replace to

<artifactId>MyProject</artifactId>

6©

https://openrulesdecisionmanager.com/graphical-decision-modeling/

OpenRules, Inc. User Manual for Developers

Also, make sure that you are using the latest release of OpenRules (e.g. 11.1.0) by

setting
<openrules.version>11.1.0</openrules.version>

You may place your project anywhere on your hard drive. Then you may double-click on
“test.bat” to make sure it works, and then start making changes in your Excel files and

“project.properties”.

HoOW BUSINESS ANALYSTS DEAL WITH DECISION MODELS

As a developer, you may want to know what business analysts are supposed to do by
looking at the introductory decision model “Vacation Days” described in the User

Manual for Business Analysts. You should understand the structure of tables “Glossary”

and “Environment” that play an important role in the integration of business and IT.

Glossary

Every decision model requires that decision variables (goals and input variables) are
described in the special table called “Glossary”. Here is an example of a glossary

described in the file “VacationDays/rules/Glossary.xlsx”:

Glossary glossary

Variable Name Business Concept Attribute Type
MName name String
WVacation Days vacationDays int
Eligible for Extra 5 Days eligibleForExtrabDays | boolean
Eligible for Extra 3 Days Employee eligibleForExtradDays | boolean
Eligible for Extra 2 Days eligibleForExtra?2Days | boolean
Age in Years age int
Years of Senice senvice int

The signature row “Glossary glossary” should have all columns inside it to be merged.
The first column “Variable Name” contains the names of decision variables exactly how

they were used inside the decision tables.
The second column “Business Concept” contains the name of a business concept to

which these variables belong. It usually corresponds to a Java class (already existing or

generated by OpenRules) and thus should not contain spaces. Note that merging cells

70

https://openrules.com/pdf/OpenRulesDecisionManager.UserManualForBusinesAnalysts.pdf
https://openrules.com/pdf/OpenRulesDecisionManager.UserManualForBusinesAnalysts.pdf

OpenRules, Inc. User Manual for Developers

inside the second column “Employee” indicates that all variables on the left belong to

this concept.

The third column “Attribute” provides technical names for all decision variables — they
usually correspond to the attribute names inside the corresponding Java classes or

JSON structures. The name should follow the Java Beans naming convention.

The fourth column “Type” describes the expected type of each decision variable such as
“String” for text variables, “int” for integer variables, “double” or “float” for real
variables, “Boolean” for logical variables, “String[]” for an array of text variables, etc.
These types should be valid Java types or other business concepts but a business analyst
doesn’t have to even know this fact and just memorize the most frequently used

keywords such as String, int, double, Boolean, Date.

A glossary may contain optional columns such as:

e “Description” with a plain English explanation of the term

e “UsedAs” with possible values Input, Output, InOut, Temp, Const

e “Domain” lists possible values of the variable, e.g. 1-120 for Age, Single, Married

for Gender.

These columns could be very helpful to understand the decision model.
You may notice that some decision variables (goals and sub-goals) are hyperlinked to
point to the decision tables (worksheets) that specify these goals. A click on the variable
inside the glossary will immediately open the xls-file and the table that specifies this
variable. It’s easy to do using Excel Hyperlinks and is very convenient for the future

maintenance of your decision models when you want to find out “what is defined where”.

Usually, a business model has one glossary. But if it’s too big, you may split it into
several tables of the type “Glossary”. For example, the sample project
“InsurancePremium” contains 3 files “GlossaryClient.xlsx”, “GlossaryDriver.xlsx”, and
“GlossaryCar.xlsx” with separate Glossary tables for glossaryClient, glossaryDriver, and

glossaryCar.

Environment

8s©

https://en.wikipedia.org/wiki/JavaBeans

OpenRules, Inc. User Manual for Developers

There is one more important file “VacationDays/rules/DecisionModel.xlsx” that

describes the structure of the decision model in the table “Environment”:

Glossary xlsx

include

Rules xlsx

This table states that our decision model includes files “Glossary.xlsx” and “Rules.xlsx”.
Your model can use multiple xls- and xlsx-files located in different folders, and you can
define them all in the Environment table relative to the file “DecisionModel.xlsx”. If your
entire decision model is described in one Excel file, you don’t need to define the
Environment table at all. You can use the wildcard characters like **/*.xlsx to include

all Excel files in all sub-directories of your rules repository.

Note. Along with “include” the Environment table may use “import.java” and
“Import.static” to add references to 34 party Java classes — see below.
Test Cases

A decision model may include test-cases described in an Excel file such as

“VacationDays/rules/Test.xlsx”. The table “DecisionTest”

ActionDefine ActionDefine ActionExpect
TestlD | Age in Years |Years of Service | Vacation Days
Test A 17 1 27
Test B 25 b 22
Test C 45 30 30
Test D 45 29 24
TestE a7 32 30
TestF 54 42 30

describes 6 test-cases. The first column “#” defines the name of the test. The second and
third columns “ActionDefine” defines the Employee's attributes you want to test. The
column “ActionExpect” specifies the expected values of the decision variable “Vacation

Days”.

Building and Testing Decision Model

OpenRules provides a decision engine capable to build, test, and deploy business

decision models on-premise or on-cloud. There are several bat-files in every project

9©

OpenRules, Inc. User Manual for Developers

folder such as “VacationDays” that help a business user to execute OpenRules decision
engine to build/test decision models.

Configuration File “project.properties”
After you complete the design of your decision model and its test cases, you need to
adjust the standard file “project.properties”. An example of such a file was provided for

the introductory model as follows:

model . file="rules/DecisionModel . xls"
test.file="rules/Test.xls"

Usually, you need only two properties:
e model.file — it is usually the file “DecisionModel.xlsx” that describes the
structure of your model in the Environment table
e test.file — the name of the file that contains your test cases (it could be omitted if

you test your model directly from Java or as a service)

There could be several optional properties:
¢ run.class — the name of a Java class that will be used instead of the standard
OpenRules class; see an example in the project “HelloJava”;
e trace=0n/Off — to show/hide all executed rules in the execution protocol;
e report=0On/Off — to generate or not the HTML-reports that show all executed

rules (and only them) with explanations why they were executed;

More properties could be added for different deployment options. If you add the same
properties that were defined in the Environment table to the “project.properties”, they

will take a precedence.

File “test.bat”
The file “VacationDays/test.bat’ is used to build and test your decision model (on Mac
and Linux instead of “test.bat” you use the file “test”). This file is the same for all

standard decision models and you don’t even have to look inside this file. When you

double-click on this file, it will do the following:

100

OpenRules, Inc. User Manual for Developers

1) If the model hasn’t been built yet or some files where changed, it will execute these
steps:
a. Analyze all files included in your decision model and check the model for
possible errors;
b. If there are errors, it will show the errors pointing to the reasons and the
proper place in Excel files;
c. If there are no errors, it will generate Java classes (in the folder “target”)
needed internally to execute this decision model,;
d. The generated Java classes will be compiled preparing the decision model for
execution.
2) After a successful build, the decision model will be executed against test cases

described in the “Test.xlsx”.

You will also find the file “VacationDays/build.bat” that can be used to build the

decision model as well, but it will execute the model only after rebuild.

Testing Results
During the execution, you will see the execution protocol similar to the shown on the
next page. This execution protocol was produced with “trace=On” and it shows all

executed rules with references to their locations in Excel, e.g.

1N X
THEN 'V tion Days' += G5

Variab
i Extra 5 Days: true

It also shows all decision variables involved in the executed rules with their values
before and after rule execution. The attributes that were changed are highlighted in

blue.

If OpenRules finds a mismatch (highlighted in red) between the expected and produced

results it will show the problem in the following way:

110

OpenRules, Inc. User Manual for Developers

Calculate
IF

Variab

Eligible for Extra 3 Days: t

Then you should decide if you made mistakes in your rules or the expected results.

Generated Reports and JSON tests

After the execution, you also may look at the generated HTML reports that explains
which rules were executed and why (assuming the property report=On). The report is
generated in a user-friendly HTML format in the folder “target/reports” — one html-file
for each test case. You also will see the HTML report “target/reports/project-
files.html”.

If your file “project.properties” defines the property “deployment” OpenRules will
generate a set of JSON files in the folder “target/jsons” that correspond to all Excel-
based tests.

Internal Use of Maven

OpenRules actively uses Apache Maven as a build tool. All OpenRules Decision Manager

projects are mavenized. Below is an example of a typical pom.xml file (from the sample
project “Hello”).

Note that it is important to use

cpackaging>rules</packaging>

OpenRules provides its own Maven’s plugin that is included in all “pom.xml” files:

<pluginz
<groupld>com.openrules</groupld:
<artifactId»openrules-plugin</artifactId:
<version>${openrules.version}</version:
<extensions>true</extensions:

</pluginz

12©

https://maven.apache.org/

OpenRules, Inc. User Manual for Developers

Hello/pom.xml:

k?xml version="1.0" -encoding="UTF-8"7?>

cproject xmlnz="http://maven.apache.org/POM/4.0.0"

xmlnz:xsi="http://www.w3.o0rg/2001 /XMLEchema-instance"
xzi:schemalocation="http://maven.apache.org/POM/4.0.0 hittp://maven.apache.org/xsd/maven-4.0.0.x=sd">
<modelVersion>4.0.0</modelVersion>

<groupldrcom.openrules.samples</grouplds

<artifactIdrHelleo</artifactId:>

<version>1.0.0</version>

<packaging>rules</packaging>

<properties>
<maven.compiler.source>l.8</maven.compiler.source:
<maven.compiler.target>l.8</maven.compiler.targets
<project.build. sourceEncoding>UTF-8</project.build. sourceEncoding>
<openrules.version>10.1.0-SNAPSHOT</openrules.version>
</propertiss>

<dependencies>

<dependency>
<groupldrcom.openrules</groupld>
<artifactIidropenrules-core</artifactId>
<versionr${openrules.version}</version>

</dependency>

<dependency>
<groupldrorg.apache.logging. logdj</groupld>
<artifactldrlogdj-slfdj-impl</arcifaccId>
<version>2.22.1</version>

</dependency>

<dependency>
<groupldrorg.apache.logging. logdj</groupld>
<artifactld-logdj-core</arcvifactId>
<version>2.22.1</version>

</dependency>

<dependency>
<groupIdrjunit</groupId>
<artifactId>junit</artifactId>
<version>4.13.2</version>
<zcopertest</scope>

</dependency>

</dependencies>

<build>
<plugins>
<plugin>
<groupld>com.openrules</grouplds>
<artifactId-openrules-plugin</artifactId>
<wversion>${openrules.version}</version>
<extensions>troe</extensions>
</plugin>
</plugins>
</build:>

</project>

The files “test.bat”, “build.bat”, and “clean.bat” are simple batch files created for the
convenience of a business analyst who isn’t expected to know anything about Maven.

These files use Apache Maven that should be pre-installed. As a developer familiar with

13©

https://maven.apache.org/download.cgi

OpenRules, Inc. User Manual for Developers
Maven, you always may run Maven’s commands directly from a command line.

OpenRules uses an automated vulnerability check that utilizes the NVD, the U.S.
government repository. So, OpenRules releases always upgrade the used 3rd party
packages to avaiod recently found vulnerabilities. You may find the latest list of

dependencies here.

USING JAVA INSIDE DECISION MODELS

Java Objects inside Decision Models

Business people usually define their test-cases in Excel using tables of the types
DecisionData, Glossary, and DecisionTest. Instead as a developer, you may define
business concepts as Java classes. For example, in the sample-project
“VacationDaysdava” there is a Java class “Employee” located in the class
“Employee.java” of the package “vacation.days”. It is a simple Java bean with the same
attributes as defined in the Glossary, and all getters and setters. Note that this Java
class should be located in the same package which is defined in “model.package” the

table “Environment” in the file “DecisionModel.x1sx”:

Environment

include Glossary xlsx
Rules xlsx
model.name VacationDaysModel
model.goal Vacation Days
model.package vacation.days
model_precision 0.001

Now, the decision model will use the new Java class as a data type and will check that
its attributes are the same as defined in the Glossary. When you execute “test.bat”, it

will rebuild the model and will produce the same results using the same test-instances.

Java Snippets inside Decision Tables

OpenRules allows a user to write various arithmetic and logical expressions directly
inside decision table cells. For instance the project the sample project “PatientTherapy”

contains this decision table:

14©

https://nvd.nist.gov/
https://openrulesdecisionmanager.com/resources/3rd-party-software/

OpenRules, Inc. User Manual for Developers

DecisionTable CalculateCreatinineClearance
Action

Patient Creatinine Clearance

(140 - Patient Age) * Patient Weight / (Patient Creatinine Level * 72)

However, OpenRules also allows a user to add snippets of Java directly in Excel-based

tables starting with “:=”. Here is an example:

DecisionTable CalculateCreatinineClearance
Action

Patient Creatinine Clearance

= (140 - §{Patient Age}} * ${Patient Weight} / (${Patient Creatinine Level} * 72)

OpenRules recognizes that content of the cell as a Java snippet if you start it with “:=",

The expression itself can be any valid Java snippet including standard Java functions.
This snippet may refer to decision variables defined in the Glossary using so-called
macroses like ${Patient Age} or ${Patient Weight}. If you want to refer to a business
concept you may use a special macro with the indicator “O”, e.g. the macro $O{Patient}
can be used in the snippet := System.out.log($O{Patient{.toString()); to print the object

“Patient”.

Inside the Java expressions you may use any operator "+", "-", "*" "/" "%" and any other
valid Java operator. You may freely use parentheses to define the desired execution

order. You also may use any standard party Java methods and functions, e.g.

Math.min(${Line A}, ${Line B})

OpenRules also supports special tables of the type “Method” or “Code” to put a piece of
Java directly in Excel. For example, you can create this table of the type “Method”

Method double CreatinineClearanceFormula(Decision decision)

double pcc = (140 - ${Patient Age}) * ${Patient Weight} / (${Patient Creatinine Level} * 72);
return decimal(pcc,2);

15©

OpenRules, Inc. User Manual for Developers

Then call this method can be invoked by using this table:

DecisionTable CalculateCreatinineClearance
Action

Patient Creatinine Clearance
= CreatinineClearanceFormula{decision);

The first statement in the table “CreatinineClearanceFormula” creates a double variable
“pec” using a formula with macros like ${Patient Weight}. The second statement returns
the value of pce rounded to 2 digits after the decimal point. You may use any valid Java

statement (including if-then-else and for-loop) inside the Method’s body.

As you can see, after the keyword “Method”, you may put a regular Java signature. The
“void” after the keyword means that this method doesn’t return anything. You may put
as many parameters as you wish after the method’s name — here we use only one

parameter (Decision decision).

You may replace the above two table with one table of the type “Code”:

Code CalculateCreatinineClearance

double pcc = (140 - ${Patient Age}) * ${Patient Weight} / (${FPatient Creatinine Level} * 72);
decision.setVarValue("Patient Creatinine Clearance”, decimal{pcc,2));

It explicitly set the calculated and rounded value of pce to the variable “Patient
Creatinine Clearance”. It assumes only one parameter “decision” of the type Decision
used in the second statement. However, this table should be explicitly invoked from the

main method.

Using 3vd Party Java Methods

To use your own or any 3rd party Java methods, you need to add them to the
Environment table using “import.java” or “import.static”. For example, the standard
project “PermitEligibility” uses Java methods defined in the optional OpenRules
package “com.openrules.tools” included into the standard installation. So, the proper

table “Environment” for this project is defined as follows:

16©

OpenRules, Inc. User Manual for Developers

Environment

clude Glossary xlsx

Rules xlsx
model.name DecisionModelPermit
model.goal Main
model package permit.eligibility
import.static com.openrules tools Dates. ™
import.java com.openrules tools Datelnterval

Here ”import.java” provides your decision model access to all methods of the class
“com.openrules.tool.Datalnterval” while “import.static” provides access to static
methods of the class “com.openrules.tool.Dates”. If you forget to add these import-
statements in the Environment table, you will receive compilation errors in the

generated code:

[] COMPILATION ERROR :
[] /C:/_GitHub/openrules. samplEF-Perml"Ellclblllt, target/generated-sources/main/java/permit/eligibility/

openrules/ Dei'ernuntawharedDa,':pl g
symbol: method daysBetweenIntervalsiy [.JErnll" eligibility.DateInterval,permit.eligibility.DateInterval)

Another good example is the standard project “SpatialRules” that uses a large 34 party
library. 3 jar-files for the JTS library from Vivid Solutions have been included into the
project’s classpath. The project include its own simplified Java interface to this JTS
library implemented in the Java package “com.openrules.spatial”. To make all these

Java methods accessible from the decision model, the project uses the following table:

Environment

EntityToEntityRules xlsx
: EntityToCountsRules xlsx
include
Glossary xlsx
SpatialTemplates. xlsx
import.java com.openrules.spatial.”
model_name DecisionModelSpatial
model.goal DetermineSpatialSignificanceScore
model.package com.openrules. spatial
model. precision 0.01

Let’s consider one more standard example “RulesRepository” in which all rules tables
deal with the Java object Appl defined in the Java package “myjava.packA1”. Therefore,
the proper Environment table inside file Main.xlsx (see above) contains a property

"Import.java" with the value "myjava.packAl1.*"

17©

OpenRules, Inc. User Manual for Developers

Environment

import_java myjava.packAl.*
SubCategoryA1/RulesA11 xls
SubCategoryA1/RulesA12 xls

include

The property "import.java" allows you to define all classes from the package following
the standard Java notation, for example "hello.*". You may also import only the specific
class your rules may need, as in the example above. You can define a separate property
"Import.java" for every Java package used or merge the property "import.java" into one

cell with many rows for different Java packages. Here is a more complex example:

‘ Environment

import.static com.openrules.tools.Methods

my.bom.*

my.impl.*

_ _ my.inventory.*
1mport.java

com.openrules.ml.*

my.package.MyClass

com.3rdparty.*

..include/Rules].xlsx
include

..include/Rules2.xlsx

Naturally the proper jar-files or Java classes should be in the classpath of the Java

application that uses these rules.

W o Cofeoke?
y e

You can use the wildcard characters like , Or to refer to different xls, xlsx, or
Java files. For instance, you can write “**/* xlsx” to include all Excel files in all sub-

directories of your rules repository.

If you want to use static Java methods defined in some standard Java libraries and you
do not want to specify their full path, you can use the property "import.static". The
static import declaration imports static members from Java classes, allowing them to be
used in Excel tables without class qualification. For example, many OpenRule® sample

projects use static methods from the standard Java library com.openrules.tools that

18©

OpenRules, Inc. User Manual for Developers

includes class Methods. So, many Environment tables have property "import.static"

defined as "com.openrules.tools.Methods". This allows you to write

out("Rules 1");

instead of

Methods.out("Rules 1");

Java Snippets inside Table “Code”

You can put your Java snippet inside a special table of the type “Code”, e.g.

Code SolveOptimizationProblem

OptimizationProblem optimizationProblem =

new OptimizationProblem($O{Company}, $O{Employee});
optimizationProblem.define();
optimizationProblem.maximize(),

This table is equivalent to the table with the signature

“Method void SolveOptimizationProblem(Decision decision)”.

EXECUTING DECISION MODEL FROM JAVA

The decision model “VacationDaysJava” includes different examples of how to invoke the

decision model from a Java application.
Running Decision Model against Java Objects

The following Java launcher defined in the class “src/test/java/vacation.days/Main.java”

executes the decision model “VacationDaysJava” against a Java object:

19©

OpenRules, Inc. User Manual for Developers

package vacation.days;

import- com.openrules.core.DecisionModel;
import- com.openrules.core.Goal;

public-class Main- {

public- static woid main{String[] args) {
DecisionModel model = new DecisionModelVacationDays();
Goal goal =-model.createGoal();

Employee- employee = new- Employee- ()3
employee.setId("Mary Grant™);
employee.sethge(46);
employee.setService(18);
goal.use("Employee”, employee);
goal.execute();
System.ouwt.println("Vacation Days =

+ employee.getVacationDays());

It creates a DecisionModel “model” using the Java class “DecisionModelVacationDays”
that was generated during “test.bat”. Then this model creates the “goal”, an instance of
the standard class Goal. Then it creates a test-instance of the class Employee, puts this
employee to the decision model using the method goal.use(“Employee”, employee), and

executes the decision model using the method goal.execute().
If you want to see the trace information in the console, use
goal.put(“trace”,”On’);

If you want to generate an html report, use
goal.put(“report”,”On”);

Running Decision Model against Excel Test Cases

The file “Test.xlsx” includes the following Data table:

Data Employee employees

id age senice

D Age in Years of
Years Service

A 17 1

B 25 b

c 45 30

D 45 29

E 57 32

F 64 42

20©

OpenRules, Inc. User Manual for Developers

It defines 6 employees. We can use these employees to test our decision model
“VacationDaysdava” from Java using the following Java launcher defined in the class

“src/test/javalvacation.days/Test.java”:

package vacation.days;

import- com.openrules.core.DecisionModel;
import- com.openrules.core.Goal;

public class Test {
public- static void main{5tring[] args) {

DecisionModel model- = new-DecisionModelVacationDays();
Goal - goal-='model.createGoal();
goal.put("Report™, - "0On");

Object[] employees = employeesArray.get();

for- (Object-employee- : - employees})-{
System.owt.println("\nBEFORE: " 4+ employee);
goal.use("Employee”, - employee);
goal.execute();
System.out.println{"\nAFTER: " + employee);

The object “model” and “goal’ are defined as in the previous launcher. During the
“test.bat”, OpenRules generated a special Java class “emploeesArray” (by adding the
word “Array” to the name “employees” used in the above Data table. So, in this launcher
we create an array of Java objects “employees” using

Object[] employees = employeesArray.get();

Then it executed the goal for each employee from this array.

Running Decision Model against JSON

Let’s assume that you have a test employee defined in the file “data/employee.json” in

the JSON format:

"id": "Robinson"™,

21©

OpenRules, Inc.

User Manual for Developers

The Java class “src/test/java/vacation.days/Maind SON.java” provides an example how to

execute the decision model “VacationDaysJava” against this JSON object:

import
import
import
import

public

.

java.io.File;

com.fasterxml. jackson.databind.ObjectMapper;
com.openrules.core.DecisionModel;
com.openrules.core.Goal;

class-MainJS0N- {

private static ObjectMapper mopper = new ObjectMapper();

public- static void main{5tring[] args) throws Exception {

DecisionModel model = new DecisionModelVacationDays();
Goal goal = model.createGoal();

File: jsonIn-=-new File("data/employee.json™);

Employee- employee - = mopper.readValue(jsonln, - Employee.class);
goal.use("Employee”, - employee);

goal.execute();

system.out.println"vacaticn Days = " + employee.getVacationDays());
File jsonOut = new- File("data/employeeResponse.json™);
mapper.writerithDefaultPrettyPrinter().writeValue(jsonOut, - employee);
System.out.println{employee);

Here we again create a decision model and its goal. Then we use an ObjectMapper that

comes with an open-source package

[13

jackson” to convert an object from the file

“data/employee.json” to a Java object employee. After executing the decision model for

this object, we save the resulting employee in the new file “data/employeeResponse.json”:

The file “data/Request.json” contains an array of employees in the JSON format:

22©

https://github.com/FasterXML/jackson

OpenRules, Inc. User Manual for Developers

30

29

32

42

The Java class “src/test/javal/vacation.days/MaindsonArray.java” executes the decision

model “VacationDaysdava” for all of them:

import- java.io.File;

import- java.util.Arraylist;

import- java.util.Llist;

import- com.fasterxml.jackson.databind.ObjectMapper;
import- com.openrules.core.DecisionModel;

import- com.openrules.core.Goal;

public-class MainJsonArray {
private - static- ObjectMapper mapper: = new ObjectMapper();
public-static wvoid main(5tring[] args) throws Exception-{

Employee[] employees = mapper.readValue(new File("data/Request.json™), Employee[].class);
List<Employee> response = new ArraylList<Employee>();

DecisionModel model = new DecisionModelVacationDays();
Goal-goal- = model.createGoal();

for- (Employee - employee: - employees) - {
goal.use("Employee”, employee);
goal.execute();
System.out.println("Vacaticn Days =
System.owut.println(employee);
response.add(employee);

b

mapper.writeriithDefaultPrettyPrinter() . .writeValue (new File("data/Response.json™), response);

+ employees.getVacationDays());

b

23©

OpenRules, Inc. User Manual for Developers

It also saves the calculated results in the file “data/Response.json” as an array of JSON

objects.

CODE GENERATION

Build and Compile

When a business analyst executes “test.bat” (or “build.bat”) for the first time or when
some files inside the decision project were changed, OpenRules converts the decision
model in its Java representation into Java. A business user should not even know about
the generated code, but as a developer, you may want to know about the structure of the

generated code. Still, you never should make any changes in the generated code!

When OpenRules builds the model by generating executable Java code, it goes through
two steps:

1) Build

2) Compile.

OpenRules is trying to catch as many problems as possible during the “Build” step to
inform a user about possible errors using business-friendly terms and pointing to the
exact place in Excel where an error occurred. However, sometimes the errors could be
tricky and only Java compiler will catch them, and in this case you, as a developer,

should be able to help by looking at the error in the generated code.

Structure of the Generated Code

The generated code is placed into the folder “target” with 2 major sub-folders:
e target/generated-sources/main/java — with all Java classes needed to execute
the decision model
e target/generated-test-sources/test/java — with only those Java classes which
are based on the test-cases and needed to execute these test cases against the
decision model. You don’t need these classes after the decision model is

integrated into your IT environment and deployed.

24©

OpenRules, Inc. User Manual for Developers

These folders each contain two packages which names are defined by the property
“model.package” in the table Environment (see file “DecsionModel.xlsx”). For example,
for the project “VacationDays” these folders are:

e vacation.days — contains an external interface

e vacation.days.openrules - contains an internal implementation.
The most important generated class is called “VacationDays” located in the package
“vacation.days” of the folder “target/generated-sources/main/java”. It is used by the Java
tests such as “src/test/java/vacation.days/Main.java” shown in previous sections.
For all business concepts defined in all glossaries, OpenRules will generate the
corresponding Java classes. For example, in the project “VacationDays” there is only one
business concept “Employee” in the Glossary, so OpenRules will generate Java class
“Employee.java” placed in the package “vacation.days” of the folder “target/generated-

sources/main/java”.

All rules will have the proper dJava representation inside the package
“vacation.days.openrules” of the folder “target/generated-sources/main/java”.
There is one more generated folder “target/generated-sources/main/resources” that
contains “metadata” files used internally for more efficient rules execution.
Note. When you add OpenRules decision project inside an IDE such as Eclipse, make
sure that the project classpath includes the generated folders:

e target/generated-sources/main/java

e target/generated-sources/main/resources

e target/generated-sources/test/java

Logging

™

OpenRules Decision Manager utilizes the commonly-used open-source package SLF4J
for logging. By default OpenRules already includes the latest log4j-slf4j-impl but you
always may add your preferred implementation by adding the proper dependency in

your “pom.xml”; e.g.:

25©

https://www.spf4j.org/

OpenRules, Inc. User Manual for Developers

</dependency:
You should also make sure that the standard logging configuration file such as

log4j2.xml” is included in your classpath, e.g. by placing it in the source folder

“src/main/resources”.

EXECUTION PATH

In many cases, during the build, OpenRules automatically generates the so-called
“execution path” as a sequence of all tables that should be executed to calculate the final
goal. For example, when OpenRules analyses the decision model “VacationDays”, it
automatically builds an execution path as a sequence of goals (or decision tables that
determine these goals):

1. SetEligibleForExtra5Days

2. SetEligibleForExtra3Days

3. SetEligibleForExtra2Days

4. CalculateVacationDays
Alternatively, a user may define the execution path manually using the table of the type

“Decision”:

Decision DetermineVacationDays

Decisions Execute Decision Tables
Eligible for Extra & Days SetEligibleForExtratDays
Eligible for Extra 3 Days SetEligibleForExtraiDays
Eligible for Extra 2 Days SetEligibleForExtra2Days
CalculateVacationDays CalculateVacationDays

The table “Decision” by default has two columns “Decisions” and “Execute Decision
Tables”. The first column contains the display names of all sub-decisions — they simply
describe the goals/sub-goals. The second column contains the exact names of decision
tables that implement these sub-decisions. The decision table names cannot contain

spaces or special characters (except for “underscore”).

To run this “execution path” instead of the automatically defined one you need to modify

the property

26 ©

https://logging.apache.org/log4j/2.x/manual/configuration.html

OpenRules, Inc. User Manual for Developers

model.goal="DetermineVacationDays”
in the Environment table or overwritten in the file “project.properties”. It will produce

the same results.

However, some decision models may have a more complex structure when an execution
path cannot be automatically built. In this case, the build protocol will include a
warning that the same decision variable can be determined by 2 or more decision tables,
and OpenRules could not know which of them should be executed first. In such cases, a

user should specify the execution sequence in the table of the type “Decision”.

The table “Decision” can use conditions to specify when a certain decision table should
and should not be executed. For example, consider a situation when the first sub-
decision validates your data and a second sub-decision executes complex calculations but
only if the preceding validation was successful. Here is an example of such a decision

from the tax calculation decision model “1040EZ”:

Decision Apply1040EZ
Condition ActionPrint ActionExecute
1040EZ Eligible Decisions Execute
Walidate ValidateTaxReturn
Is TRUE Calculate DetermineTaxReturn
Is FALSE Do Mot Calculate

Since this table “Decision Apply1040EZ” uses an optional column “Condition”, we must
add a second row with the keywords “Condition”, “ActionPrint”, and “ActionExecute”.
This table uses a decision variable “1040EZ Eligible” that is defined by the first
(unconditional) sub-decision “Validate”. We assume that the decision
“ValidateTaxReturn” should set this decision variable to TRUE or FALSE. Then the
second sub-decision “Calculate” will be executed only when “1040EZ Eligible” is TRUE.
When it is FALSE, this decision, “Apply1040EZ”, will simply print “Do Not Calculate”.

Note. You may use many conditions of the type “Condition” defined on different decision
variables. Similarly, you may use an optional condition “ConditionAny” which instead of

decision variables can use any formulas defined on any known objects. It is also possible

27©

OpenRules, Inc. User Manual for Developers

to add custom actions using an optional action “ActionAny”.

The real-world decision models can be very complex and it might be impossible to
automatically discover an execution path, e.g. when the same model has several
independent goals that should be determined during the same run. In these cases, the
tables of the type “Decision” become very important to express complex inter-goal

relationships.

DECISION MODEL DEPLOYMENT

OpenRules provides all the necessary facilities to simplify the integration of business
decision models with modern enterprise-level applications. Tested decision models may

be easily deployed on-premise or on-cloud as described in the following schema:

28 ©

OpenRules, Inc. User Manual for Developers

.......................

Deployment Options

iDecision Model:

s
Rules Repository =
—— Java
== L Java APl :
Business | Web App

Business

: § GUI
: : : ; S
8 % : : ‘AWS Lambda Function A
Develop | 3 ’ Deolo I y 1 Execute
S s gy =
Azure DB

Analysts '

: i x I i Functions
iDecision Tables:
s (DMN ' '

1 OpenRules |
Format)

Decision Model Execution Using Java API

After you build and test your decision model, it is ready to be incorporated in any Java-
based application using a simple Java API internally generated for this decision model.
Examples of a simple Java API for invocation of the decision model can be found in the
project “VacationDaysdava” in the folder src/test/java. They uses the generated Java

classes saved in the folder “target”.

Invocation API

The sample “SampleJavaEmployee” demonstrates how to invoke a decision service from

Java:

29 ©

OpenRules, Inc. User Manual for Developers

package vacation.days;

FEES

*.This- sample demonstrates- how to-test a geoal against-a- Java input object
E

import- com.openrules.core.DecisionModel;[]
public- class- SampleJavaEmployee {
public-static wvoid main(String[] args) {
long startTime = System.currentTimetillis();

/- Create-a-decision -model- (its name-is-defined-in-the-table- Environment)
DecisionModel model = new VacationDays();

//-Create the main- goal
Goal-goal = model.createGoal();

/- Activate report- generation
goal.put("Report™, - "On");

//-Create-a- test-employee

Employee- employee- = new- Employee();
employee.setId("Mary Grant");
employee.setAge(46);
employee.setService(18);
goal.use("Employee”, - employee);

!/ Execute- the goal- against- the employee
goal.execute();

//-Print-the result
System.out.println("Vacation Days =
System.out.println({employee);

+ employee.getVacationDays());

long endTime = System.currentTimeMillis();
System.out.println("Total Elapsed time: "

+ (endTime- -- startTime - +-1)-+ " -ms");

Java classes “com.openrules.core.DecisionModel” and “com.openrules.core.Goal” are the
standard OpenRules classes included in the automatically installed OpenRules jar-files.
Each decision model generates a special subclass of the DecsionModel such as
“VacationDays” when you call “built.bat”. So, in the above code we created an instance of

the DecisionModel:
DecisionModel model = new VacationDays();

Then we created a goal the main (default) goal of this decision model:

30©

OpenRules, Inc. User Manual for Developers

Goal goal = model.createGoal();
We direct this goal to use some Java objects (such an Employee) by calling the method
goal.use(“business-concept-name”,object);
where business-concept-name should be correspond to the one defined in the Glossary. In
this example we create an employee and passed it to the goal:
goal.use(“Employee” object);
And then we executed this goal by calling
goal.execute();

Then we printed the attribute employees.getVacationDays() modified by our decision

model.

Several other sample classes demonstrate how to execute decision model against:
test cases defined in Excel — see SampleExcelEmployees
test cases read from a Json file — see SampledsonEmployees.

API for Executed Rules

OpenRules provides a special Java API to allow a Java program (client) to access all
executed rules after the goal execution (like those rules which are shown in the
generated html-reports). You can find the proper example in the class
“SampleShowExecutedRules” of the standard project “VacationDaysdava” — see below.
Before executing the goal, a client may add a new ExecutionListener to the goal:
ExecutionListener listener = new ExecutionListener();
goal.addListener(listener);
Then after the goal’s execution, a client can ask this listener to show all executed rules

using the method listener.get Executed Rules().

310

OpenRules, Inc. User Manual for Developers

public-static void main(String[]-args)-{

DecisionModel model = new VacationDays();

[/ Create-the -main- goal
Goal-goal - =-model.createGoal();

/- Activate- report- generation
goal.put("Report™, "On");

[/ Create-a test-employee

Employee- employee- = new: Employee();
employee.setId("Mary Grant");
employee.setige(46);
employee.setService(18);
goal.use("Employee", - employee);

/f-Create-a- listener for-decision model- execution
ExecutionlListener- listener = new ExecutionListener();
goal.addListener(listener);

//-Execute the-goal-against-the- employee
goal.execute();

//-Print-the- result
System.out.println{"Vacation Days = " + employee.getVacationDays());
System.out.println(employee);

J//-Print-all-actually- executed- rules-in- the-order-of - their- execution
system.out.println{"\n== Executed Rules:");
for (ExecutedRule r :- listener.getExecutedRules()) {
/- print-a-rule
System.out.println("\nRule: + r.getDecisionTableName() + " #" +
System.out.println(" (" + r.getRuleRange() + "): "+ r.ruleText());

/- Print-related-variables-and-values
if (r.getVariables() != null && !r.getVariables().isEmpty()) {
system.out.println("Variables:");
r.getVariables().forEach((key, value) -> {
System.out.println{"\t" + key + ": old=" + value[®] + ",
1)

ff-Create -a decision model (its name-is-defined-in-the table Environment)

r.getRulelumber());

new="-+ wvalue[1]);

In this case, the executed rules will be displayed as below:

32©

OpenRules, Inc. User Manual for Developers

Executed Rule: SetEligibleForExtraSDays #3
THEN ‘Eligible for Extra 5 Days' = false
variables :
Eligible for Extra 5 Days: old=false, new=false
Executed Rule: SetEligibleForExtra3Days #2
THEN 'Eligible for Extra 3 Days' = false
Variables :
Eligible for Extra 3 Days: old=false, new=false
Executed Rule: SetEligibleForExtralDays #8
IF "Years of Service' Is [15..3@)THEN 'Eligible for Extra 2 Days' = true
Variables :
Years of Service: old=18, new=18
Eligible for Extra 2 Days: old=false, new=true
Executed Rule: CalculateVacationDays #8
THEN 'Vacation Days' = 22
Variables :
Vacation Days: old=8, new=22
Executed Rule: CalculateVacationDays #3
IF 'Eligible for Extra 5 Days' Is false AND 'Eligible for Extra 2 Days' Is trueTHEN 'Vacation Days' + 2
Variables :
Vacation Days: o©ld=22, new=24
Eligible for Extra 5 Days: old=false, new=false
Eligible for Extra 2 Days: old=true, new=true

The standard OpenRules class Executed Rule provides easy access to all rule elements
including getDecisionTableName(), getRuleNumber(), getRuleRange(), getConditions(),
getActions(), getVariables(), getSourceUri():

public- String toString() {
return- "ExecutedRule [decisicnTableName=
+- ruleNumber-+-", - ruleRange="
ruleRange + ", conditions="
" + variables

+
+ ", variables="
+ ", SDL.II"'CEU["‘i:' + SDUFCEUF‘i + ||l:|||-i

+ decisionTableName + ", - ruleNumber="

+-conditions-+- ", actions="'

+ actions

b

To understand how to use these accessors, look at the above printout of the executed

rules which was created using the method:

public- String ruleText() {

StringBuilder sb = new StringBuilder();

String IF = null;

for- (String- condition- :- conditions)-{
IF = (IF ==-null ? "IF " : " AND ");
sb.append(IF);
sb.append(condition};

h

String THEN = null;

for- (5tring action-:-actions) {
THEM-=- (THEN - ==-null-? "THEN-"-: " AND ");
sb.append (THEN);
sb.append(action);

}

return- sb.toString();

}

The old and new values for all variables were displayed by analyzing all variables know

in the glossary and the map ‘variables” of the type Map<String, Object[]> where the first

330

OpenRules, Inc. User Manual for Developers

parameter is a name of the decision variable, and the second parameter is an array of
values of this variable before and after the execution.
Note. ExecutionListener should not be used in production mode as it impacts the

performance of the rule engine

Deploying Decision Model as AWS Lambda Function
AWS Lambda functions are among the most popular deployment options for modern
microservices.
Configuring AWS Lambda

To do AWS deployment, you should already have an active AWS account and define your
security credentials (access key ID and secret access key) which should not be shared

with anybody.

Let’s consider how to deploy the introductory decision model “VacationDays” as an AWS

Lambda function. Look at the standard project “VacationDaysLambda” to learn how

to do 1it:

1. Add additional properties to the configuration file “project.properties”:

model.file="../VacaticnDays/rules/DecisionModel.xls™
test.file="../VacationDays/rules/Test.xls"

model. package=vacation.days.lambda

report=0n

trace=0n

#-deployment- properties

deployment=aws-lambda
aws.lambda.bucket=openrules-demo-lambda-bucket
aws.apl.stage=test

aws.lambda.regicn=us-east-1

Note that this project uses the same rules repository that was created in the
project “../VacationDays”. The property “aws.lambda.bucket” defines a new or

existing AWS S3 bucket name.

2. Make sure that your file “pom.xml” includes the dependency to “openrules-aws”:

34©

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/

OpenRules, Inc. User Manual for Developers

<dependency?
<groupId>com.openrules</grouplds
<artifactIdropenrules-aws</artifactId>
<versionz${openrules.version}</version:

</dependency>

<dependency?

Deploying AWS Lambda
Double-click on the provided file “deployLambda.bat”.
The decision model will be deployed, and the console log will show the invoke URL for

the deployed decision service also known as “endpoint URL” (highlighted in the

following example):

File C:\ GitHub\ installl tionDayslLa

Lambda ARN: arn:aws:lambda:us-east-] A%66:func ationDays

Invoke URL: com/test/vacation-days

By default, the name of the generated web service is created based on the property
“model.name”. In this case the name “VacayionDays” was automatically converted tp “vacation-
days”. If you want to use your own name, you may define the property “model.endpoint”. e.g. if you

define

model.property=custom-vacation-service

then the generated endpoint will look as http://localhost:8080/custom-vacations-service

If you previously deployed your model as a Lambda function, it is possible that

sometimes you will receive the following error:

“AWS lambda deployment failure: The statement id (gw-lambda) provided already exists.
Please provide a new statement id, or remove the existing statement.”

35 ©

http://localhost:8080/custom-vacations-service

OpenRules, Inc. User Manual for Developers

In this case, you need to run the provided “undeployLambda.bat” and try again.

Testing AWS Lambda

If your model includes test cases (usually defined in the Excel file “Test.xlsx” as defined
by the property “test.file”), then OpenRules generates several files to simplify testing of
your decision service deployed as an AWS Lambda function. You can test your service

using:
1) Automatically generated Java tests

2) Generated JSON interfaces with POSTMAN.

Auto-generated Java Test

When you execute “deployLambda.bat” (or “buildLambda.bat”) OpenRules generates the
file “testLambda.bat” that already includes the above “invoke URL”. When you click on
this file, it remotely executes ALL test cases defined in the Excel file “Test.xlsx” against

just deployed AWS Lambdal!

Auto-generated JSON Test Cases for POSTMAN
When you execute “build.bat” (or “test.bat”), OpenRules generates JSON files created
from test cases defined in the Excel file “Test.xlsx”. The generated JSON files are placed

into the folder “jsons” one file for each test case.

You may use these JSON files to test your Lambda with the commonly used POSTMAN.
The proper POSTMAN’c view is shown below:

36 ©

https://www.getpostman.com/
https://www.getpostman.com/

OpenRules, Inc. User Manual for Developers

POST ~ https://y4799mvhgf.execute-api.us-east-l.amazonaws.com/test/vacation-day m

Params Auth Headers (10) Body ® Pre-req. Tests Settings Cookies
raw JSON ~ Beautify

1 f |
2 "trace" : false,

3 "employee" :-{

4 "id"or o mAT,

5 "yacationDays" : @,

["eligibleForExtraSDays" : false,

7 "eligibleForExtra3Days" : false,

8 "eligibleForExtra2bays" : false,

9 "age".:.17,

1@ "service" :-1

11 T

12 i 1[

Body @, 20006 53ms S13E Save Response v
Pretty Raw Preview Visualize JSON ~ = rl Q

10 |
2 "decizionstatusCode™: 208,

3 "rulesExecutionTimeMs": @.337617,

4 "response”: {

5 "employee": {

] "idT: A,

7 "yacationDays": 27,

8 "eligibleForExtrashays": true,

g "eligibleForExtra3iDays": false,
18 "eligibleForExtraiDays": false,
11 "gge": 17,
12 "seryice™: 1
13 1
14 }

e
n
==

T

Here we placed the endpoint URL (saved in the file “testLambda.bat” into the URL field
afte the “Post”. In the filed request Body we used the following JSON test:

i
false,
- |
";!.",-

"vacationDays" @ 0,
orExtratDays" : false,
orExtra3lays" : false,

"eligikbleForExtraZlayvs" : false,

"age™ : 17,

"service™ @ 1

370

OpenRules, Inc. User Manual for Developers

It was copied from the generated file “jsons/testCases-Test A.json”. You can try to run
this POSTMAN yourself by pushing the button “Send”. After executing this Lambda
several times, you will see that a pure execution time on the AWS cloud for any test is
less than 1 millisecond, while based on your connection speed the round-trip time with

sending a request and receiving a response takes on average around 45 milliseconds.

Executing AWS Lambda in Batch Mode

Sometimes, for efficiency reason, you may want to combine several JSON requests in
one batch to execute them together. OpenRules automatically generates such a batch in
the file “jsons/testCasesBatch.json”. To execute this batch from POSTMAN, you can
place the content of this json file into POSTMAN body and use the same endpoint URL.
If your batch array includes many elements, you will see an essential performance

improvement to compare with one-by-one execution.

AWS Lambda Settings

Optionally, you may use additional settings to specify more details about your AWS
deployment preferences. For example, by default, we use the word “test” (inside the
invoke URL) as your deployment stage. But you may redefine it as “dev”, “prod”, or any
similar word using this setting:

aws.api.stage=test

By default, your deployed service will be publicly accessible, but it is possible to make it
private. Usually, people keep their AWS Credentials (access key ID and secret access

key) in the default file ~.aws/credentials. However, alternatively, you may define
them directly in the file “project.properties”:
aws.access.key.id=<aws-access-key-id>

aws.secret.access.key=<aws-secret-access-key>

NOTE 1. If you receive error messages that you don’t have enough authorizations to
deploy and run your AWS Lambda function, contact your I'T department and request
that your AWS user role has permissions to read and modify API Gateway resources, to

create and modify IAM roles, and full access to AWS Lambda API.

NOTE 2. If you decide to undeploy your decision service and clean up your AWS, just

38 ©

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html

OpenRules, Inc. User Manual for Developers

click on the file “undeployLambda.bat®.

Building AWS Lambda for AWS Pipelines

Nowadays enterprises configure their AWS Lambda functions using various tools and
frameworks for continuous integration and continuous delivery (CI/CD). Instead of
relying on “one-click” deployment with “deployLambda.bat” they may prefer to use
existing CI/CD pipeline configured by their IT department. In this case, OpenRules can
package the lambda’s code as a zip file that can be uploaded to their AWS environment
and configured following their software delivery pipeline. OpenRules plugin has a goal
‘openrules:buildLambda’ that can be used to generate such a zip file. You can invoke the
plugin in your build script or you can use ‘buildLambda.bat’. Here is an example of the

execution protocol:
(default-jar) @

(default-cli) < package @

{default-cli) @

Deploying Decision Model as MS Azure Function

MS Azure Function is another popular deployment option for modern microservices.

Configuring MS Azure Function

You may read the guide “Azure Functions for Java Developers” to learn how to install

and use MS Azure.

Let’s consider how to deploy the introductory decision model “VacationDays” as Azure

function. Look at the standard project “VacationDaysAzure” to learn how to do it:

1. Add additional properties to the configuration file “project.properties”:

39 ©

https://azure.microsoft.com/en-us/services/functions/?&ef_id=CjwKCAjwiLGGBhAqEiwAgq3q_gmHY0Q1L1v8_POwLpp1pd_PDZ0rDwNWLBim_aREfZx0UoEP87JfAhoCZhAQAvD_BwE:G:s&OCID=AID2100131_SEM_CjwKCAjwiLGGBhAqEiwAgq3q_gmHY0Q1L1v8_POwLpp1pd_PDZ0rDwNWLBim_aREfZx0UoEP87JfAhoCZhAQAvD_BwE:G:s&gclid=CjwKCAjwiLGGBhAqEiwAgq3q_gmHY0Q1L1v8_POwLpp1pd_PDZ0rDwNWLBim_aREfZx0UoEP87JfAhoCZhAQAvD_BwE
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-java?tabs=bash%2Cconsumption

OpenRules, Inc. User Manual for Developers

model.file="../VacaticnDays/rules/DecisicnModel.x1s"
test.file="../VacaticnDays/rules/Test.xls"
model.package=vacation.days.asure

report=0n

trace=0n

deployment=azure-functicn

Note that this project uses the same rules repository that was created in the

project “../VacationDays”.
2. All Azure properties are defined in the file “pom.xml”.

1) Its properties include:

<azure.functions.maven.plugin.version>1.12.8</azure.functions.maven.plugin.version>
<azure.functions. java.library.version»1.4.2</azure.functions. java.library.version»
<functicnAppName>vacation-days</functionAppName>
<stagingDirectory>${project.build.directory}/azure-functions/${functionAppName}</staginghirectory>

Please pay attention to <functionAppName> element above. The value is
a name of the Azure function and must be globally unique. It means that
when you try to run the VacationDaysAzure sample you have to change

the function name.

2) You need these dependencies:

<dependencyz
<groupldr>com.microsoft.azure. functions</groupId:
<artifactIdrazure-functions-java-library</artifactId:
«versionz${azure.functions. java.library.version}</versionz
</dependency

<dependency:
<groupldrorg.mockito</groupId:
<artifactId=mockito-core</artifactId>
<version»2.23.4</version:
¢scopertest</scoper

</dependency>

3) You need a plugin similar to this one:

40©

OpenRules, Inc.

User Manual for Developers

<pluginz
<groupldrorg.apache.maven.plugins</groupld:
<artifactId:maven-resources-plugin</artifactId:
<version>3.1.8</version>
<executionss
<executionz
<id>copy-resources</id>
<phaserpackage</phase:
<goals:
<goalrcopy-resources</goals
</goals:
<configurationz
<overwritestrue</overwrites
<outputDirectory>${stagingDirectory}</outputDirectory:
{resourcess
{resource:
<directory:${project.basedir}</directory:
<includes:
¢includerhost.json</includes
¢includeslocal.settings.json</include:
</includesz
<fresources
</resourcesz
<fconfiguration>
<fexecution:
<fexecutions:

</plugin:

41©

OpenRules, Inc.

User Manual for Developers

<pluginz
<groupld:com.microsoft.azure</grouplds
<artifactIdrazure-functions-maven-plugin</artifactId>
<version:${azure.functions.maven.plugin.version}</version:
<configuraticon:
<!---functicn app name -->
<apphame>${functionAppName }</appName >
¢!---functicn gpp rescurce- group -->
<resourceGroup:java-functions-group</resourceGroups
<!---function gpp service plan- name- -->
<appServicePlanName:java-functions-app-service-plan</appServicePlanName>
¢!---functien gpp region--»

<!---refers https://github.com/microsoft/azure-maven-plugins/wiki/Azure-Functions:
<region>centralus</region>

¢!---functicen pricingTier, -default te be consumption- if not- specified --»
<!---refers https://github.com/microsoft/azure-maven-plugins/wiki/Azure-Functions:
<l---<pricingTier></pricingTier> -->

<!---Whether-to-disable-application- insights, -default is-false---»

<!---refers https://github.com/microsoft/azure-maven-plugins/wiki/Azure-Functions:
<l-- «<disableAppInsights»</disableAppInsightss -->
<runtime>
<l---runtime- g3, could- be windows, - linux or- docker-->
<os»windows</os:
<javavVersion>8</javaVersion>
¢l---for-docker function, -please-set the following parameters- -->
¢l--- -->
<!---<serverlds</serverIds --»
<l---gregistrylrl=</registryUrls- - -->
</runtimes
<appSettings:
<property>
<name>FUNCTIONS_EXTENSION_VERSION</name:
<valuex~3</values
</property:
</appSettings>
</configurations
<executions>

<execution>
<id>package-functions</id>
<goals>

<goal>package</goal>

</goals>

</execution>

<fexecutions>
</pluginz

<plugin:
<groupldrorg.apache.maven.plugins</groupId>
<artifactId>maven-dependency-plugin</artifactIds>
<version»3.1.1</version>
<executions:
<execution»
<id>copy-dependencies</id>
<phase>prepare-package</phasez
¢<goals>
<goalrcopy-dependencies</goals
</goals>
<configuration:
<outputDirectory>${stagingDirectory}/lib</outputDirectory:
<overWriteReleases»false</overliriteReleases:
<overWriteSnapshots>false</overidriteSnapshotss
<overWriteIfNewer>true</oveririteIfiewers
<includeScoperruntime</includeScopes
<excludeArtifactIds»azure-functions-java-library</excludeArtifactIds:
</configurationz
</execution>
</executions>
</plugin:

42©

OpenRules, Inc. User Manual for Developers

-

<! --Remove - ob]

<pluginz

older generated by - .NET SDK- in maven clean--»

-,

<artifactId»maven-clean-plugin</artifactId:

Azure Function local testing

First run “package.bat' that builds azure function, then, after a successful build, double-
click on the provided file “runLocalServer.bat”

Now, you can run an automatically generated tests using testLocalServer.bat
unning
Running tests

Running

Roundtrip 93 ms. Rules ution time 0.

E . . " .
Roundtrip e 12 ms. Rules ution time 0.
Roundtrip 6 ms. Rules tion time 0.294199 ms.

D
Roundtrip 11 ms. Rules tion time 9 ms.

E

Roundtrip 6 ms. Rules E tion time 0.3 9 ms.

11 ms. Rules ution time 0.

continue

430©

OpenRules, Inc. User Manual for Developers

You can also use POSTMAN and json samples from sons’ folder to run the tests:

POST v http://localhost:7071/api/vacation-days m

Params Auth @ Headers (9) Body @ Pre-req. Tests Settings Cookies
raw JSON Beautify
1 {
2 "employee": {
3 "age": 45,
4 "seryice™: 12 N
5 3
& K
Body 'ﬁl 200 0K 13ms 441E Save Response v

Pretty Raw Preview Visualize Text = e}
1 i |
2 "decisionstatusCode™: 208,
3 "rulesExecutionTimeMs™: @,3154,
4 "response”: |
5 "employee™: {
["vacationDays": 24,
7 "eligibleForExtrashDays": false,
E: "eligibleForExtra3dbays™: false,
g "eligibleForExtra2bays": true,

1@ "age": 45,

11 "geryice": 12

12 I

oy

[T}

e
|

-
Y
=

Deploying Azure Function

Double-click on the provided file “deployFunction.bat”.

The decision model will be deployed, and the console log will show the invoke URL for
the deployed decision service (highlighted in the following example):

44©

OpenRules, Inc. User Manual for Developers

Testing Azure Function

After successful Azure Function deployment, copy the function URL - highlighted in
above view. You can use this URL in POSTMAN to run the same test you ran when you

worked with local deployment.

Deploying Decision Models as RESTful Web Services

OpenRules provides powerful while simple mechanisms for the deployment of business
decision models as RESTful web services. You may choose between two deployment

options for the creation of RESTful decision services:
1) OpenRules REST — a lightweight implementation that utilizes Undertow
2) SpringBoot — an implementation that utilizes SpringBoot.

We will explain how to use these approaches to convert our business decision model
“VacationDays” into a RESTful Web Service that can accept HTTP requests at
http://localhost:8080/vacations-days and will respond with proper responses in the JSON

format.

Creating RESTful Decision Service

The sample project “VacationDaysRest” demonstrates the simplest way of deploying
the decision model “VacationDays” as a RESTful web service. Its configuration file

“project.properties” looks as follows:

450©

https://undertow.io/
https://spring.io/projects/spring-boot
http://localhost:8080/vacations-days

OpenRules, Inc. User Manual for Developers

model.file="../VacaticnDays/rules/DecisicnModel.xls
test.file=../VacaticnDays/rules/Test.xls
model.package=vacation.days.rest

trace=0n

repart=0n

deployment=rest

As you can see, 1t uses the same rules repository “../VacationDays/rules” with the

deployment type defined as “rest”.

Building RESTful Decision Service

OpenRules created a special Maven plugin “openrules:packageRest” that converts a
decision model to a RESTful web service. As usual, the batch file “build.bat” included in
the project “VacationDaysRest” will build the decision model and test it against the
provided Excel test cases. However, it also will generate the file “VacationDaysRest-

1.0.0.jar” in the folder “target”:
(default-jar) @

(default-cli) < package @

(default-cli

Additionally, “build.bat” generates JSON files created using test cases defined in the
Excel file “Test.xlsx”. The generated JSON files are placed into the folder “jsons” one
file for each test case.

Testing RESTful Decision Service

OpenRules also created a special Maven plugin “openrules:runRest” that can be used to
run the generated RESTful service on the local server. The standard batch file
“runLocalServer.bat” (or “runLocalServer” on Mac/Linux) can start that the service

using the OpenRules REST server on port 8080:

46 ©

OpenRules, Inc. User Manual for Developers

(default-cli) @

Wersion 8.4.9 (build of 2821-86
OpenRules Rest Decision Service for model VacationDays

Goal Endpoints:

ation Days * [POST] http://localhost ation-days

cking-threads: true
request-limit: @
request-queue: 18606

AM io.undertow.Undertow star
Undertow - 2
nio.

n Version 8.8.Final
.jboss.threads.Version
3.1.8.Final

OpenRules also created a special Maven plugin “openrules:testRest” that can be used to
test the generated RESTful service using Excel-based test cases by invoking them using
the automatically generated class “vacation.days.rest.VacationDaysTestClient”. It can
be invoked using the Maven command:

mvn openrules:testREST -DtestClassName=vacation.days.rest. VacationDaysTestClient
-DtestUrl=http.//localhost:8080/vacation-days

For convenience, OpenRules provided the batch file “testLocalServer.bat” that

executes this command. When you run this command, it will produce:

470

OpenRules, Inc. User Manual for Developers

ys decision service at http://localhost ation-d
SLF4]: Failed to load class g.51f4j.impl t ggerBinder”.
SLF47: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4].0 html#StaticLoggerBinder for further details.

Running

Running

g
Test 't

Roundtrip] ms. Rules Execution time

Running test testCases-Test B
Test 'testCases-Test B' - OK. Roundtrip 5. Rules Execution time 8.

Running test
Test 'testCases-Test C 5. Rules Execution time
Roundtrip 6 ms. Rules Executi time

Running test
Test 'testCases-Test E K. Roundtrip 5. Rules E» time

Running test testCases-Te
Test 'testCases-Test F° K. Roundtrip 5. Rules Execution time

[
[
[

Executing Auto-generated JSON Test Cases from POSTMAN

Instead of “testLocalServer.bat” you may test this RESTful decision service with

POSTMAN. The proper POSTMAN’c view is shown below:

48 ©

https://www.getpostman.com/

OpenRules, Inc.

POST

Params

raw

W s &hown o W ka e

=
(XN~

R

Body

Pretty

[To - R - ST R ST

e e e =]
[, T O TR Ry SR <

Auth Headers (10) Body @ Pre-req. Tests Settings
JSON
"trace".: false,
"employee™ :-{
mig".:."A,
"vacationDays" : @,
"eligibleForExtrasbays" : false,
"eligibleForExtraibays" : false,
"eligibleForExtra2bays" : false,
"age" . 1 17,
"service" :.1
H
Raw Preview Visualize JSON =
"decisionStatusCode™: 208,
"rulesExecutionTimeMs™: @.19,
"response™: {
"employee": {
"id": “A",
"vacationDays": 27,
"eligibleForExtrasDays": true,
"eligibleForExtra3Days": false,
"eligibleForExtra2Days": false,
"gge": 17,
"service”: 1
h

http:/flocalhost:8080/vacation-days

]
o

200 OK

2 ms

User Manual for Developers

Cookies

Beautify

T

378 E Save Response ~

mQ

Here we use http://localhost:8080/vacation-days as the endpoint URL and the generated

JSON test from the generated file “jsons/testCases-Test A.json”.

Executing RESTful Service in Batch Mode

The above POSTMAN sample shows the execution of one JSON request. Sometimes, for

efficiency reason, you may want to combine several JSON requests in one batch to

execute them together. OpenRules also generates such a batch in the file

49 ©

http://localhost:8080/vacation-days

OpenRules, Inc. User Manual for Developers

“jsons/testCasesBatch.json”. To execute this batch from POSTMAN, you can place the
content of this json file into POSTMAN body and add to the endpoint URL the suffix
“batch”. If your batch array includes many elements, you will see an essential

performance improvement to compare with one-by-one execution.

Case Sensitivity of JSON Attributes

You also may control the case sensitivity of JSON attributes by adding the property “json.naming” in

your file “project.properties”. By default, the attribute names follow the standard JavaBeans naming

convention for JSON properties. However, if you add the property
json.naming=same as_glossary

JSON properties will use the same names as specified in the Glossary, e.g. the property “employee”

can start with a capital letter.

Creating RESTful Decision Service with SpringBoot

Mmm

Support for SpringBoot 3 and JDK 17+. Based on multiple requests, we now allow
our customers to build OpenRules-based microservices using SpringBoot, both version
2.x and SpringBoot 3.x. SpringBoot-3 is backward incompatible with SpringBoot-2 and

requires Java 17+ and “jakarta” instead of “javax”.

OpenRules Release 11.0.0 maintains backward compatibility by automatically
recognizing which JDK and SprinBoot versions are being used and generating the
proper Java code. The standard installation OpenRules 11.0.0 allows our customers to

choose the preferred version of SpringBoot (if any) using the following sample projects:

o VacationDaysSpringBoot (for SpringBoot 3.1.0)

o VacationDaysSpringBoot2 (for the old SpringBoot 2.7.13)

o VacationDaysSpringBootSecure (for SpringBoot 3.1.0)

o VacationDaysSpringBootSecure2 (for the old SpringBoot 2.7.13)

See an implementation example of “SecurityConfigjava” in the projects

“VacationDaysSpringBootSecure” and “VacationDaysSpringBootSecure2”.

50 ©

https://blogs.oracle.com/javamagazine/post/java-json-serialization-jackson
https://blogs.oracle.com/javamagazine/post/java-json-serialization-jackson
https://blogs.oracle.com/javamagazine/post/transition-from-java-ee-to-jakarta-ee

OpenRules, Inc. User Manual for Developers

Thus, with release 10.* OpenRules supports all JDK starting from 1.8 and higher, and

all SpringBoot versions.

bbb

The sample project “VacationDaysSpringBoot” demonstrates how to deploy the
decision model “VacationDays” as a RESTful web service using SpringBoot-3 which
requires JDK version 17+. If you want to use SpringBoot-2 with earlier versions of JDK

(like Java 1.8) you may look at another project “VacationDaysSpringBoot2”.

Its configuration file “project.properties” looks as follows:

model.file=".. /VacaticnDays/rules/DecisionMedel.x1s"
test.file=../VacaticnDays/rules/Test.xls

model. package=vacaticon.days.springboot

trace=0n

report=0n

#deployment- properties
deployment=spring-boot

As you can see, it uses the same rules repository “../VacationDays/rules” with the

deployment type defined as “spring-boot”.

Building RESTful Decision Service

The project “VacationDaysSpringBoot” has a special “pom.xml” that includes
“dependencies” and “plugins” provided by SpringBoot. As usual, the batch file
“build.bat” will build the decision model and test it against the provided Excel test
cases. However, it will also generate the file “VacationDaysSpringBoot-1.0.0.jar” in the

folder “target”:

510

https://spring.io/projects/spring-boot

OpenRules, Inc. User Manual for Developers

(default-jar)

Additionally, “build.bat” generates JSON-files converted to the JSON format from the
Excel format using test cases defined in the Excel file “Test.xlsx”. The generated JSON-
files are placed into the folder “jsons” one file for each test case.

Testing RESTful Decision Service

For this project OpenRules relies on the standard Maven plugin “spring-boot:run” that
can be used to run the generated RESTful service on the local server. The standard
batch file “runLocalServer.bat” (or “runLocalServer” on Mac/Linux) can start the

generated RESTful service on the local server using SpringBoot:

(default-cli) @

] r in a Servlet environment, but ther
s no logdj-web moc - y A itainer support, please add the log4

-web JAR to your

183 PM org.apache.c
1 Protocol andlEr ["

icationCont
hstractProtocol s

"]

OpenRules created a special Maven plugin “openrules:testRest” that can be used to test
the generated RESTful service using Excel-based test cases by invoking them using the

automatically generated class “vacation.days.rest.VacationDaysTestClient”. It can be

52 ©

OpenRules, Inc. User Manual for Developers

invoked using the Maven command:
mvn openrules:testREST -DtestClassName=vacation.days.springboot. VacationDays TestClient
-DtestUrl=http.//localhost:8080/vacation-days

For convenience, OpenRules provided the batch file “testLocalServer.bat” that

executes this command. When you run this command, it will produce:

[] --- (default-cli) @
] Running test <« ion.day cati ¥ ient >
Running tests for V ay E at ocalhost:é cation-days
Running
Roundtrip time 1848 ms. Rules Execution time 11.4496 ms.

Roundtrip time ® ms. Rules Execution time 8.2

Roundtrip time 16 ms. Rules Execution time ©.452581 ms.

Roundtrip time © ms. Rules Execution time 8.43

Roundtrip time 15 ms. Rules Execution time 8.2773 ms.

Roundtrip time 16 ms. Rules Execution time 8.445801 ms.

Executing Auto-generated JSON Test Cases from POSTMAN

Instead of “testLocalServer.bat” you may test this RESTful decision service with

POSTMAN. The proper POSTMAN’c view is shown below:

53 ©

https://www.getpostman.com/

OpenRules, Inc. User Manual for Developers

POST w http:/flocalhost:8080/vacation-days m

Params Auth Headers (10) Body ® Pre-req. Tests Settings Cookies
raw v JSON Beautify

1 [|
2 "trace”.: false,

3 "employee™ 1 -{

4 "id". . "An,

5 "vacationDays" : @,

["eligibleForExtrashays" 1 false,

7 "eligibleForExtra3Days" : false,

k3 "eligibleForExtra2Deysz" : false,

g "age™ 1 17,
1@ "service” :.1
11 H
12§ T

Body & 2000K 8ms 440B Save Response -
Pretty Raw Preview Visualize JSON = m Q

1 [|
2 "decisionStatusCode™: 20848,

3 "rulesExecutionTimeMs": @.1854,

4 "goalMame™: null,

5 "errorMessage”: null,

6 "executedRules™: null,

7 "response™: {

8 "employee": {

9 "idv: TAv,
1@ "wacationDays": 27,
11 "eligibleForExtrasbays": true,
12 "eligibleForExtra3Days": false,
13 "eligibleForExtrazDays": false,
14 "age": 17,
15 "sepvice": 1
16 H
17 ¥

-
=
=

-—

Here we use http://localhost:8080/vacation-days as the endpoint URL and the generated

JSON test from the generated file “jsons/testCases-Test A.json”.

Executing RESTful Service in Batch Mode
The above POSTMAN sample shows the execution of one JSON request. Sometimes, for

efficiency reason, you may want to combine several JSON requests in one batch to

54 ©

http://localhost:8080/vacation-days

OpenRules, Inc. User Manual for Developers

execute them together. OpenRules also generates such a batch in the file
“jsons/testCasesBatch.json”. To execute this batch from POSTMAN, you can place the
content of this json file into POSTMAN body and add to the endpoint URL the suffix
“batch”. If your batch array includes many elements, you will see an essential

performance improvement to compare with one-by-one execution.

SpringBoot Decision Services with Additional Security

The standard installation OpenRules 11.0.0 include two more sample project that

demonstrate how to use additional security:

e VacationDaysSpringBootSecure (for SpringBoot 3.1.0)
e VacationDaysSpringBootSecure2 (for the old SpringBoot 2.7.13)
The key difference between these projects (beside pom.xml files) can be seen in the

implementation of the “SecurityConfig.java”.

Packaging Decision Models as a Docker Image

You can similarly and easily package our RESTful web service as a Docker image

whether you use project “VacationDaysRest” or “VacationDaysSprinBoot”.

Building Docker Image

First of all, you need to install and start your Docker Desktop. Then you may execute

the standard batch file “buildDocker.bat” (or “buildDocker” on Mac/Linux) that will

package your RESTful web service as a Docker image. Internally it utilizes Google
Container Tool “Jib” which is a Maven plugin for building Docker images for Java
applications. When you run “buildDocker.bat” it will automatically download install all

necessary files and will create a Docker image.

Running Docker

Then you may switch to a command line and enter
>docker images

It will show all docker images that may look as below:

REPOSITORY TAG IMAGE ID CREATED SIZE

vacation-days latest 1696a40938c/ 41 seconds ago 124MB

55 ©

https://www.docker.com/
https://hub.docker.com/editions/community/docker-ce-desktop-windows
https://github.com/GoogleContainerTools/jib
https://maven.apache.org/

OpenRules, Inc. User Manual for Developers

To start our Docker to serve different requests on the local port 8080, we need to enter
the following command:

>docker run -ti -p 8080:8080 vacation-days

Alternatively, we may use “runDocker.bat”.

The start of the container will look as follows:

6-18)
OpenRules Rest Decision Service for model VacationDays
Goal Endpoints:
Vacation Days * [POST] http://localhost:888 ation-days

CPU 2

io-threads 1 4
worker-threads: 28
use-blocking-threads: true
request-limit: 8
request-queue: 1886

Jun 19, 2821 6:48:14 PM io.undertow.Undertow start

INFO: F ing server: Undertow - 2.1.3.Final

Jun 19, 20821 6:48:14 PM org.xnio.Xnio <clinit>

INFO: XNIO wversion 2.8.8.Final

Jun 19, 2821 6:48:14 PM org.xnio.nio.NioXnio <clinit>»
INFO: XNIO NIO Implementation Version 3.8.86.Final

Jun 19, 2821 6:48:14 PM org.jboss.threads.Version <clinit>»

INFO: JBoss Threads version 3.1.8.Final

This container will wait for requests on port 8080.

Testing Docker from POSTMAN
Now we can use POSTMAN with the endpoint URL http://localhost:8080/vacation-days to

send a test request:

56 ©

OpenRules, Inc.

POST L http:/flocalhost:8080/vacation-days
Params Auth Headers (10) Body @ Pre-req. Tests
raw JSON -~
1 {
2 "trace” : false,
3 "employee" I -{
4 "id". . "AM,
5 "vacationDays" : @,
["eligibleForExtrasDays" : false,
7 "eligibleForExtraiDays" : false,
8 "eligibleForExtra2Days" : false,
9 "age™ 1 17,
16 "service".:.1
11 H
12 ki
Body
Pretty Raw Preview Visualize JSON
1 {
2 "gecisionstatusCode™: 284,
3 "rulesExecutionTimeMs™: @.5234,
4 "response™: {
5 "employee": {
["id": "A",
7 "vacationDays": 27,
k) "eligibleForExtrasbays": true,
9 "eligibleForExtraibDays": false,
18 "eligibleFarExtra2bays": false,
11 "age": 17,
12 "service": 1
13 T
14 H
15 hi

Settings

=

@& 2000k Bms

User Manual for Developers

Cookies

Beautify

T

372 B Save Response -

mQ

The console will show that our POSTMAN’s request was executed against our Docker

image:

570

OpenRules, Inc. User Manual for Developers

mnio.Xnio <clinit:

You may check running Docker images:

>docker ps

CONTAINER ID THMAGE COMMAND CREATED

ed46319a43d1b vacation-days "java -cp /app/resou.” 4 minutes :

You may stop a running image:
>docker kill e46319a43d1b

So, this example demonstrates how the OpenRules-based decision model can be deployed

as a Docker container and be executed locally.

Exporting Docker Image

Now we are ready to export our Docker image. From command line enter command:

>docker images

EPOSITORY A IMAGE ID

on-days ate bee4f2dabedl

You may save this image “b064f2daOed1”:
>docker save b064f2da0ed]1 >vacation-days.image

The generated file “vacation-days.image” can be used with any of the following container
registries:

- Google Container Registry (GCR)

- Amazon Elastic Container Registry (ECR)

- Docker Hub Registry

58 ©

OpenRules, Inc. User Manual for Developers

- Azure Container Registry (ACR).

It can be done by your software developers following this manual.
Using Docker Image on a 3™ party Machine

To install this image on any machine with already running Docker Desktop, you may

use the following command:

>docker load -1 vacation-days.image
>docker images (to see the image ID)
>docker tag <image-id> vacation-days

>docker run -p 8080:8080 -t vacation-days

Then we started POSTMAN with URL http://localhost:8080/vacation-days and the
above JSON request.

Comparing OpenRules REST and SpringBoot Deployment
Options
Both deployment options (OpenRules REST and SpringBoot) create RESTful decision
services with minimal overhead for user experience. The OpenRules REST option
creates a smaller package and in some cases shows better performance than SpringBoot
with Tomcat. As you see below, the generated jar files for the RESTful service have

quite different sizes:
e VacationDaysRest-1.0.0 — ~6Mb
e VacationDaysSpringBoot-1.0.0 ~19Mb

Both options works very well for serving REST based decision services. You can choose

either option based on your preferences and expertise.

Additional Deployment Properties

The file “project.properties” may include additional deployment:

590

https://github.com/GoogleContainerTools/jib/tree/master/jib-maven-plugin

OpenRules, Inc. User Manual for Developers

1. model.endpoint — it allows you to define custom names for your deployed decision

services. You also may define this property in the Environment table.

1. jackson.default-property-inclusion — it can take the following values:

e mnon_null — the default value meaning only variables with non-null values
will be included in the decision service response

e always meaning all variables will be always included in the decision service
response independently of their values (of course, unless they are specified as
‘out’ in the Glossary column “Used As”)

e non_default meaning only variables with non-default values will be included
in the decision service response. The default values for numbers are 0, for

(132

Booleans — false, and String — “”, and for all other types — null
e non_empty similar to non_null but additionally it will ignore empty String
variables.

2. jackson.default-object-inclusion — it can take the following values:

e non_null - the default value meaning only objects that contain non-null
properties will be included in the decision service response

e always meaning all objects with at least one ‘out’ property (even if it is null)
will be included in the decision service response.

3. jackson.serialization.write_dates_as_timestamps — it allows you to change the
default way for presentation of dates in the generated JSON files and in the decision
service response:

e true — the default value meaning all Dates will be represented as numbers of
milliseconds since January 1st, 1970

o false— all Dates will be represented using a more user-friendly Date
timestamp defined by ISO 8601 such as 2021-08-22T17:05:27+00:00.

4. json.naming — it can take the following values:

e default — uses the standard Jackson naming convention for JSON properties

e same_as_glossary — JSON properties use the same names as specified in

the Glossary.

60 ©

https://www.w3.org/TR/NOTE-datetime
https://blogs.oracle.com/javamagazine/post/java-json-serialization-jackson

OpenRules, Inc. User Manual for Developers

RULES-BASED SERVICE ORCHESTRATION

OpenRules provides business users with abilities to build and deploy operational
decision microservices. It empowers business users with an ability to assemble new
decision services by orchestrating existing decision services independently of how they
were built and deployed. The service orchestration logic is a business logic too, so it’s
only natural to apply the decision modeling approach to orchestration. To orchestrate
different services you may create a special orchestration decision model that
describes under which conditions such services should be invoked and how to react to

their execution results.

OpenRules decision tables have special action-columns of the type “ActionExecute”
that is usually used to execute different services upon certain conditions without
worrying how they were implemented and deployed. To describe such external services

OpenRules added a special new table “DecisionService®. You may download a special

workspace “openrules.Joan” that implements a library of decision services described in

the Loan Origination example from the DMN Section 11.

The workspace “openrules.loan” constains several decision models with two main goals

“BureauStrategy” and “Routing” deployed as external decision services:

-
Loan Origination Result
{ACCEPT/DECLINE)
o
Rfs.:rci-:_iﬂn N -
service 3 ic
Bureau Strategy Routing S
(BUREAL/DECLINE/THROUGH) (DECLINE/REFERIACCEPT)
\ A \ y
|]
' ! l/'
Affordability Affordability
Pre-Bureau Post-Bureau
(TRUE/FALSE) (TRUE/FALSE)
I g Glossary - I
™ '
Risk Category Risk Category
Pre-Bureau Post-Bureau
(DECLINEHIGHMEDIUMALOWNVERY LOW) _{BEWMWMLM
-
I I
™ s
Application Risk Score Application Risk Score
(0-900) (0-900)
L - 5, A

61©

https://openrulesdecisionmanager.com/business-decision-models/domain-specific-libraries-of-decision-models/
https://openrulesdecisionmanager.com/business-decision-models/domain-specific-libraries-of-decision-models/
https://openrules.wordpress.com/2017/06/21/loosely-coupled-decision-models-for-loan-origination/
http://www.omg.org/spec/DMN
https://openrules.files.wordpress.com/2020/10/loanoriginationgoals.png

OpenRules, Inc. User Manual for Developers

The high-level goal “Loan Origination Result” is an example of the orchestration
decision models.
If you open this decision model in OpenRules Explorer, it will be displayed using et

following diagram:

Loan Origination Result

BureauStrategyService

RoutingService

This decision model is not aware of the internal structure of these two decision services
which are shown as green rectangles. However, we can see the decision table
“LoanOriginationResult” that invokes these services and business concepts (pink

rounded rectangles) used by these services.

The orchestration logic here is relatively simple:

Execute decision service “BureauStrategy” that should determine the goal “Bureau
Strategy”. If Bureau Strategy is DECLINE, then set Loan Origination Result to
DECLINE, and stop. If Bureau Strategy is not DECLINE, then execute decision service
“Routing” that will determine the goal “Routing”. If Routing is DECLINE, then set Loan
Origination Result to DECLINE. If Routing is REFER, then set Loan Origination Result
to REFER. If Routing is ACCEPT, then set Loan Origination Result to ACCEPT.

This logic can be naturally presented in the following table:

62 ©

OpenRules, Inc. User Manual for Developers

Decision LoanOriginationResult

Caondition Condition ActionExecute Action
Bureau Strategy Routing Execute Loan Origination Result
BureauStrategySenvice
Is DECLINE DECLIME
Is Mot RoutingSenvice
Is Mot Is REFER REFER
Is Mot ls | ACCEPT ACCEPT

Here the third column “ActionExecute” may execute two decision services:

“BureauStrategyService” and “RoutingService”. The actual implementation of these

services is described in the following table:

DecisionService decisionServices

Service Name Service Service Endpoint
Type
BureauStrategySenice |REST
RoutingSenvice REST |https:/fTb53vrel execute-api us-east-1. amazonaws.com/testirouting

The column “Service Type” defines these services as REST web services and provides
their endpoints — in this particular case both services were deployed as AWS Lambda
functions, the default OpenRules deployment destination (it was done with an instant

click). The table “DecisionService” may have the 4th (optional) column

Business Objects

Applicant, Application, RequestedProduct
Applicant Application RequestedProduct, BureauData

that describes the parameters of each service that correspond to the business concepts
defined in eth common Glossary. If the column “Business Objects” is omitted (like in the
above table), all business objects will be passed to all decision services even if
“BureauStrategyService” doesn’t need BureauData.

Along with REST web services, OpenRules supports other types of services. For
example, you may get essentially faster execution by taking advantage of the fact that

your services are deployed as AWS Lambdas by using their ARN addresses as endpoints:

DecisionService decisionServices

Service Name Semvice Type Service Endpoint
BureauStrategySemice |AWS Lambda |am:aws lambda us-east-1.395608014566 function BureauStrategy |
RoutingSenice AWS Lambda |am aws |ambda us-east-1 395608014566 function Routing |

If your decision services are deployed as AWS Lambda functions you even don’t have to

63©

https://openrules.files.wordpress.com/2020/10/loanoriginationresultrules.png
https://openrules.files.wordpress.com/2020/10/loanoriginationresultservices.png
https://openrules.files.wordpress.com/2020/10/loanoriginationresultobjects.png
https://openrules.files.wordpress.com/2020/10/loanoriginationresultarns.png

OpenRules, Inc.

User Manual for Developers

provide the complete ARN addresses, and can simply write their names as in the

following table:

Decision Service decision Services

Service Name Service Type

Service Endpoint

BureauStrategySenvice |[AWS Lambda |BureauStrategy

RoutingService AWS Lambda |Routing

OpenRules will automatically expand the name

“BureauStrategy” to

“arn:aws:lambda:us-east-1:395608014566:function:BureauStrategy”.

Another supported type of services is regular Java classes automatically generated by

OpenRules from decision models:

Decision Service decision Services

Service Name Semvice Type

Service Endpoint

BureauStrategySenice |DecisionModel (loan.ongmation_bureaustrategy BureauStrategy

RoutingSenace DecisionModel |loan ongination routing Routing

You also may invoke any static Java method, e.g. use Service Type “JavaMethod” and

Service Endpoint “loan.origination.EmailService:send”

generated email to the Applicant.

USEFUL TOOLS

Generating OpenRules Tables in Excel

send an automatically

Sometimes our customers want to generate OpenRules tables in Excel programmatically,

e.g. when they use their own GUI for rules creation and edeiting. OpenRules includes a

simple Java API for generation of the standard decision tables. It is called ExcelGenerator

and has several convenient methods.
To add a new decision table, use

public void addDecisionTabkble |

String takleType, // DecisionTakle or Decision
String-takleName, -// takle name, e.g. "DefineG
String[] columnTypes, -/ column types such "If"
String[] -variables, /) decision -wvariakles
String[]1I[] -rules) -/ rules

"Condition™, -"Conclusion"

64 ©

https://openrules.files.wordpress.com/2020/10/loanoriginationresultlambdas-1.png
https://openrules.files.wordpress.com/2020/10/loanoriginationresultjavaclasses-2.png

OpenRules, Inc. User Manual for Developers

To add a simple Glossary use

public void - addGlossary (S5tring[] -variablelNames, S5tring -businessConcept, -String[] -attributeNames)
To add any array of strings to a separate sheet use

public void addTextWorksheet (String sheetMHame, String[] -lines)

To save these tables into an Excel file use

public void =saveToFile (String x1=sFile) - {

Here is an example:

public static void main(String[] args) {
ExcelGenerator generator = new ExcelGenerator ()

generator.addDecisionTable (

"DecisionTakle™, /ftakle -type

"DefineGreeting™, -// takle name

new String[] { "If", "If", "Then" }, // column types

new String[] - { -"Current -Hour", -"Current -Hour"™, -"Result"™ -}, -// decision wvariakles
new String[][] -{ // rule=

new String[] { ">=0", "<=11", "Good Morning™

new - String[] - { "»>=12", -"<=17", "Good Afterncon™
new -String[] -{ -">=18", -"g=21", -"Good Evening"
new String[] { ">=22", "<=24", "Good Hight™ } }):

generator.saveToFile ("c: /temp/Generated. xl13"™) ;

This code will generate fdile “Generated.xlsx” with one decision table:

DecisionTable DefineGreeting

If If
Current Hour | Current Hour
==() ==11 Good Moming
==12 ==17 Good Afternoon
==18 ==21 Good Evening
»=22 ==24 Good Might

To use this API inside your Java program, you only need to add the following dependency to
your pom.xml:

<deper nCy>»
< >com.openrules</ 1plds
<3 >excel-generator</artifactId>
<Y n>S {openrules.versionl</v n>
</de] ¥

65©

OpenRules, Inc. User Manual for Developers

Contact support@openrules.com is you want to learn more about ExcelGenerator or to

expand its functionality.

Search and Edit Multiple Excel Files

OpenRules users will find that a free tool called “IceTeaReplacer” can be very useful for

doing search&replace in OpenRules repositories. Here is a functional description from their
old website:
IceTeaReplacer is a simple, yet a powerful tool to search inside multiple Microsoft’s Office
Word (doc, docx), Excel (xls, xlsx) files within a directory (and it’s subdirectories) and
replace provided phrase. Options available:

» Perform search before replacing

= Match whole word only

= Ignore word case

* Do backup before replace

* Deselect files on which you don’t want to perform replace.

Here is an example of its graphical interface:

r N
e

Menu

(Search | Searchfor Mantal Status

| Feplacenseectsd | Repiacewth:
Type Searchpath: C:_SourceRepo‘\aperrules solver\DMN Primer', [Browse

Word
epa’openmules solver' .MM Primer reposton’
= C_SourceRepa’openiules sohver, DM Primer reposton\Glosaary s
C_SourceRepoopennules sclver\DMHN Prmer'repostony’ Decimsons’ Fre Post Bureau Riskc\Applcation Score Rules xds
Oipbires
| Match whole wond anly
T lgname case
| Backup before replace
Diont search in sublakders

[Sedect Al ||5dﬂ:l.hhn¢ Hedd CTRL ar SHIFT buttons ta sedect, You may also double-click an fem 1o open i,

Done searching. Found 3 matches. Select needed files and click replace. —

It seems that IceTeaReplacer” website is not available anymore. However, as it was freely
available awhile ago without any limitations for its use and distribution, you may send a

66 ©

mailto:support@openrules.com
http://www.icetear.com/
http://www.icetear.com/
https://openrules.files.wordpress.com/2012/10/iceteareplacer.png
http://www.icetear.com/

OpenRules, Inc. User Manual for Developers

request to support@openrules.com and we may share a link for its download.

TECHNICAL SUPPORT

Direct all your technical questions to support@openrules.com or this Discussion Group.

Read more at http://openrules.com/services.htm.

670©

mailto:support@openrules.com
mailto:support@openrules.com
https://groups.google.com/forum/#!forum/openrules
http://openrules.com/services.htm

