
A free, open-source alternative to Mathematica
Mathics3 Core Version 9.0.0

The Mathics3 Team

September 3, 2025

Contents

I. Manual 5

1. Introduction 6

2. Language Tutorial 9

3. Further Tutorial Examples 35

4. Django-based Web Interface 41

II. Reference of Built-in Symbols 45

5. Arithmetic Functions 46

6. Assignments 54

7. Atomic Elements of Expressions 70

8. Binary Data 93

9. Code Compilation 99

10. Colors 101

11. Compress Functions 128

12. Date and Time 129

13. Definition Attributes 137

14. Descriptive Statistics 149

15. Directories and Directory Operations 156

16. Distance and Similarity Measures 162

17. Drawing Graphics 170

18. Evaluation Control 192

19. Expression Structure 197

20. File Formats 203

21. File Operations 208

22. Forms of Input and Output 212

23. Functional Programming 221

2

24. Functions used in Quantum Mechanics 234

25. Global System Information 238

26. Graphics and Drawing 249

27. Image Manipulation 297

28. Input and Output 329

29. Input/Output, Files, and Filesystem 330

30. Integer Functions 361

31. Integer and Number-Theoretical Functions 375

32. Interactive Manipulation 459

33. Kernel Sessions 460

34. Layout 462

35. List Functions 469

36. Low-level Format definitions 508

37. Mathematical Functions 510

38. Mathematical Optimization 521

39. Matrices and Linear Algebra 522

40. Message-related functions. 525

41. Numerical Functions 530

42. Operations on Vectors 539

43. Operators without Built-in Meanings 546

44. Options Management 610

45. Physical and Chemical data 617

46. Procedural Programming 619

47. Rules and Patterns 628

48. Scoping Constructs 644

49. Solving Recurrence Equations 649

50. Sparse Array Functions 650

51. Special Functions 651

52. Strings and Characters 690

53. Symbolic Execution History 706

3

54. Tensors 707

55. Testing Expressions 715

56. The Main Loop 747

57. Tracing and Profiling 751

58. Units and Quantities 759

III. Mathics3 Modules 763

59. Graphs - Vertices and Edges 764

60. ICU — International Components for Unicode 802

61. Natural Language Processing 805

IV. License 814

A. GNU General Public License 815

B. Included software and data 826

Index 830

Colophon 843

4

Part I.

Manual

5

1. Introduction

Mathics3 is a computer algebra system. It is a free, open-source alternative toMathematica®or theWolfram
Language. However, Mathics3 builds around and on top of the Python ecosystem of libraries and tools.
So in a sense, you can think of it as a WMA front-end to the Python ecosystem of tools.

Mathics3 is free both as in “free beer”, but more importantly, as in “freedom”. Mathics3 can be run
locally. To facilitate installation of the vast amount of software needed to run this, there is a docker
image available on dockerhub.

The programming language and built-in functions ofMathics3 try tomatch theWolframLanguage, which
is continually evolving.

Mathics3 is in no way affiliated or supported by Wolfram. Mathics3 will probably never have the power
to compete with Mathematica® in industrial applications; it is a free alternative, though. It also invites
community development at all levels.

See the installation instructions for the most recent instructions for installing from PyPI, or the source.

For implementation details, please refer to the Developers Guide.

Contents

1.1. Why recreate Wolfram Language? . . 6
1.2. What does Mathics3 offer? 7

1.3. History 7
1.4. What is missing? 8

1.1. Why recreate Wolfram Language?

Mathematica® is great, but it might have some disadvantages, depending on your point of view.

• It is not open source.

• Its development is tightly controlled and centralized, and as such

• It can’t hook into different kinds of open-source packages that have independently developed al-
gorithms and methods

However, even if you are willing to pay hundreds of dollars for the software, you would not be able
to see whatś going on “inside” the program if that is your interest. Thatś what free, open-source, and
community-supported software is for!

Mathics3 combines the beauty of Mathematica® implemented in an open-source environment written in
Python. The Python ecosystem includes libraries and tools like:

• mpmath for floating-point arithmetic with arbitrary precision,

6

https://en.wikipedia.org/wiki/Computer_algebra_system
https://hub.docker.com/r/mathicsorg/mathics
https://hub.docker.com/r/mathicsorg/mathics
https://mathics-development-guide.readthedocs.io/en/latest/installing.html
https://mathics-development-guide.readthedocs.io/en/latest
https://mpmath.org/

• NumPy for numeric computation,

• SymPy for symbolic mathematics, and

• SciPy for Scientific calculations.

Performance of Mathics3 is not, right now, fast in large-scale projects and calculations. However, it can
be used as a tool for exploration and education and non-computationally intensive use. And Mathics3
provides better debugging and tracing, since we can be completely transparent about every aspect of its
operation.

1.2. What does Mathics3 offer?

Because Mathics3 is compatible with the Wolfram-Language kernel within the confines of the Python
ecosystem, it is a powerful functional programming language, driven by pattern matching and rule
application.

Primitive types include rationals, complex numbers, and arbitrary-precision numbers. Other primitive
types, such as images or graphs, or NLP, come from the various Python libraries that Mathics3 uses.

Outside of the “core” Mathics3 kernel (which has only a primitive command-line interface), in separate
GitHub projects, as add-ons, there are:

• a command-line interface using either prompt-toolkit, or GNU Readline

• a Django-based web server

• a A browser-based no-install online front-end

• a Mathics3 module for Graphs (via NetworkX),

• a Mathics3 module for NLP (via nltk, spacy, and others)

• a Mathics3 Debugger Module (experimental)

• a A docker container which bundles all of the above

In the future, we might provide better interaction with other Open-source projects and tools. For exam-
ple, we might be able someday to read and write Jupyter notebooks, or translate into pure SymPy and
Mathics3.

A couple of the notable Mathematica packages that work on Mathics33 are Combinatorica ,and Rubi.

1.3. History

The first alpha versions of Mathics3 were done in 2011 by Jan Pöschko. He worked on it for a couple of
years until the v0.5 release in 2012. By then, it had 386 built-in symbols. Currently, there are over 1,000,
and even more when Mathics3 modules are included.

After that, Angus Griffith took over primary leadership and rewrote the parser to pretty much the stage
it is in now. He and, later, Ben Jones worked on it from 2013 to about 2017 for the v1.0 release. Towards
the end of this period, Bernhard Liebl worked on this, mostly focusing on graphics.

7

https://numpy.org
https://sympy.org
https://www.scipy.org/
https://pypi.org/project/mathicsscript/
https://python-prompt-toolkit.readthedocs.io/en/master/
https://pypi.org/project/Mathics-Django/
https://mathics3.github.io/Mathics3-live/
https://pypi.org/project/pymathics-graph/
https://networkx.org/
https://pypi.org/project/pymathics-natlang/
https://www.nltk.org/
https://spacy.io/
https://pypi.org/project/Mathics3-trepan/
https://hub.docker.com/r/mathicsorg/mathics
https://github.com/Mathics3/Mathics3-Combinatorica
https://github.com/Mathics3/Mathics3-Rubi/

A docker image of the v.9 release can be found on dockerhub.

Around 2017, the project was largely abandoned in its largely Python 2.7 state, with some support for
Python 3.2-3.5 via six.

Subsequently, around mid-2020, it was picked up by the current developers. A list of authors and con-
tributors can be found in the AUTHORS.txt file.

1.4. What is missing?

There are lots of ways in which Mathics3 could still be improved. FUTURE.rst has the current roadmap.

However, many WMA Built-in functions have not been implemented. To get a list run:

git grep -n "\# TODO: " mathics/builtin

from the Mathics3 core github repository.

We have a tutorial for adding new Mathics3 functions.

Many of the existingMathics3 Built-in functions are incomplete or work differently, such as checking for
different error conditions.

Although we can always use help in Python programming, there are other ways to help. For example:

• Ensure this document is complete and accurate. We could use help to ensure all of the Built-in
functions are described properly and fully, and that they have a link to the corresponding Wiki,
SymPy, WMA, and/or mpath links.

• Work on making a comprehensive list of missing or incomplete built-in functions.

Make sure the built-in summaries and examples are clear and useful.

• We could use help in LaTeX styling, and going over this document to remove overfull boxes and
things of that nature. We could also use help and our use of Asymptote. The are some graphics
primitives, such as for polyhedra, that haven’t been implemented. Similar graphics options are
sometimes missing in Asymptote that we have available in other graphics backends.

• Add another graphics backend: it could be a JavaScript library like jsfiddle or some other mecha-
nism.

8

https://hub.docker.com/r/arkadi/mathics
https://github.com/Mathics3/mathics-core/blob/master/AUTHORS.txt
https://github.com/Mathics3/mathics-core/blob/master/FUTURE.rst
https://github.com/Mathics3/mathics-core/blob/master/AUTHORS.txt
https://mathics-development-guide.readthedocs.io/en/latest/extending/developing-code/extending/tutorial.html
https://jsfiddle.net/.Considerdonatingvia<url>:GithubSponsors:https://github.com/sponsors

2. Language Tutorial

The following sections are introductions to the basic principles of the language of Mathics3. A few ex-
amples and functions are presented. Only their most common usages are listed; for a full description of
a Symbol’s possible arguments, options, etc., see its entry in the Reference of Built-in Symbols.

If you google for “Mathematica Tutorials”, you will find dozens of other tutorials.

I (Rocky Bernstein) like ”Power Programming with the Mathematica®: the Kernel” by David Wagner. Even
though this is old, and the book covers Mathematica® 3, it has a lot of useful information that is still
relevant. A PDF of this is available here. Wolfram’s ”The Mathematica® Book, Fifth Edition” is useful. If
you google for this book, you can probably find a PDF of it for free.

Online, there is An Elementary Introduction to the Wolfram Language. In the docker image that we
supply, you can load “workspaces” containing the examples described in the chapters of this introduc-
tion.

Be warned, though, that Mathics3 does not yet offer the full range and features and capabilities of Math-
ematica®.

Contents

2.1. Basic calculations 9
2.2. Precision and Accuracy 12
2.3. Symbols and Assignments 13
2.4. Comparisons and Boolean Logic . . . 14
2.5. Strings 14
2.6. Working with Lists 15
2.7. The Structure of Mathics3 Objects . 17

2.8. Functions and Patterns 19
2.9. Program-Flow Control Statements . . 22
2.10. Scoping 23
2.11. Formatting Output 25
2.12. Graphics Introduction Examples . . 28
2.13. 3D Graphics 31
2.14. Plotting Introduction Examples . . . 32

2.1. Basic calculations

Mathics3 can be used to calculate basic stuff:

>> 1 + 2
3

To submit a command to Mathics3, press Shift+Return in the Web interface or Return in the console
interface. The result will be printed in a new line below your query.

The result of the previous query to Mathics3 can be accessed by %:

>> % ^ 2
9

9

https://www.dropbox.com/s/j2dsyvptnxjd369/Wagner%20All%20Parts-RC.pdf
https://www.wolfram.com/language/elementary-introduction/
https://hub.docker.com/r/mathicsorg/mathics

Mathics3 understands all basic arithmetic operators and applies the usual operator precedence. Use
parentheses when needed:

>> 1 - 2 * (3 + 5)/ 4
−3

The multiplication can be omitted:

>> 1 - 2 (3 + 5)/ 4
−3

>> 2 4
8

Powers can be entered using ^:

>> 3 ^ 4
81

Integer divisions yield rational numbers:

>> 6 / 4
3
2

To convert the result to a floating-point number, apply the function N:

>> N[6 / 4]
1.5

As you can see, functions are applied using square braces [and], in contrast to the common notation
of (and).At first hand, this might seem strange, but this distinction between function application and
precedence change is necessary to allow some general syntax structures, as you will see later.

Mathics3 provides many common mathematical functions and constants, e.g.:

>> Log[E]
1

>> Sin[Pi]
0

>> Cos[0.5]
0.877583

When entering floating point numbers in your query, Mathics3 will perform a numerical evaluation and
present a numerical result, pretty much like if you had applied N.

Of course, Mathics3 has complex numbers:

>> Sqrt[-4]
2I

>> I ^ 2
−1

10

>> (3 + 2 I)^ 4
− 119 + 120I

>> (3 + 2 I)^ (2.5 - I)
43.663 + 8.28556I

>> Tan[I + 0.5]
0.195577 + 0.842966I

Abs calculates absolute values:

>> Abs[-3]
3

>> Abs[3 + 4 I]
5

Mathics3 can operate with pretty huge numbers:

>> 55! (* Also known as Factorial[55] *)
12696403353658275925965100847566516959580321051449436762275840000000000000

We could easily use a number larger than 55, but the digits will just run off the page.

The precision of numerical evaluation can be set:

>> N[Pi, 30]
3.14159265358979323846264338328

Division by zero gives an error:

>> 1 / 0
Infinite expression 1 / 0 encountered.
ComplexInfinity

But zero division returns value ’ComplexInfinity’ 31.8.2 and that can be used as a value:

>> Cos[ComplexInfinity]
Indeterminate

ComplexInfinity is a shorthand though for DirectedInfinity[].

Similarly, expressions using ’Infinity’ 31.8.2 as a value are allowed and are evaluated:

>> Infinity + 2 Infinity
∞

There is also the value, ’Indeterminate’ 31.8.8:

>> 0 ^ 0
Indeterminate expression 0 ^ 0 encountered.
Indeterminate

11

2.2. Precision and Accuracy

Mathics3 handles relative and absolute uncertainty in numerical quantities. The precision or relative
accuracy is set by adding a RawBackquote character (`) and the number of digits of precision in the
mantissa. For example:

>> 3.1416`3
3.14

Above, two decimal places are shown in the output after the decimal point, but three places of precision
are stored.

The relative uncertainty of 3.1416`3 is 10∧-3. It is numerically equivalent, in three places after the
decimal point, to 3.1413‘4:

>> 3.1416`3 == 3.1413`4
True

We can get the precision of the number by using the Mathics3 Built-in function ’Precision’ 7.2.10:

>> Precision[3.1413`4]
4.

While 3.1419 is not the closest approximation to Pi in 4 digits after the decimal point (or with precision
4), for 3 digits of precision it is:

>> Pi == 3.141987654321`3
True

The absolute accuracy of a number is set by adding two RawBackquotes `` and the number digits.

For example:

>> 13.1416``4
13.142

is a number having an absolute uncertainty of 10−4.

This number is numerically equivalent to 13.1413``4:

>> 13.1416``4 == 13.1413``4
True

The absolute accuracy for the value 0 is a fixed-precision Real number:

>> 0``4
0.0000

See also Accuracy and precision.

12

https://en.wikipedia.org/wiki/Accuracy_and_precision

2.3. Symbols and Assignments

Symbols need not be declared in Mathics3, they can just be entered and remain variable:

>> x
x

Basic simplifications are performed:

>> x + 2 x
3x

Symbols can have any name that consists of characters and digits:

>> iAm1Symbol ^ 2

iAm1Symbol2

You can assign values to symbols:

>> a = 2
2

>> a ^ 3
8

>> a = 4
4

>> a ^ 3
64

Assigning a value returns that value. If you want to suppress the output of any result, add a ; to the
end of your query:

>> a = 4;

Values can be copied from one variable to another:

>> b = a;

Now changing a does not affect b:

>> a = 3;

>> b
4

Such a dependency can be achieved by using “delayed assignment” with the := operator (which does
not return anything, as the right side is not even evaluated):

>> b := a ^ 2

13

>> b
9

>> a = 5;

>> b
25

2.4. Comparisons and Boolean Logic

Values can be compared for equality using the operator ==:

>> 3 == 3
True

>> 3 == 4
False

The special symbols True and False are used to denote truth values. Naturally, there are inequality
comparisons as well:

>> 3 > 4
False

Inequalities can be chained:

>> 3 < 4 >= 2 != 1
True

Truth values can be negated using ! (logical not) and combined using && (logical and) and || (logical or):

>> !True
False

>> !False
True

>> 3 < 4 && 6 > 5
True

&& has higher precedence than ||, i.e. it binds stronger:

>> True && True || False && False
True

>> True && (True || False)&& False
False

2.5. Strings

Strings can be entered with " as delimiters:

14

>> "Hello world!"
Hello world!

As you can see, quotation marks are not printed in the output by default. This can be changed by using
InputForm:

>> InputForm["Hello world!"]
“Hello world!”

Strings can be joined using <>:

>> "Hello" <> " " <> "world!"
Hello world!

Numbers cannot be joined to strings:

>> "Debian" <> 6
String expected.
Debian<>6

They have to be converted to strings using ToString first:

>> "Debian" <> ToString[6]
Debian6

2.6. Working with Lists

Lists can be entered in Mathics3 with curly braces { and }:

>> mylist = {a, b, c, d}
{a, b, c, d}

There are various functions for constructing lists:

>> Range[5]
{1, 2, 3, 4, 5}

>> Array[f, 4]
{ f [1] , f [2] , f [3] , f [4]}

>> ConstantArray[x, 4]
{x, x, x, x}

>> Table[n ^ 2, {n, 2, 5}]
{4, 9, 16, 25}

The number of elements of a list can be determined with Length:

15

>> Length[mylist]
4

Elements can be extracted using double square braces:

>> mylist[[3]]
c

Negative indices count from the end:

>> mylist[[-3]]
b

Lists can be nested:

>> mymatrix = {{1, 2}, {3, 4}, {5, 6}};

There are alternate forms to display lists:

>> TableForm[mymatrix]
1 2
3 4
5 6

>> MatrixForm[mymatrix] 1 2
3 4
5 6


There are various ways of extracting elements from a list:

>> mymatrix[[2, 1]]
3

>> mymatrix[[;;, 2]]
{2, 4, 6}

>> Take[mylist, 3]
{a, b, c}

>> Take[mylist, -2]
{c, d}

>> Drop[mylist, 2]
{c, d}

>> First[mymatrix]
{1, 2}

>> Last[mylist]
d

16

>> Most[mylist]
{a, b, c}

>> Rest[mylist]
{b, c, d}

Lists can be used to assign values to multiple variables at once:

>> {a, b} = {1, 2};

>> a
1

>> b
2

Operations like addition and multiplication, “thread” over lists; lists are combined element-wise:

>> {1, 2, 3} + {4, 5, 6}
{5, 7, 9}

>> {1, 2, 3} * {4, 5, 6}
{4, 10, 18}

It is an error to combine lists with unequal lengths:

>> {1, 2} + {4, 5, 6}
Objects of unequal length cannot be combined.
{1, 2} + {4, 5, 6}

2.7. The Structure of Mathics3 Objects

Every expression in Mathics3 is built upon the same principle: it consists of a head and an arbitrary
number of children, unless it is an atom, i.e., it can not be subdivided any further. To put it another way:
everything is a function call. This can be best seen when displaying expressions in their “full form”:

>> FullForm[a + b + c]
Plus [a, b, c]

Nested calculations are nested function calls:

>> FullForm[a + b * (c + d)]
Plus [a, Times [b, Plus [c, d]]]

Even lists are function calls of the function List:

>> Head[{1, 2, 3}]
List

17

However, its full form is presented with {...}

>> FullForm[{1, 2, 3}]
{1, 2, 3}

The head of an expression can be determined with Head:

>> Head[a + b + c]
Plus

The children of an expression can be accessed like list elements:

>> (a + b + c)[[2]]
b

The head is the 0th element:

>> (a + b + c)[[0]]
Plus

The head of an expression can be exchanged using the function Apply:

>> Apply[g, f[x, y]]
g
[
x, y
]

>> Apply[Plus, a * b * c]
a + b + c

Apply can be written using the operator @@:

>> Times @@ {1, 2, 3, 4}
24

(This exchanges the head List of {1, 2, 3, 4} with Times, and then the expression Times[1, 2, 3,
4] is evaluated, yielding 24.) Apply can also be applied on a certain level of an expression:

>> Apply[f, {{1, 2}, {3, 4}}, {1}]
{ f [1, 2] , f [3, 4]}

Or even on a range of levels:

>> Apply[f, {{1, 2}, {3, 4}}, {0, 2}]
f
[

f [1, 2] , f [3, 4]
]

Apply is similar to Map (/@):

>> Map[f, {1, 2, 3, 4}]
{ f [1] , f [2] , f [3] , f [4]}

18

>> f /@ {{1, 2}, {3, 4}}{
f
[
{1, 2}

]
, f
[
{3, 4}

]}
The atoms of Mathics3 are numbers, symbols, and strings. AtomQ tests whether an expression is an atom:

>> AtomQ[5]
True

>> AtomQ[a + b]
False

The full form of rational and complex numbers looks like they were compound expressions:

>> FullForm[3 / 5]
Rational [3, 5]

>> FullForm[3 + 4 I]
Complex [3, 4]

However, they are still atoms, thus unaffected by applying functions, for instance:

>> f @@ Complex[3, 4]
3 + 4I

Nevertheless, every atom has a head:

>> Head /@ {1, 1/2, 2.0, I, "a string", x}
{Integer, Rational, Real, Complex, String, Symbol}

The operator === tests whether two expressions are the same on a structural level:

>> 3 === 3
True

>> 3 == 3.0
True

But:

>> 3 === 3.0
False

because 3 (an Integer) and 3.0 (a Real) are structurally different.

2.8. Functions and Patterns

Functions can be defined in the following way:

>> f[x_] := x ^ 2

19

This tells Mathics3 to replace every occurrence of f with one (arbitrary) parameter x with x ^ 2.

>> f[3]
9

>> f[a]
a2

The definition of f does not specify anything for two parameters, so any such call will stay unevaluated:

>> f[1, 2]
f [1, 2]

In fact, functions in Mathics3 are just one aspect of patterns: f[x_] is a pattern that matches expressions
like f[3] and f[a]. The following patterns are available:

_ or Blank[]
matches one expression.

Pattern[x, p]
matches the pattern p and stores the matching sub-expression into x.

x_ or Pattern[x, Blank[]]
matches one expression and stores it in x.

__ or BlankSequence[]
matches a sequence of one or more expressions.

___ or BlankNullSequence[]
matches a sequence of zero or more expressions.

_h or Blank[h]
matches one expression with head h.

x_h or Pattern[x, Blank[h]]
matches one expression with head h and stores it in x.

p | q or Alternatives[p, q]
matches either pattern p or q.

p ? t or PatternTest[p, t]
matches p if the test t[p] yields True.

p /; c or Condition[p, c]
matches p if condition c holds.

Verbatim[p]
matches an expression that equals p, without regarding patterns inside p.

As before, patterns can be used to define functions:

>> g[s___] := Plus[s] ^ 2

>> g[1, 2, 3]
36

MatchQ[e, p] tests whether e matches p:

>> MatchQ[a + b, x_ + y_]
True

20

>> MatchQ[6, _Integer]
True

ReplaceAll (/.) replaces all occurrences of a pattern in an expression using a Rule given by ->:

>> {2, "a", 3, 2.5, "b", c} /. x_Integer -> x ^ 2
{4, a, 9, 2.5, b, c}

You can also specify a list of rules:

>> {2, "a", 3, 2.5, "b", c} /. {x_Integer -> x ^ 2.0, y_String -> 10}
{4., 10, 9., 2.5, 10, c}

ReplaceRepeated (//.) applies a set of rules repeatedly, until the expression doesnt́ change anymore:

>> {2, "a", 3, 2.5, "b", c} //. {x_Integer -> x ^ 2.0, y_String -> 10}
{4., 100., 9., 2.5, 100., c}

There is a “delayed” version of Rule which can be specified by :> (similar to the relation of := to =):

>> a :> 1 + 2
a:>1 + 2

>> a -> 1 + 2
a− > 3

This is useful when the right side of a rule should not be evaluated immediately (before matching):

>> {1, 2} /. x_Integer -> N[x]
{1, 2}

Here, N is applied to x before the actual matching, simply yielding x. With a delayed rule, this can be
avoided:

>> {1, 2} /. x_Integer :> N[x]
{1., 2.}

ReplaceAll and ReplaceRepeated take the first possible match. However, ReplaceList returns a list of
all possible matches. This can be used to get all subsequences of a list, for instance:

>> ReplaceList[{a, b, c}, {___, x__, ___} -> {x}]
{{a} , {a, b} , {a, b, c} , {b} , {b, c} , {c}}

ReplaceAll would just return the first expression:

>> ReplaceAll[{a, b, c}, {___, x__, ___} -> {x}]
{a}

In addition to defining functions as rules for certain patterns, there are pure functions that can be defined

21

using the & postfix operator, where everything before it is treated as the function body, and # can be used
as an argument placeholder:

>> h = # ^ 2 &;

>> h[3]
9

Multiple arguments can simply be indexed:

>> sum = #1 + #2 &;

>> sum[4, 6]
10

It is also possible to name arguments using Function:

>> prod = Function[{x, y}, x * y];

>> prod[4, 6]
24

Pure functions are very handywhen functions are used only locally, e.g., when combinedwith operators
like Map:

>> # ^ 2 & /@ Range[5]
{1, 4, 9, 16, 25}

Sort using the second element of a list as a key:

>> Sort[{{x, 10}, {y, 2}, {z, 5}}, #1[[2]] < #2[[2]] &]
{{y, 2} , {z, 5} , {x, 10}}

Functions can be applied using prefix or postfix notation, in addition to using []:

>> h @ 3
9

>> 3 // h
9

2.9. Program-Flow Control Statements

Like most programming languages, Mathics3 has common program-flow control statements for condi-
tions, loops, etc.:

22

If[cond, pos, neg]
returns pos if cond evaluates to True, and neg if it evaluates to False.

Which[cond1, expr1, cond2, expr2, ...]
yields expr1 if cond1 evaluates to True, expr2 if cond2 evaluates to True, etc.

Do[expr, {i, max}]
evaluates expr max times, substituting i in expr with values from 1 to max.

For[start, test, incr, body]
evaluates start, and then iteratively body and incr as long as test evaluates to True.

While[test, body]
evaluates body as long as test evaluates to True.

Nest[f , expr, n]
returns an expression with f applied n times to expr.

NestWhile[f , expr, test]
applies a function f repeatedly on an expression expr, until applying test on the result no
longer yields True.

FixedPoint[f , expr]
starting with expr, repeatedly applies f until the result no longer changes.

>> If[2 < 3, a, b]
a

>> x = 3; Which[x < 2, a, x > 4, b, x < 5, c]
c

Compound statements can be entered with ;. The result of a compound expression is its last part or
Null if it ends with a ;.

>> 1; 2; 3
3

>> 1; 2; 3;

Inside For, While, and Do loops, Break[] exits the loop, and Continue[] continues to the next iteration.

>> For[i = 1, i <= 5, i++, If[i == 4, Break[]]; Print[i]]
1

2

3

2.10. Scoping

By default, all symbols are “global” in Mathics3, i.e., they can be read and written in any part of your
program. However, sometimes “local” variables are needed in order not to disturb the global namespace.
Mathics3 provides two ways to support this:

• lexicalscoping by Module, and

• dynamicscoping by Block.

23

Module[{vars}, expr]
localizes variables by giving them a temporary name of the form name$number, where
number is the current value of $ModuleNumber. Each time a module is evaluated,
$ModuleNumber is incremented.

Block[{vars}, expr]
temporarily stores the definitions of certain variables, evaluates expr with reset values,
and restores the original definitions afterward.

Both scoping constructs shield inner variables from affecting outer ones:

>> t = 3;

>> Module[{t}, t = 2]
2

>> Block[{t}, t = 2]
2

>> t
3

Module creates new variables:

>> y = x ^ 3;

>> Module[{x = 2}, x * y]

2x3

Block does not:

>> Block[{x = 2}, x * y]
16

Thus, Block can be used to temporarily assign a value to a variable:

>> expr = x ^ 2 + x;

>> Block[{x = 3}, expr]
12

>> x
x

Block can also be used to temporarily change the value of system parameters:

>> Block[{$RecursionLimit = 30}, x = 2 x]
Recursion depth of 30 exceeded.
$Aborted

>> f[x_] := f[x + 1]; Block[{$IterationLimit = 30}, f[1]]
Iteration limit of 30 exceeded.
$Aborted

24

It is common to use scoping constructs for function definitions with local variables:

>> fac[n_] := Module[{k, p}, p = 1; For[k = 1, k <= n, ++k, p *= k]; p]

>> fac[10]
3628800

>> 10!
3628800

2.11. Formatting Output

The way results are formatted for output in Mathics3 is rather sophisticated; compatibility with Mathe-
matica® is one of the design goals. It can be summed up in the following procedure:

1. The result of the query is calculated.

2. The result is stored in Out (which % is a shortcut for).

3. Any Format rules for the desired output form are applied to the result. In the console version of
Mathics3, the result is formatted as OutputForm; MathMLForm for the StandardForm is used in the
interactive Web version; and TeXForm for the StandardForm is used to generate the LATEX version
of this documentation.

4. MakeBoxes is applied to the formatted result, again given either OutputForm, MathMLForm, or
TeXForm depending on the execution context of Mathics3. This yields a new expression consist-
ing of “box constructs”.

5. The boxes are turned into an ordinary string and displayed in the console, sent to the browser, or
written to the documentation LATEX file.

As a consequence, there are variousways to implement your own formatting strategy for custom objects.

You can specify how a symbol shall be formatted by assigning values to Format:

>> Format[x] = "y";

>> x
y

This will apply to MathMLForm, OutputForm, StandardForm, TeXForm, and TraditionalForm.

>> x // InputForm
x

You can specify a specific form in the assignment to Format:

>> Format[x, TeXForm] = "z";

>> x // TeXForm
\text{z}

Special formats might not be very relevant for individual symbols, but rather for custom functions (ob-

25

jects):

>> Format[r[args___]] = "<an r object>";

>> r[1, 2, 3]
<an r object>

You can use several helper functions to format expressions:

Infix[expr, op]
formats the arguments of expr with infix operator op.

Prefix[expr, op]
formats the argument of expr with prefix operator op.

Postfix[expr, op]
formats the argument of expr with postfix operator op.

StringForm[f orm, arg1, arg2, ...]
formats arguments using a format string.

>> Format[r[args___]] = Infix[{args}, "~"];

>> r[1, 2, 3]
1 ∼ 2 ∼ 3

>> StringForm["`1` and `2`", n, m]
n and m

There are several methods to display expressions in 2-D:

Row[{...}]
displays expressions in a row.

Grid[{{...}}]
displays a matrix in two-dimensional form.

Subscript[expr, i1, i2, ...]
displays expr with subscript indices i1, i2, ...

Superscript[expr, exp]
displays expr with superscript (exponent) exp.

>> Grid[{{a, b}, {c, d}}]
a b
c d

>> Subscript[a, 1, 2] // TeXForm
a_{1,2}

If you want even more low-level control over expression display, override MakeBoxes:

>> MakeBoxes[b, StandardForm] = "c";

>> b
c

26

This will even apply to TeXForm, because TeXForm implies StandardForm:

>> b // TeXForm
c

Except some other form is applied first:

>> b // OutputForm // TeXForm
b

MakeBoxes for another form:

>> MakeBoxes[b, TeXForm] = "d";

>> b // TeXForm
d

You can cause a much bigger mess by overriding MakeBoxes than by sticking to Format, e.g. generate
invalid XML:

>> MakeBoxes[c, MathMLForm] = "<not closed";

>> c // MathMLForm
<not closed

However, this will not affect formatting of expressions involving c:

>> c + 1 // MathMLForm
<math display=”block”><mrow><mn>1</mn>
<mo>+</mo> <mi>c</mi></mrow></math>

Thatś because MathMLForm will, when not overridden for a special case, call StandardForm first. Format
will produce escaped output:

>> Format[d, MathMLForm] = "<not closed";

>> d // MathMLForm
<math display=”block”><mtext><not closed</mtext></math>

>> d + 1 // MathMLForm
<math display=”block”><mrow><mn>1</mn> <mo>+</mo>
<mtext><not closed</mtext></mrow></math>

For instance, you can override MakeBoxes to format lists in a different way:

>> MakeBoxes[{items___}, StandardForm] := RowBox[{"[", Sequence @@
Riffle[MakeBoxes /@ {items}, " "], "]"}]

>> {1, 2, 3}
[123]

However, this will not be accepted as input to Mathics3 anymore:

27

>> [1 2 3]
Expression cannot begin with "[1 2 3]" (line 1 of).

>> Clear[MakeBoxes]

By the way, MakeBoxes is the only built-in symbol that is not protected by default:

>> Attributes[MakeBoxes]
{HoldAllComplete}

MakeBoxes must return a valid box construct:

>> MakeBoxes[squared[args___], StandardForm] := squared[args] ^ 2

>> squared[1, 2]

>> squared[1, 2] // TeXForm

=

The desired effect can be achieved in the following way:

>> MakeBoxes[squared[args___], StandardForm] := SuperscriptBox[RowBox[{
MakeBoxes[squared], "[", RowBox[Riffle[MakeBoxes[#]& /@ {args},
","]], "]"}], 2]

>> squared[1, 2]

squared [1, 2]2

You can view the box structure of a formatted expression using ToBoxes:

>> ToBoxes[m + n]
RowBox

[
{m, +, n}

]
The list elements in this RowBox are strings, though string delimiters are not shown in the default output
form:

>> InputForm[%]
RowBox

[
{“m”, “+”, “n”}

]

2.12. Graphics Introduction Examples

Two-dimensional graphics can be created using the function Graphics and a list of graphics primitives.
For three-dimensional graphics see the following section. The following primitives are available:

28

Circle[{x, y}, r]
draws a circle.

Disk[{x, y}, r]
draws a filled disk.

Rectangle[{x1, y1}, {x2, y2}]
draws a filled rectangle.

Polygon[{{x1, y1}, {x2, y2}, ...}]
draws a filled polygon.

Line[{{x1, y1}, {x2, y2}, ...}]
draws a line.

Text[text, {x, y}]
draws text in a graphics.

>> Graphics[{Circle[{0, 0}, 1]}]

>> Graphics[{Line[{{0, 0}, {0, 1}, {1, 1}, {1, -1}}], Rectangle[{0, 0},
{-1, -1}]}]

Colors can be added in the list of graphics primitives to change the drawing color. The following ways
to specify colors are supported:

29

RGBColor[r, g, b]
specifies a color using red, green, and blue.

CMYKColor[c, m, y, k]
specifies a color using cyan, magenta, yellow, and black.

Hue[h, s, b]
specifies a color using hue, saturation, and brightness.

GrayLevel[l]
specifies a color using a gray level.

All components range from 0 to 1. Each color function can be supplied with an additional argument
specifying the desired opacity (“alpha”) of the color. There are many predefined colors, such as Black,
White, Red, Green, Blue, etc.

>> Graphics[{Red, Disk[]}]

Table of hues:

>> Graphics[Table[{Hue[h, s], Disk[{12h, 8s}]}, {h, 0, 1, 1/6}, {s, 0,
1, 1/4}]]

Colors can be mixed and altered using the following functions:

30

Blend[{color1, color2}, ratio]
mixes color1 and color2 with ratio, where a ratio of 0 returns color1 and a ratio of 1 returns
color2.

Lighter[color]
makes color lighter (mixes it with White).

Darker[color]
makes color darker (mixes it with Black).

>> Graphics[{Lighter[Red], Disk[]}]

Graphics produces a GraphicsBox:

>> Head[ToBoxes[Graphics[{Circle[]}]]]
GraphicsBox

2.13. 3D Graphics

Three-dimensional graphics are created using the function Graphics3D and a list of 3D primitives. The
following primitives are supported so far:

Polygon[{{x1, y1, z1}, {x2, y2, z3}, ...}]
draws a filled polygon.

Line[{{x1, y1, z1}, {x2, y2, z3}, ...}]
draws a line.

Point[{x1, y1, z1}]
draws a point.

31

>> Graphics3D[Polygon[{{0,0,0}, {0,1,1}, {1,0,0}}]]

Colors can also be added to three-dimensional primitives.

>> Graphics3D[{Orange, Polygon[{{0,0,0}, {1,1,1}, {1,0,0}}]}, Axes->True
]

Graphics3D produces a Graphics3DBox:

>> Head[ToBoxes[Graphics3D[{Polygon[]}]]]
Graphics3DBox

2.14. Plotting Introduction Examples

Mathics3 can plot functions:

32

>> Plot[Sin[x], {x, 0, 2 Pi}]

1 2 3 4 5 6

−1.0

−0.5

0.5

1.0

You can also plot multiple functions at once:

>> Plot[{Sin[x], Cos[x], x ^ 2}, {x, -1, 1}]

−1.0 −0.5 0.5 1.0

−0.5

0.5

1.0

Two-dimensional functions can be plotted using DensityPlot:

>> DensityPlot[x ^ 2 + 1 / y, {x, -1, 1}, {y, 1, 4}]

You can use a custom coloring function:

33

>> DensityPlot[x ^ 2 + 1 / y, {x, -1, 1}, {y, 1, 4}, ColorFunction -> (
Blend[{Red, Green, Blue}, #]&)]

One problem with DensityPlot is that itś still very slow, basically due to function evaluation being
pretty slow in general—and DensityPlot has to evaluate a lot of functions.

Three-dimensional plots are supported as well:

>> Plot3D[Exp[x] Cos[y], {x, -2, 1}, {y, -Pi, 2 Pi}]

34

3. Further Tutorial Examples

Here are some examples written by Jan Pöschko that come from the very first version.

Contents

3.1. Curve Sketching 35
3.2. Linear algebra 36

3.3. Dice 38

3.1. Curve Sketching

Letś sketch the function

>> f[x_] := 4 x / (x ^ 2 + 3 x + 5)

The derivatives are:

>> {f'[x], f''[x], f'''[x]} // Together{
−4
(
−5 + x2)(

5 + 3x + x2
)2 ,

8
(
−15− 15x + x3)(
5 + 3x + x2

)3 ,
−24

(
−20− 60x − 30x2 + x4)(

5 + 3x + x2
)4

}

To get the extreme values of f, compute the zeroes of the first derivatives:

>> extremes = Solve[f'[x] == 0, x]{{
x− > −

√
5
}

,
{

x− >
√

5
}}

And test the second derivative:

>> f''[x] /. extremes // N
{1.65086, − 0.064079}

Thus, there is a local maximum at x = Sqrt[5] and a local minimum at x = -Sqrt[5]. Compute the
inflection points numerically, chopping imaginary parts close to 0:

>> inflections = Solve[f''[x] == 0, x] // N // Chop
{{x− > − 1.0852} , {x− > − 3.21463} , {x− > 4.29983}}

Insert into the third derivative:

35

>> f'''[x] /. inflections
{ − 3.67683, 0.694905, 0.00671894}

Being different from 0, all three points are actual inflection points. f is not definedwhere its denominator
is 0:

>> Solve[Denominator[f[x]] == 0, x]{{
x− > −3

2
− I

2

√
11
}

,
{

x− > −3
2

+
I
2

√
11
}}

These are non-real numbers; consequently, f is defined on all real numbers. The behaviour of f at the
boundaries of its definition:

>> Limit[f[x], x -> Infinity]
0

>> Limit[f[x], x -> -Infinity]
0

Finally, letś plot f:

>> Plot[f[x], {x, -8, 6}]

−5 5

−2.5

−2.0

−1.5

−1.0

−0.5

0.5

3.2. Linear algebra

Letś consider the matrix

>> A = {{1, 1, 0}, {1, 0, 1}, {0, 1, 1}};

>> MatrixForm[A] 1 1 0
1 0 1
0 1 1


We can compute its eigenvalues and eigenvectors:

>> Eigenvalues[A]
{2,−1, 1}

36

>> Eigenvectors[A]
{{1, 1, 1} , {1,−2, 1} , {−1, 0, 1}}

This yields the diagonalization of A:

>> T = Transpose[Eigenvectors[A]]; MatrixForm[T] 1 1 −1
1 −2 0
1 1 1


>> Inverse[T] . A . T // MatrixForm 2 0 0

0 −1 0
0 0 1


>> % == DiagonalMatrix[Eigenvalues[A]]

True

We can solve linear systems:

>> LinearSolve[A, {1, 2, 3}]
{0, 1, 2}

>> A . %
{1, 2, 3}

In this case, the solution is unique:

>> NullSpace[A]
{}

Letś consider a singular matrix:

>> B = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};

>> MatrixRank[B]
2

>> s = LinearSolve[B, {1, 2, 3}]{
−1

3
,

2
3

, 0
}

>> NullSpace[B]
{{1,−2, 1}}

>> B . (RandomInteger[100] * %[[1]] + s)
{1, 2, 3}

37

3.3. Dice

Letś play with dice in this example. A Dice object shall represent the outcome of a series of rolling a
dice with six faces, e.g.:

>> Dice[1, 6, 4, 4]
Dice [1, 6, 4, 4]

Like in most games, the ordering of the individual throws does not matter. We can express this by
making Dice Orderless:

>> SetAttributes[Dice, Orderless]

>> Dice[1, 6, 4, 4]
Dice [1, 4, 4, 6]

A dice object shall be displayed as a rectangle with the given number of points in it, positioned like on
a traditional dice:

>> Format[Dice[n_Integer?(1 <= # <= 6 &)]] := Block[{p = 0.2, r = 0.05},
Graphics[{EdgeForm[Black], White, Rectangle[], Black, EdgeForm[], If

[OddQ[n], Disk[{0.5, 0.5}, r]], If[MemberQ[{2, 3, 4, 5, 6}, n], Disk
[{p, p}, r]], If[MemberQ[{2, 3, 4, 5, 6}, n], Disk[{1 - p, 1 - p}, r
]], If[MemberQ[{4, 5, 6}, n], Disk[{p, 1 - p}, r]], If[MemberQ[{4, 5,
6}, n], Disk[{1 - p, p}, r]], If[n === 6, {Disk[{p, 0.5}, r], Disk

[{1 - p, 0.5}, r]}]}, ImageSize -> Tiny]]

>> Dice[1]

The empty series of dice shall be displayed as an empty dice:

>> Format[Dice[]] := Graphics[{EdgeForm[Black], White, Rectangle[]},
ImageSize -> Tiny]

>> Dice[]

Any non-empty series of dice shall be displayed as a row of individual dice:

>> Format[Dice[d___Integer?(1 <= # <= 6 &)]] := Row[Dice /@ {d}]

38

>> Dice[1, 6, 4, 4]

Note that Mathics3 will automatically sort the given format rules according to their “generality”, so the
rule for the empty dice does not get overridden by the rule for a series of dice. We can still see the original
form by using InputForm:

>> Dice[1, 6, 4, 4] // InputForm
Dice [1, 4, 4, 6]

We want to combine Dice objects using the + operator:

>> Dice[a___] + Dice[b___] ^:= Dice[Sequence @@ {a, b}]

The ^:= (UpSetDelayed) tells Mathics3 to associate this rule with Dice instead of Plus.

Plus is protected—we would have to unprotect it first:

>> Dice[a___] + Dice[b___] := Dice[Sequence @@ {a, b}]
Tag Plus in Dice[a___] + Dice[b___] is Protected.
$Failed

We can now combine dice:

>> Dice[1, 5] + Dice[3, 2] + Dice[4]

Letś write a function that returns the sum of the rolled dice:

>> DiceSum[Dice[d___]] := Plus @@ {d}

>> DiceSum @ Dice[1, 2, 5]
8

And now letś put some dice into a table:

>> Table[{Dice[Sequence @@ d], DiceSum @ Dice[Sequence @@ d]}, {d, {{1,
2}, {2, 2}, {2, 6}}}] // TableForm

3

4

8

39

It is not very sophisticated from a mathematical point of view, but itś beautiful.

40

4. Django-based Web Interface

In the future, we plan on providing an interface to Jupyter as a separate package.

However, as part Mathics3, we currently distribute a browser-based interface using long-term-release
(LTS) Django 4.

Since a Jupyter-based interface seems preferable to the home-grown interface described here, it is doubt-
ful whether there will be future improvements to this interface.

When you enter Mathics in the top after the Mathics logo and the word “Mathics” you’ll see a menubar.

It looks like this:

These save and loadworksheets, share sessions, run a gallery of examples, go to theGitHub organization
page, and provide information about the particular Mathics3 installation.

These are explained in the sections below.

Contents

4.1. URIs 41
4.2. Saving, Loading, and Deleting

Worksheets 42
4.3. Gallery Examples 42

4.4. Persistence of Mathics Definitions
in a Session 43

4.5. Keyboard Commands 43

4.1. URIs

For the most part, the application is a single-page application. Assuming you are running locally or on
a host called localhost using the default port, 8000, here are some URLs and what they do:

41

http://localhost:8000
The single-page application; the main page.

http://localhost:8000/about
A page giving:

• the software versions of this package and the version information of important software
this uses.

• directory path information for the current setup

• machine information

• system information

• customizable system settings

http://localhost:8000/doc
An online formatted version of the documentation, which includes this text. You can see
this as a right-side frame of the main page, when clicking ”?” on the right-hand upper
corner.

4.2. Saving, Loading, and Deleting Worksheets

<subsection title=“Saving Worksheets”>

Worksheets exist in the browser window only and are not stored on the server by default. To save all
your queries and results, use the Save button, which is the middle graphic of the menu bar. It looks like
this:

Depending on browser, desktop, and OS settings, the ”Ctrl+S” key combination may do the same thing.

<subsection title=“Loading and Deleting Worksheets”>

Saved worksheets can be loaded or deleted using the FileOpen button, which is the left-most button in
the menu bar. It looks like this:

Depending on browser, desktop, and OS settings, the ”Ctrl+O” key combinationmay do the same thing.

A pop-up menu should appear with the list of saved worksheets, with an option to either load or delete
the worksheet.

4.3. Gallery Examples

We have a number of examples showing off briefly some of the capabilities of the system. These are run
when you hit the button that looks like this:

42

http://localhost:8000
http://localhost:8000/about
http://localhost:8000/doc

It is also shown in the pop-up text that appears when Mathics3 is first run.

4.4. Persistence of Mathics Definitions in a Session

When you use the Django-basedWeb interface of Mathics3, a browser session is created. Cookies have to
be enabled to allow this. Your session holds a key that is used to access your definitions that are stored
in a database on the server. As long as you do not clear the cookies in your browser, your definitions
will remain even when you close and re-open the browser.

This implies that you should not store sensitive, private information in Mathics3 variables when using
the onlineWeb interface. In addition to their values being stored in a database on the server, your queries
might be saved for debugging purposes. However, the fact that they are transmitted over plain HTTP
should make you aware that you should not transmit any sensitive information. When you want to do
calculations with that kind of stuff, simply install Mathics3 locally!

If you are using a public terminal, to erase all your definitions and close the browser window. When
you use Mathics3 in a browser, use the command Quit[] or its alias, Exit[].

When you reload the current page in a browser using the default URL, e.g.,

http:localhost:8000

, all of the previous input and output disappears.

On the other hand, Definitions as described above do not, unless Quit[] or Exit[] is entered as de-
scribed above.

If you want a URL that records the input entered, the GenerateInputHash button does this. The button
looks like this:

For example, assuming you have a Mathics3 server running at port 8000 on

localhost

, and you enter the URL

http://localhost:8000/\#cXVlcmllcz14

, you should see a single line of input containing x entered.

Of course, what the value of this is when evaluated depends on whether x has been previously defined.

4.5. Keyboard Commands

There are some keyboard commands you can use in the Django-based Web interface of Mathics3.

43

Shift+Return
This evaluates the current cell (the most important one, for sure). On the right-hand side,
you may also see an ”=” button, which can be clicked to do the same thing.

Ctrl+D
This moves the cursor over to the documentation pane on the right-hand side. From here
you can perform a search for a pre-defined Mathics3 function or symbol. Clicking on the
”?” symbol on the right-hand side does the same thing.

Ctrl+C
This moves the cursor back to the document code pane area where you type Mathics3
expressions

Ctrl+S
Save worksheet

Ctrl+O
Open worksheet

Right Click on MathML output
Opens MathJax Menu

Of special note is the last item on the list: right-click to open the MathJax menu. Under “Math Set-
ting”/“Zoom Trigger”, if the zoom trigger is set to a value other than “No Zoom”, then when that trig-
ger is applied to MathML-formatted output, the MathML formula pops up a window for the formula.
The window can show the formula larger. Also, this is a way to see output that is too large to fit on the
display since the window allows for scrolling.

Keyboard command behavior depends on the browser used, the operating system, desktop settings,
and customization. We hook into the desktop “Open the current document” and “Save the current
document” functions that many desktops provide. For example see: Finding keyboard shortcuts

Often, these shortcut keyboard commands are only recognized when a text field has focus; otherwise,
the browser might do some browser-specific actions, like setting a bookmark, etc.

44

https://help.ubuntu.com/community/KeyboardShortcuts#Finding_keyboard_shortcuts

Part II.

Reference of Built-in Symbols

45

5. Arithmetic Functions

Arithmetic Functions are functions thatwork on individual numbers, lists, and arrays: in either symbolic
or algebraic forms.

Contents

5.1. Basic Arithmetic 46
5.1.1. CubeRoot 46
5.1.2. Divide (÷) 46
5.1.3. Minus (-) 47
5.1.4. Plus (+) 48
5.1.5. Power (^) 49

5.1.6. Sqrt 50
5.1.7. Subtract 51
5.1.8. Times (×) 52

5.2. Sums, Simple Statistics 52
5.2.1. Accumulate 52
5.2.2. Total 53

5.1. Basic Arithmetic

The functions here are the basic arithmetic operations that you might find on a calculator.

5.1.1. CubeRoot

Cube root (WMA)

CubeRoot[n]
finds the real-valued cube root of the given n.

>> CubeRoot[16]

22
1
3

5.1.2. Divide (÷)

Division (WMA link)

Divide[a, b]
a / b

represents the division of a by b.

46

https://en.wikipedia.org/wiki/Cube_root
https://reference.wolfram.com/language/ref/CubeRoot.html
https://en.wikipedia.org/wiki/Division_(mathematics)
https://reference.wolfram.com/language/ref/Divide.html

>> 30 / 5
6

>> 1 / 8
1
8

>> Pi / 4
π

4

Use N or a decimal point to force numeric evaluation:

>> Pi / 4.0
0.785398

>> 1 / 8
1
8

>> N[%]
0.125

Nested divisions:

>> a / b / c
a
bc

>> a / (b / c)
ac
b

>> a / b / (c / (d / e))
ad
bce

>> a / (b ^ 2 * c ^ 3 / e)
ae

b2c3

5.1.3. Minus (-)

Additive inverse (WMA)

Minus[expr]
is the negation of expr.

>> -a //FullForm
Times [− 1, a]

Minus automatically distributes:

47

https://en.wikipedia.org/wiki/Additive_inverse
https://reference.wolfram.com/language/ref/Minus.html

>> -(x - 2/3)
2
3
− x

Minus threads over lists:

>> -Range[10]
{−1,−2,−3,−4,−5,−6,−7,−8,−9,−10}

5.1.4. Plus (+)

Addition (SymPy, WMA)

Plus[a, b, ...]
a + b + ...

represents the sum of the terms a, b, ...

>> 1 + 2
3

Plus performs basic simplification of terms:

>> a + b + a
2a + b

>> a + a + 3 * a
5a

>> a + b + 4.5 + a + b + a + 2 + 1.5 b
6.5 + 3a + 3.5b

Apply Plus on a list to sum up its elements:

>> Plus @@ {2, 4, 6}
12

The sum of the first 1000 integers:

>> Plus @@ Range[1000]
500500

Plus has default value 0:

>> DefaultValues[Plus]
{HoldPattern [Default [Plus]] :>0}

>> a /. n_. + x_ :> {n, x}
{0, a}

48

https://en.wikipedia.org/wiki/Addition
https://docs.sympy.org/latest/modules/core.html#id48
https://reference.wolfram.com/language/ref/Plus.html

The sum of 2 red circles and 3 red circles is...

>> 2 Graphics[{Red,Disk[]}] + 3 Graphics[{Red,Disk[]}]

5

5.1.5. Power (^)

Exponentiation (SymPy, WMA)

Power[a, b]
a ^ b

represents a raised to the power of b.

>> 4 ^ (1/2)
2

>> 4 ^ (1/3)

2
2
3

>> 3^123
48519278097689642681155855396759336072749841943521979872827

>> (y ^ 2)^ (1/2)√
y2

>> (y ^ 2)^ 3

y6

49

https://en.wikipedia.org/wiki/Exponentiation
https://docs.sympy.org/latest/modules/core.html#sympy.core.power.Pow
https://reference.wolfram.com/language/ref/Power.html

>> Plot[Evaluate[Table[x^y, {y, 1, 5}]], {x, -1.5, 1.5}, AspectRatio ->
1]

−1.5 −1.0 −0.5 0.5 1.0 1.5

−3

−2

−1

1

2

3

Use a decimal point to force numeric evaluation:

>> 4.0 ^ (1/3)
1.5874

Power has default value 1 for its second argument:

>> DefaultValues[Power]
{HoldPattern [Default [Power, 2]] :>1}

>> a /. x_ ^ n_. :> {x, n}
{a, 1}

Power can be used with complex numbers:

>> (1.5 + 1.0 I)^ 3.5
− 3.68294 + 6.95139I

>> (1.5 + 1.0 I)^ (3.5 + 1.5 I)
− 3.19182 + 0.645659I

5.1.6. Sqrt

Square root (SymPy, WMA)

Sqrt[expr]
returns the square root of expr.

>> Sqrt[4]
2

50

https://en.wikipedia.org/wiki/Square_root
https://docs.sympy.org/latest/modules/codegen.html#sympy.codegen.cfunctions.Sqrt
https://reference.wolfram.com/language/ref/Sqrt.html

>> Sqrt[5]
√

5

>> Sqrt[5] // N
2.23607

>> Sqrt[a]^2
a

Complex numbers:

>> Sqrt[-4]
2I

>> I == Sqrt[-1]
True

>> Plot[Sqrt[a^2], {a, -2, 2}]

−2 −1 1 2

0.5

1.0

1.5

2.0

5.1.7. Subtract

Subtraction, (WMA)

Subtract[a, b]
a - b

represents the subtraction of b from a.

>> 5 - 3
2

>> a - b // FullForm
Plus [a, Times [− 1, b]]

>> a - b - c
a − b − c

>> a - (b - c)
a − b + c

51

https://en.wikipedia.org/wiki/Subtraction
https://reference.wolfram.com/language/ref/Subtract.html

5.1.8. Times (×)

Multiplication (SymPy, WMA)

Times[a, b, ...]
a * b * ...
a b ...

represents the product of the terms a, b, ...

>> 10 * 2
20

>> 10 2
20

>> a * a
a2

>> x ^ 10 * x ^ -2
x8

>> {1, 2, 3} * 4
{4, 8, 12}

>> Times @@ {1, 2, 3, 4}
24

>> IntegerLength[Times@@Range[5000]]
16326

Times has default value 1:

>> DefaultValues[Times]
{HoldPattern [Default [Times]] :>1}

>> a /. n_. * x_ :> {n, x}
{1, a}

5.2. Sums, Simple Statistics

These functions perform a simple arithmetic computation over a list.

5.2.1. Accumulate

WMA link

Accumulate[list]
accumulates the values of list, returning a new list.

52

https://en.wikipedia.org/wiki/Multiplication
https://docs.sympy.org/latest/modules/core.html#sympy.core.mul.Mul
https://reference.wolfram.com/language/ref/Times.html
https://reference.wolfram.com/language/ref/Accumulate.html

>> Accumulate[{1, 2, 3}]
{1, 3, 6}

5.2.2. Total

WMA link

Total[list]
adds all values in list.

Total[list, n]
adds all values up to level n.

Total[list, {n}]
totals only the values at level {n}.

Total[list, {n1, n2}]
totals at levels {n1, n2}.

>> Total[{1, 2, 3}]
6

>> Total[{{1, 2, 3}, {4, 5, 6}, {7, 8 ,9}}]
{12, 15, 18}

Total over rows and columns

>> Total[{{1, 2, 3}, {4, 5, 6}, {7, 8 ,9}}, 2]
45

Total over rows instead of columns

>> Total[{{1, 2, 3}, {4, 5, 6}, {7, 8 ,9}}, {2}]
{6, 15, 24}

53

https://reference.wolfram.com/language/ref/Total.html

6. Assignments

Assignments allow you to set or clear variables, indexed variables, structure elements, functions, and
general transformations.

You can also get assignment and documentation information about symbols.

Contents

6.1. Clearing Assignments 54
6.1.1. Clear 54
6.1.2. ClearAll 55
6.1.3. Remove 56
6.1.4. Unset (=.) 56

6.2. Forms of Assignment 57
6.2.1. LoadModule 57
6.2.2. Set (=) 58
6.2.3. SetDelayed (:=) 59
6.2.4. TagSet 61
6.2.5. TagSetDelayed 61
6.2.6. UpSet (^=) 61
6.2.7. UpSetDelayed (^:=) 62

6.3. In-place binary assignment operator 62
6.3.1. AddTo (+=) 63

6.3.2. Decrement (--) 63
6.3.3. DivideBy (/=) 64
6.3.4. Increment 64
6.3.5. PreDecrement 65
6.3.6. PreIncrement (++) 65
6.3.7. SubtractFrom (-=) 66
6.3.8. TimesBy (*=) 66

6.4. Types of Values 67
6.4.1. DefaultValues 67
6.4.2. Messages 67
6.4.3. NValues 68
6.4.4. SubValues 68

6.5. UpValue-related assignments 69
6.5.1. UpValues 69

6.1. Clearing Assignments

6.1.1. Clear

WMA link

Clear[symb1, symb2, ...]
clears all values of the given symbols. The arguments can also be given as strings con-
taining symbol names.

>> x = 2;

>> Clear[x]

>> x
x

54

https://reference.wolfram.com/language/ref/Clear.html

>> x = 2;

>> y = 3;

>> Clear["Global`*"]

>> x
x

>> y
y

ClearAll may not be called for Protected symbols.

>> Clear[Sin]
Symbol Sin is Protected.

The values and rules associated with built-in symbols will not get lost when applying Clear (after un-
protecting them):

>> Unprotect[Sin]

>> Clear[Sin]

>> Sin[Pi]
0

Clear does not remove attributes, messages, options, and default values associated with the symbols.
Use ClearAll to do so.

>> Attributes[r] = {Flat, Orderless};

>> Clear["r"]

>> Attributes[r]
{Flat, Orderless}

6.1.2. ClearAll

WMA link

ClearAll[symb1, symb2, ...]
clears all values, attributes, messages and options associatedwith the given symbols. The
arguments can also be given as strings containing symbol names.

>> x = 2;

>> ClearAll[x]

>> x
x

55

https://reference.wolfram.com/language/ref/ClearAll.html

>> Attributes[r] = {Flat, Orderless};

>> ClearAll[r]

>> Attributes[r]
{}

ClearAll may not be called for Protected or Locked symbols.

>> Attributes[lock] = {Locked};

>> ClearAll[lock]
Symbol lock is locked.

6.1.3. Remove

WMA link

Remove[x]
removes the definition associated to x.

>> a := 2

>> Names["Global`a"]
{a}

>> Remove[a]

>> Names["Global`a"]
{}

6.1.4. Unset (=.)

WMA link

Unset[x]
x=.

removes any value belonging to x.

>> a = 2
2

>> a =.

>> a
a

Unsetting an already unset or never defined variable will not change anything:

56

https://reference.wolfram.com/language/ref/Remove.html
https://reference.wolfram.com/language/ref/Unset.html

>> a =.

>> b =.

Unset can unset particular function values. It will print a message if no corresponding rule is found.

>> f[x_] =.
Assignment on f for f[x_] not found.
$Failed

>> f[x_] := x ^ 2

>> f[3]
9

>> f[x_] =.

>> f[3]
f [3]

You can also unset OwnValues, DownValues, SubValues, and UpValues directly. This is equivalent to
setting them to {}.

>> f[x_] = x; f[0] = 1;

>> DownValues[f] =.

>> f[2]
f [2]

Unset threads over lists:

>> a = b = 3;

>> {a, {b}} =.
{Null, {Null}}

6.2. Forms of Assignment

6.2.1. LoadModule

LoadModule[module]
’Load Mathics definitions from the python module module

>> LoadModule["nomodule"]
Python import errors with: No module named 'nomodule'.
$Failed

57

>> LoadModule["sys"]
Python module "sys" is not a Mathics3 module.
$Failed

6.2.2. Set (=)

WMA link

Set[expr, value]
expr = value

evaluates value and assigns it to expr.
{s1, s2, s3} = {v1, v2, v3}

sets multiple symbols (s1, s2, ...) to the corresponding values (v1, v2, ...).

Set can be used to give a symbol a value:

>> a = 3
3

>> a
3

An assignment like this creates an ownvalue:

>> OwnValues[a]
{HoldPattern [a] :>3}

You can set multiple values at once using lists:

>> {a, b, c} = {10, 2, 3}
{10, 2, 3}

>> {a, b, {c, {d}}} = {1, 2, {{c1, c2}, {a}}}
{1, 2, {{c1, c2} , {10}}}

>> d
10

Set evaluates its right-hand side immediately and assigns it to the left-hand side:

>> a
1

>> x = a
1

>> a = 2
2

>> x
1

58

https://reference.wolfram.com/language/ref/Set.html

Set always returns the right-hand side, which you can again use in an assignment:

>> a = b = c = 2;

>> a == b == c == 2
True

Set supports assignments to parts:

>> A = {{1, 2}, {3, 4}};

>> A[[1, 2]] = 5
5

>> A
{{1, 5} , {3, 4}}

>> A[[;;, 2]] = {6, 7}
{6, 7}

>> A
{{1, 6} , {3, 7}}

Set a submatrix:

>> B = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};

>> B[[1;;2, 2;;-1]] = {{t, u}, {y, z}};

>> B
{{1, t, u} , {4, y, z} , {7, 8, 9}}

6.2.3. SetDelayed (:=)

WMA link

SetDelayed[expr, value]
expr := value

assigns value to expr, without evaluating value.

SetDelayed is like Set, except it has attribute HoldAll, thus it does not evaluate the right-hand side
immediately, but evaluates it when needed.

>> Attributes[SetDelayed]
{HoldAll, Protected, SequenceHold}

>> a = 1
1

>> x := a

59

https://reference.wolfram.com/language/ref/SetDelayed.html

>> x
1

Changing the value of a affects x:

>> a = 2
2

>> x
2

Condition (/;) can be used with SetDelayed to make an assignment that only holds if a condition is
satisfied:

>> f[x_] := p[x] /; x>0

>> f[3]
p [3]

>> f[-3]
f [− 3]

It also works if the condition is set in the LHS:

>> F[x_, y_] /; x < y /; x>0 := x / y;

>> F[x_, y_] := y / x;

>> F[2, 3]
2
3

>> F[3, 2]
2
3

>> F[-3, 2]

−2
3

We can use conditional delayed assignments to define symbols with values conditioned to the context.
For example,

>> ClearAll[a,b]; a/; b>0:= 3

Set a to have a value of 3 if certain variable b is positive. So, if this variable is not set, a stays unevaluated:

>> a
a

If now we assign a positive value to b, then a is evaluated:

>> b=2; a
3

60

6.2.4. TagSet

WMA link

TagSet[f , expr, value]
f /: expr = value

assigns value to expr, associating the corresponding assignment with the symbol f .

Create an upvalue without using UpSet:

>> square /: area[square[s_]] := s^2

>> DownValues[square]
{}

>> UpValues[square]{
HoldPattern

[
area

[
square [s_]

]]
:>s2

}
The symbol f must appear as the ultimate head of lhs or as the head of an element in lhs:

>> x /: f[g[x]] = 3;
Tag x not found or too deep for an assigned rule.

>> g /: f[g[x]] = 3;

>> f[g[x]]
3

6.2.5. TagSetDelayed

WMA link

TagSetDelayed[f , expr, value]
f /: $expr$:= $value$

is the delayed version of TagSet.

6.2.6. UpSet (^=)

WMA link

f [x] ^= expression
evaluates expression and assigns it to the value of f [x], associating the value with x.

UpSet creates an upvalue:

61

https://reference.wolfram.com/language/ref/TagSet.html
https://reference.wolfram.com/language/ref/TagSetDelayed.html
https://reference.wolfram.com/language/ref/UpSet.html

>> a[b] ^= 3;

>> DownValues[a]
{}

>> UpValues[b]
{HoldPattern [a [b]] :>3}

You can use UpSet to specify special values like format values. However, these values will not be saved
in UpValues:

>> Format[r] ^= "custom";

>> r
custom

>> UpValues[r]
{}

6.2.7. UpSetDelayed (^:=)

WMA link

UpSetDelayed[expression, value]
expression ^:= value

assigns expression to the value of f [x] (without evaluating expression), associating the
value with x.

>> a[b] ^:= x

>> x = 2;

>> a[b]
2

>> UpValues[b]
{HoldPattern [a [b]] :>x}

6.3. In-place binary assignment operator

There are a number operators and functions that combine assignment with some sort of binary operator.

Sometimes a value is returned before the assignment occurs. When there is an operator for this, the
operator is a prefix operator and the function name starts with Pre.

Sometimes the binary operation occurs first, and then the assignment occurs. When there is an operator
for this, the operator is a postfix operator.

Infix operators combined with assignment end in By, From, or To.

62

https://reference.wolfram.com/language/ref/UpSetDelayed.html

6.3.1. AddTo (+=)

WMA link

AddTo[x, dx]
x += dx

is equivalent to x = x + dx.

>> a = 10;

>> a += 2
12

>> a
12

6.3.2. Decrement (--)

WMA link

Decrement[x]
x--

decrements x by 1, returning the original value of x.

>> a = 5; a--
5

>> a
4

Decrement a numerical value:

>> a = 1.6; a--; a
0.6

Decrement all values in a list:

>> a = {1, 3, 5}
{1, 3, 5}

>> a--; a
{0, 2, 4}

Compare with PreDecrement 6.3.5 which returns the value before updating, and Increment 6.3.4 which
goes the other way.

63

https://reference.wolfram.com/language/ref/AddTo.html
https://reference.wolfram.com/language/ref/Decrement.html

6.3.3. DivideBy (/=)

WMA link

DivideBy[x, dx]
x /= dx

is equivalent to x = x / dx.

>> a = 10;

>> a /= 2
5

>> a
5

6.3.4. Increment

WMA link

Increment[x]
x++

increments x by 1, returning the original value of x.

>> a = 1; a++
1

>> a
2

Increment a numeric value:

>> a = 1.5; a++
1.5

>> a
2.5

Increment a symbolic value:

>> y = 2 x; y++; y
1 + 2x

Increment all values in a list:

>> x = {1, 3, 5}
{1, 3, 5}

x++; x = {2, 4, 6}

64

https://reference.wolfram.com/language/ref/DivideBy.html
https://reference.wolfram.com/language/ref/Increment.html

Grouping of Increment, PreIncrement and Plus:

>> ++++a+++++2//Hold//FullForm
Hold [Plus [PreIncrement [PreIncrement [Increment [Increment [a]]]] , 2]]

Compare with PreIncrement 6.3.6 which returns the value before update.

6.3.5. PreDecrement

WMA link

PreDecrement[x]
--x

decrements x by 1, returning the new value of x.

--a is equivalent to a = a - 1:

>> a = 2;

>> --a
1

>> a
1

Compare with Decrement 6.3.2 which returns the updated value, and Increment 6.3.4 which goes the
other way.

6.3.6. PreIncrement (++)

WMA link

PreIncrement[x]
++x

increments x by 1, returning the new value of x.

++a is equivalent to a = a + 1:

>> a = 2
2

>> ++a
3

>> a
3

PreIncrement a numeric value:

65

https://reference.wolfram.com/language/ref/PreDecrement.html
https://reference.wolfram.com/language/ref/PreIncrement.html

>> a + 1.6
4.6

PreIncrement a symbolic value:

>> y = x; ++y
1 + x

>> y
1 + x

Compare with Increment 6.3.4 which returns the updated value, and PreDecrement 6.3.5 which goes
the other way.

6.3.7. SubtractFrom (-=)

WMA link

SubtractFrom[x, dx]
x -= dx

is equivalent to x = x - dx.

>> a = 10;

>> a -= 2
8

>> a
8

6.3.8. TimesBy (*=)

WMA link

TimesBy[x, dx]
x *= dx

is equivalent to x = x * dx.

>> a = 10;

>> a *= 2
20

>> a
20

66

https://reference.wolfram.com/language/ref/SubtractFrom.html
https://reference.wolfram.com/language/ref/TimesBy.html

6.4. Types of Values

6.4.1. DefaultValues

WMA link

DefaultValues[symbol]
gives the list of default values associated with symbol.

Note: this function is in Mathematica 5 but has been removed from current Mathematica.

>> Default[f, 1] = 4
4

>> DefaultValues[f]{
HoldPattern

[
Default

[
f , 1
]]

:>4
}

You can assign values to DefaultValues:

>> DefaultValues[g] = {Default[g] -> 3};

>> Default[g, 1]
3

>> g[x_.] := {x}

>> g[a]
{a}

>> g[]
{3}

6.4.2. Messages

WMA link

Messages[symbol]
gives the list of messages associated with symbol.

>> a::b = "foo"
foo

>> Messages[a]
{HoldPattern [a::b] :>foo}

>> Messages[a] = {a::c :> "bar"};

>> a::c // InputForm
“bar”

67

https://reference.wolfram.com/language/ref/DefaultValues.html
https://reference.wolfram.com/language/ref/Messages.html

>> Message[a::c]
bar

6.4.3. NValues

NValues[symbol]
gives the list of numerical values associated with symbol.

Note: this function is in Mathematica 5 but has been removed from current Mathematica.

>> NValues[a]
{}

>> N[a] = 3;

>> NValues[a]
{HoldPattern [N [a, MachinePrecision]] :>3}

You can assign values to NValues:

>> NValues[b] := {N[b, MachinePrecision] :> 2}

>> N[b]
2.

Be sure to use SetDelayed, otherwise the left-hand side of the transformation rule will be evaluated
immediately, causing the head of N to get lost. Furthermore, you have to include the precision in the
rules; MachinePrecision will not be inserted automatically:

>> NValues[c] := {N[c] :> 3}

>> N[c]
c

Mathics will assign any list of rules to NValues; however, inappropriate rules will never be used:

>> NValues[d] = {foo -> bar};

>> NValues[d]
{HoldPattern [foo] :>bar}

>> N[d]
d

6.4.4. SubValues

WMA link

68

https://reference.wolfram.com/language/ref/SubValues.html

SubValues[symbol]
gives the list of subvalues associated with symbol.

Note: this function is not in current Mathematica.

>> f[1][x_] := x

>> f[2][x_] := x ^ 2

>> SubValues[f]{
HoldPattern

[
f [2] [x_]

]
:>x2, HoldPattern

[
f [1] [x_]

]
:>x
}

>> Definition[f]
f [2] [x_] = x2

f [1] [x_] = x

6.5. UpValue-related assignments

An UpValue is a definition associated with a symbols that does not appear directly its head.

See Associating Definitions with Different Symbols.

6.5.1. UpValues

WMA link

UpValues[symbol]
gives the list of transformation rules corresponding to upvalues define with symbol.

>> a + b ^= 2
2

>> UpValues[a]
{HoldPattern [a + b] :>2}

>> UpValues[b]
{HoldPattern [a + b] :>2}

You can assign values to UpValues:

>> UpValues[pi] := {Sin[pi] :> 0}

>> Sin[pi]
0

69

https://reference.wolfram.com/language/tutorial/TransformationRulesAndDefinitions.html#6972
https://reference.wolfram.com/language/ref/UpValues.html

7. Atomic Elements of Expressions

Expressions are ultimately built from a small number of distinct types of atomic elements.

Contents

7.1. Atomic Primitives 70
7.1.1. AtomQ 70
7.1.2. Head 71

7.2. Representation of Numbers 72
7.2.1. Accuracy 72
7.2.2. IntegerExponent 73
7.2.3. IntegerLength 74
7.2.4. $MachineEpsilon 74
7.2.5. MachinePrecision 75
7.2.6. $MachinePrecision 75
7.2.7. $MaxPrecision 75
7.2.8. $MinPrecision 76
7.2.9. NumberDigit 76
7.2.10. Precision 77
7.2.11. RealDigits 78

7.3. String Manipulation 79
7.3.1. Alphabet 79
7.3.2. $CharacterEncoding 79
7.3.3. $CharacterEncodings 80
7.3.4. HexadecimalCharacter 80
7.3.5. LetterNumber 80
7.3.6. NumberString 81

7.3.7. RemoveDiacritics 81
7.3.8. StringContainsQ 82
7.3.9. StringRepeat 82
7.3.10. String 82
7.3.11. $SystemCharacterEncoding . 83
7.3.12. ToExpression 83
7.3.13. ToString 84
7.3.14. Transliterate 84
7.3.15. Whitespace 85

7.4. Symbol Handling 85
7.4.1. Context 85
7.4.2. Definition 86
7.4.3. DownValues 88
7.4.4. FormatValues 89
7.4.5. Information (??) 89
7.4.6. Names 89
7.4.7. OwnValues 90
7.4.8. SymbolName 91
7.4.9. SymbolQ 91
7.4.10. Symbol 91
7.4.11. ValueQ 92

7.1. Atomic Primitives

7.1.1. AtomQ

WMA link

AtomQ[expr]
returns True if expr is an expression which cannot be divided into subexpressions, or
False otherwise.

An expression that cannot be divided into subparts is called called an “atom”.

Strings and expressions that produce strings are atoms:

70

https://reference.wolfram.com/language/ref/AtomQ.html

>> Map[AtomQ, {"x", "x" <> "y", StringReverse["live"]}]
{True, True, True}

Numeric literals are atoms:

>> Map[AtomQ, {2, 2.1, 1/2, 2 + I, 2^^101}]
{True, True, True, True, True}

So are Mathematical Constants:

>> Map[AtomQ, {Pi, E, I, Degree}]
{True, True, True, True}

A Symbol not bound to a value is an atom too:

>> AtomQ[x]
True

On the other hand, expressions with more than one Part after evaluation, even those resulting in nu-
meric values, aren’t atoms:

>> AtomQ[2 + Pi]
False

Similarly any compound Expression, even lists of literals, aren’t atoms:

>> Map[AtomQ, {{}, {1}, {2, 3, 4}}]
{False, False, False}

Note that evaluation or the binding of “x” to an expression is taken into account:

>> x = 2 + Pi; AtomQ[x]
False

Again, note that the expression evaluation to a number occurs before AtomQ evaluated:

>> AtomQ[2 + 3.1415]
True

7.1.2. Head

WMA link

Head[expr]
returns the head of the expression or atom expr.

71

https://reference.wolfram.com/language/ref/Head.html

>> Head[a * b]
Times

>> Head[6]
Integer

>> Head[x]
Symbol

7.2. Representation of Numbers

Integers and Real numbers with any number of digits, automatically tagging numerical precision when
appropriate.

Precision is not “guarded” through the evaluation process. Only integer precision is supported.

However, things like N[Pi, 100] should work as expected.

7.2.1. Accuracy

Accuracy (WMA Accuracy)

Accuracy[x]
examines the number of significant digits of expr after the decimal point in the number
x.

Notice that the result could be slightly different from the result obtained in WMA, due to differences in the internal
representation of the real numbers.

Accuracy of a real number is estimated from its value and its precision:

>> Accuracy[3.1416`2]
1.50298

Notice that the value is not exactly equal to the obtained in WMA: This is due to the different way in
which Precision is handled in SymPy.

Accuracy for exact atoms is Infinity:

>> Accuracy[1]
∞

>> Accuracy[A]
∞

For Complex numbers, the accuracy is estimated as (minus) the base-10 log of the square root of the
squares of the errors on the real and complex parts:

>> z=Complex[3.00``2, 4.00``2];

72

https://en.wikipedia.org/wiki/Accuracy_and_precision
https://reference.wolfram.com/language/ref/Accuracy.html

>> Accuracy[z] == -Log[10, Sqrt[10^(-2 Accuracy[Re[z]])+ 10^(-2 Accuracy
[Im[z]])]]
True

Accuracy of expressions is given by the minimum accuracy of its elements:

>> Accuracy[F[1, Pi, A]]
∞

>> Accuracy[F[1.3, Pi, A]]
15.8406

Accuracy for the value 0 is a fixed-precision Real number:

>> 0``2
0.00

>> Accuracy[0.``2]
2.

For 0.‘, the accuracy satisfies:

>> Accuracy[0.`] == $MachinePrecision - Log[10, $MinMachineNumber]
True

In compound expressions, the Accuracy is fixed by the number with the lowest Accuracy:

>> Accuracy[{{1, 1.`},{1.``5, 1.``10}}]
5.

See also ’Precision’ 7.2.10.

7.2.2. IntegerExponent

WMA link

IntegerExponent[n, b]
gives the highest exponent of b that divides n.

>> IntegerExponent[16, 2]
4

>> IntegerExponent[-510000]
4

>> IntegerExponent[10, b]
IntegerExponent [10, b]

73

https://reference.wolfram.com/language/ref/IntegerExponent.html

7.2.3. IntegerLength

WMA link

IntegerLength[x]
gives the number of digits in the base-10 representation of x.

IntegerLength[x, b]
gives the number of base-b digits in x.

>> IntegerLength[123456]
6

>> IntegerLength[10^10000]
10001

>> IntegerLength[-10^1000]
1001

IntegerLength with base 2:

>> IntegerLength[8, 2]
4

Check that IntegerLength is correct for the first 100 powers of 10:

>> IntegerLength /@ (10 ^ Range[100])== Range[2, 101]
True

The base must be greater than 1:

>> IntegerLength[3, -2]
Base -2 is not an integer greater than 1.
IntegerLength [3,−2]

0 is a special case:

>> IntegerLength[0]
0

7.2.4. $MachineEpsilon

WMA link

$MachineEpsilon
is the distance between 1.0 and the next nearest representable machine-precision num-
ber.

74

https://reference.wolfram.com/language/ref/IntegerLength.html
https://reference.wolfram.com/language/ref/$MachineEpsilon.html

>> $MachineEpsilon
2.22045*∧ − 16

>> x = 1.0 + {0.4, 0.5, 0.6} $MachineEpsilon;

>> x - 1{
0., 0., 2.22045*∧ − 16

}

7.2.5. MachinePrecision

WMA link

MachinePrecision
represents the precision of machine precision numbers.

>> N[MachinePrecision]
15.9546

>> N[MachinePrecision, 30]
15.9545897701910033463281614204

7.2.6. $MachinePrecision

WMA link

$MachinePrecision
is the number of decimal digits of precision for machine-precision numbers.

>> $MachinePrecision
15.9546

7.2.7. $MaxPrecision

WMA link

$MaxPrecision
represents the maximum number of digits of precision permitted in abitrary-precision
numbers.

>> $MaxPrecision
∞

>> $MaxPrecision = 10;

75

https://reference.wolfram.com/language/ref/MachinePrecision.html
https://reference.wolfram.com/language/ref/$MachinePrecision.html
https://reference.wolfram.com/language/ref/$MaxPrecision.html

>> N[Pi, 11]
Requested precision 11 is larger than $MaxPrecision. Using current
$MaxPrecision of 10. instead. $MaxPrecision = Infinity specifies that
any precision should be allowed.
3.141592654

7.2.8. $MinPrecision

WMA link

$MinPrecision
represents the minimum number of digits of precision permitted in abitrary-precision
numbers.

>> $MinPrecision
0

>> $MinPrecision = 10;

>> N[Pi, 9]
Requested precision 9 is smaller than $MinPrecision. Using current
$MinPrecision of 10. instead.
3.141592654

7.2.9. NumberDigit

WMA link

NumberDigit[x, n]
returns the digit coefficient of 10∧n for the real-valued number x.

NumberDigit[x, n, b]
returns the coefficient of b∧n in the base-b representation of x.

Get the 10∧2 digit of a 210.345:

>> NumberDigit[210.345, 2]
2

Get the 10∧-1 digit of a 210.345:

>> NumberDigit[210.345, -1]
3

>> BaseForm[N[Pi], 2]
SubscriptBox [11.00100100001111110, 2]

Get the 2∧0 bit of the Pi: = 1

76

https://reference.wolfram.com/language/ref/$MinPrecision.html
https://reference.wolfram.com/language/ref/NumberDigit.html

7.2.10. Precision

Precision WMA link

Precision[expr]
examines the number of significant digits of expr.

Note that the result could be slightly different than the obtained in WMA, due to differences in the internal repre-
sentation of the real numbers.

The precision of an exact number, e.g., an Integer, is Infinity:

>> Precision[1]
∞

A fraction is an exact number too, so its Precision is Infinity:

>> Precision[1/2]
∞

Numbers entered in the form digits‘p are taken to have precision p:

>> Precision[1.23`10]
10.

Precision of a machine‐precision number is MachinePrecision:

>> Precision[0.5]
MachinePrecision

In compound expressions, the Precision is fixed by the number with the lowest Precision:

>> Precision[{{1, 1.`},{1.`5, 1.`10}}]
5.

In general, Accuracy[z] == Precision[z] + Log[z] for non-zero Real values:

>> (Accuracy[z] == Precision[z] + Log[z])/.z-> 37.`
True

Following WMA, values in Machine Real representation starting with 0. are values are special:

>> Precision[0.]
MachinePrecision

On the other hand, for a Precision Real with fixed accuracy, the precision is evaluated to 0.:

>> Precision[0.``3]
0.

77

https://en.wikipedia.org/wiki/Accuracy_and_precision
https://reference.wolfram.com/language/ref/Precision.html

See also ’Accuracy’ 7.2.1.

7.2.11. RealDigits

WMA link

RealDigits[n]
returns the decimal representation for the real number n as list of digits, together with
the number of digits that are to the left of the decimal point.

RealDigits[n, b]
returns a list of the “digits” in base-b representation for the real number n.

RealDigits[n, b, len]
returns a list of len digits.

RealDigits[n, b, len, p]
return len digits starting with the coefficient of bp.

Return the list of digits and exponent:

>> RealDigits[123.55555]
{{1, 2, 3, 5, 5, 5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0} , 3}

Return an explicit recurring decimal form:

>> RealDigits[19 / 7]
{{2, {7, 1, 4, 2, 8, 5}} , 1}

The 500th digit of Pi is 2:

>> RealDigits[Pi, 10, 1, -500]
{{2} , − 499}

11 digits starting with the coefficient of 10∧-3:

>> RealDigits[Pi, 10, 11, -3]
{{1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7} ,−2}

RealDigits gives Indeterminate if more digits than the precision are requested:

>> RealDigits[123.45, 10, 18]
{{1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Indeterminate, Indeterminate} , 3}

Return 25 digits of in base 10:

>> RealDigits[Pi, 10, 25]
{{3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3} , 1}

>> RealDigits[10]
{{1, 0} , 2}

78

https://reference.wolfram.com/language/ref/RealDigits.html

7.3. String Manipulation

7.3.1. Alphabet

WMA link

Alphabet[]
gives the list of lowercase letters a-z in the English alphabet .

Alphabet[type]
gives the alphabet for the language or class type.

>> Alphabet[]
{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z}

>> Alphabet["German"]
{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, ß, ä, ö, ü}

7.3.2. $CharacterEncoding

WMA link

$CharacterEncoding
specifies the default raw character encoding to use for input and output when no encod-
ing is explicitly specified. Initially this is set to $SystemCharacterEncoding.

See the character encoding current is in effect and used in input and output functions functions like
OpenRead[]:

>> $CharacterEncoding
ASCII

By setting its value to one of the values in $CharacterEncodings, operators are formatted differently.
For example,

>> $CharacterEncoding = "ASCII"; a -> b
a− > b

>> $CharacterEncoding = "UTF-8"; a -> b
a→ b

Setting its value to None restore the value to $SystemCharacterEncoding:

>> $CharacterEncoding = None;

>> $SystemCharacterEncoding == $CharacterEncoding
True

79

https://reference.wolfram.com/language/ref/Alphabet.html
https://reference.wolfram.com/language/ref/$CharacterEncoding.html

See also $SystemCharacterEncoding 7.3.11.

7.3.3. $CharacterEncodings

WMA link

$CharacterEncodings
stores the list of available character encodings.

>> $CharacterEncodings[[;;9]]
{ASCII, CP949, CP950, EUC-JP, IBM- 850, ISOLatin1, ISOLatin2, ISOLatin3, ISOLatin4}

7.3.4. HexadecimalCharacter

WMA link

HexadecimalCharacter
represents the characters 0-9, a-f and A-F.

>> StringMatchQ[#, HexadecimalCharacter] & /@ {"a", "1", "A", "x", "H",
" ", "."}

{True, True, True, False, False, False, False}

7.3.5. LetterNumber

WMA link

LetterNumber[c]
returns the position of the character c in the English alphabet.

LetterNumber[``string']'
returns a list of the positions of characters in string.

LetterNumber[“string”, alpha]
returns a list of the positions of characters in string, regarding the alphabet alpha.

>> LetterNumber["b"]
2

LetterNumber also works with uppercase characters

>> LetterNumber["B"]
2

80

https://reference.wolfram.com/language/ref/$CharacterEncodings.html
https://reference.wolfram.com/language/ref/HexadecimalCharacter.html
https://reference.wolfram.com/language/ref/LetterNumber.html

>> LetterNumber["ss2!"]
{19, 19, 0, 0}

Get positions of each of the letters in a string:

>> LetterNumber[Characters["Peccary"]]
{16, 5, 3, 3, 1, 18, 25}

>> LetterNumber[{"P", "Pe", "P1", "eck"}]
{16, {16, 5} , {16, 0} , {5, 3, 11}}

>> LetterNumber["\[Beta]", "Greek"]
2

7.3.6. NumberString

WMA link

NumberString
represents the characters in a number.

>> StringMatchQ["1234", NumberString]
True

>> StringMatchQ["1234.5", NumberString]
True

>> StringMatchQ["1.2`20", NumberString]
False

7.3.7. RemoveDiacritics

WMA link

RemoveDiacritics[s]
returns a version of s with all diacritics removed.

>> RemoveDiacritics["en prononccant p^echer et p'echer"]
en prononcant pecher et pecher

>> RemoveDiacritics["pi~nata"]
pinata

81

https://reference.wolfram.com/language/ref/NumberString.html
https://reference.wolfram.com/language/ref/RemoveDiacritics.html

7.3.8. StringContainsQ

WMA link

StringContainsQ[“string”, patt]
returns True if any part of string matches patt, and returns False otherwise.

StringContainsQ[{``s1', ``s2'', ...}, patt]'
returns the list of results for each element of string list.

StringContainsQ[patt]
represents an operator form of StringContainsQ that can be applied to an expression.

>> StringContainsQ["mathics", "m" ~~__ ~~"s"]
True

>> StringContainsQ["mathics", "a" ~~__ ~~"m"]
False

>> StringContainsQ[{"g", "a", "laxy", "universe", "sun"}, "u"]
{False, False, False, True, True}

>> StringContainsQ["e" ~~___ ~~"u"] /@ {"The Sun", "Mercury", "Venus", "
Earth", "Mars", "Jupiter", "Saturn", "Uranus", "Neptune"}

{True, True, True, False, False, False, False, False, True}

7.3.9. StringRepeat

WMA link

StringRepeat[“string”, n]
gives string repeated n times.

StringRepeat[“string”, n, max]
gives string repeated n times, but not more than max characters.

>> StringRepeat["abc", 3]
abcabcabc

>> StringRepeat["abc", 10, 7]
abcabca

7.3.10. String

WMA link

String
is the head of strings.

82

https://reference.wolfram.com/language/ref/StringContainsQ.html
https://reference.wolfram.com/language/ref/StringRepeat.html
https://reference.wolfram.com/language/ref/String.html

>> Head["abc"]
String

>> "abc"
abc

Use InputForm to display quotes around strings:

>> InputForm["abc"]
“abc”

FullForm also displays quotes:

>> FullForm["abc" + 2]
Plus [2, “abc”]

7.3.11. $SystemCharacterEncoding

WMA link

$SystemCharacterEncoding
gives the default character encoding of the system.

On startup, the value of environment variable MATHICS_CHARACTER_ENCODING sets this value.
However if that environment variable is not set, set the value is set in Python using
sys.getdefaultencoding().

>> $SystemCharacterEncoding
ASCII

7.3.12. ToExpression

WMA link

ToExpression[input]
interprets a given string as Mathics3 input.

ToExpression[input, f orm]
reads the given input in the specified f orm.

ToExpression[input, f orm, h]
applies the head h to the expression before evaluating it.

>> ToExpression["1 + 2"]
3

>> ToExpression["{2, 3, 1}", InputForm, Max]
3

83

https://reference.wolfram.com/language/ref/$SystemCharacterEncoding.html
https://reference.wolfram.com/language/ref/ToExpression.html

>> ToExpression["2 3", InputForm]
6

Note that newlines are like semicolons, not blanks. So so the return value is the second-line value.

>> ToExpression["2\[NewLine]3"]
3

7.3.13. ToString

WMA link

ToString[expr]
returns a string representation of expr.

ToString[expr, f orm]
returns a string representation of expr in the form f orm.

>> ToString[2]
2

>> ToString[2] // InputForm
“2”

>> ToString[a+b]
a + b

>> "U" <> 2
String expected.
U<>2

>> "U" <> ToString[2]
U2

>> ToString[Integrate[f[x],x], TeXForm]
\int f\left[x\right] \, dx

7.3.14. Transliterate

WMA link

Transliterate[s]
transliterates a text in some script into an ASCII string.

ASCII translateration examples:

• Russian language

84

https://reference.wolfram.com/language/ref/ToString.html
https://reference.wolfram.com/language/ref/Transliterate.html
https://en.wikipedia.org/wiki/Russian_language#Transliteration

• Hiragana

7.3.15. Whitespace

WMA link

Whitespace
represents a sequence of whitespace characters.

>> StringMatchQ["\r \n", Whitespace]
True

>> StringSplit["a \n b \r\n c d", Whitespace]
{a, b, c, d}

>> StringReplace[" this has leading and trailing whitespace \n ", (
StartOfString ~~Whitespace)| (Whitespace ~~EndOfString)-> ""] <> "
removed" // FullForm

“this has leading and trailing whitespace removed”

7.4. Symbol Handling

Symbolic data. Every symbol has a unique name, exists in a certain context or namespace, and can have
a variety of type of values and attributes.

7.4.1. Context

WMA link

Context[symbol]
yields the name of the context where symbol is defined in.

Context[]
returns the value of $Context.

>> Context[a]
Global‘

>> Context[b`c]
b‘

>> InputForm[Context[]]
“Global‘”

85

https://en.wikipedia.org/wiki/Hiragana#Table_of_hiragana
https://reference.wolfram.com/language/ref/Whitespace.html
https://reference.wolfram.com/language/ref/Context.html

7.4.2. Definition

WMA link

Definition[symbol]
prints as the definitions given for symbol. This is in a form that can e stored in a package.

Definition does not print information for ReadProtected symbols. Definition uses InputForm to
format values.

>> a = 2;

>> Definition[a]
a = 2

>> f[x_] := x ^ 2

>> g[f] ^:= 2

>> Definition[f]
f [x_] = x2

g
[

f
] ∧=2

Definition of a rather evolved (though meaningless) symbol:

>> Attributes[r] := {Orderless}

>> Format[r[args___]] := Infix[{args}, "~"]

>> N[r] := 3.5

>> Default[r, 1] := 2

>> r::msg := "My message"

>> Options[r] := {Opt -> 3}

>> r[arg_., OptionsPattern[r]] := {arg, OptionValue[Opt]}

Some usage:

>> r[z, x, y]
x ∼ y ∼ z

>> N[r]
3.5

>> r[]
{2, 3}

>> r[5, Opt->7]
{5, 7}

86

https://reference.wolfram.com/language/ref/Definition.html

Its definition:

>> Definition[r]
Attributes [r] = {Orderless}

arg_. ∼ OptionsPattern [r] =
{
arg, OptionValue

[
Opt

]}
N [r, MachinePrecision] = 3.5

Format
[
args___, MathMLForm

]
= Infix

[
{args} , “∼”

]
Format

[
args___, OutputForm

]
= Infix

[
{args} , “∼”

]
Format

[
args___, StandardForm

]
= Infix

[
{args} , “∼”

]
Format

[
args___, TeXForm

]
= Infix

[
{args} , “∼”

]
Format

[
args___, TraditionalForm

]
= Infix

[
{args} , “∼”

]
Default [r, 1] = 2
Options [r] = {Opt− > 3}

For ReadProtected symbols, Definition just prints attributes, default values and options:

>> SetAttributes[r, ReadProtected]

>> Definition[r]
Attributes [r] = {Orderless, ReadProtected}
Default [r, 1] = 2
Options [r] = {Opt− > 3}

This is the same for built-in symbols:

>> Definition[Plus]
Attributes [Plus]
= {Flat, Listable, NumericFunction, OneIdentity, Orderless, Protected}
Default [Plus] = 0

>> Definition[Level]
Attributes [Level] = {Protected}

Options [Level] = {Heads− > False}

ReadProtected can be removed, unless the symbol is locked:

>> ClearAttributes[r, ReadProtected]

Clear clears values:

>> Clear[r]

>> Definition[r]
Attributes [r] = {Orderless}
Default [r, 1] = 2
Options [r] = {Opt− > 3}

ClearAll clears everything:

87

>> ClearAll[r]

>> Definition[r]
Null

If a symbol is not defined at all, Null is printed:

>> Definition[x]
Null

7.4.3. DownValues

WMA link

DownValues[symbol]
gives the list of downvalues associated with symbol.

DownValues uses HoldPattern and RuleDelayed to protect the downvalues from being evaluated, and
it has attribute HoldAll to get the specified symbol instead of its value.

>> f[x_] := x ^ 2

>> DownValues[f]{
HoldPattern

[
f [x_]

]
:>x2

}
Mathics will sort the rules you assign to a symbol according to their specificity. If it cannot decide which
rule is more special, the newer one will get higher precedence.

>> f[x_Integer] := 2

>> f[x_Real] := 3

>> DownValues[f]{
HoldPattern

[
f [x_Real]

]
:>3, HoldPattern

[
f
[
x_Integer

]]
:>2, HoldPattern

[
f [x_]

]
:>x2

}
>> f[3]

2

>> f[3.]
3

>> f[a]
a2

The default order of patterns can be computed using Sort with PatternsOrderedQ:

>> Sort[{x_, x_Integer}, PatternsOrderedQ]
{x_Integer, x_}

88

https://reference.wolfram.com/language/ref/DownValues.html

By assigning values to DownValues, you can override the default ordering:

>> DownValues[g] := {g[x_] :> x ^ 2, g[x_Integer] :> x}

>> g[2]
4

Fibonacci numbers:

>> DownValues[fib] := {fib[0] -> 0, fib[1] -> 1, fib[n_] :> fib[n - 1] +
fib[n - 2]}

>> fib[5]
5

7.4.4. FormatValues

WMA link

FormatValues[symbol]
gives the list of formatvalues associated with symbol.

>> Format[F[x_], OutputForm]:= Subscript[x, F]

>> FormatValues[F]{
HoldPattern

[
Format

[
F [x_] , OutputForm

]]
:>xF

}

7.4.5. Information (??)

WMA link

Information[symbol]
Prints information about a symbol

Information does not print information for ReadProtected symbols.

Information uses InputForm to format values.

7.4.6. Names

WMA link

Names[“pattern”]
returns the list of names matching pattern.

89

https://reference.wolfram.com/language/tutorial/PatternsAndTransformationRules.html#6025
https://reference.wolfram.com/language/ref/Information.html
https://reference.wolfram.com/language/ref/Names.html

>> Names["List"]
{List}

The wildcard * matches any character:

>> Names["List*"]
{List, ListLinePlot, ListLogPlot, ListPlot, ListQ, ListStepPlot, Listable}

The wildcard @ matches only lowercase characters:

>> Names["List@"]
{Listable}

>> x = 5;

>> Names["Global`*"]
{x}

The number of built-in symbols:

>> Length[Names["System`*"]]
1506

7.4.7. OwnValues

WMA link

OwnValues[symbol]
gives the list of ownvalue associated with symbol.

>> x = 3;

>> x = 2;

>> OwnValues[x]
{HoldPattern [x] :>2}

>> x := y

>> OwnValues[x]
{HoldPattern [x] :>y}

>> y = 5;

>> OwnValues[x]
{HoldPattern [x] :>y}

>> Hold[x] /. OwnValues[x]
Hold

[
y
]

90

https://reference.wolfram.com/language/ref/OwnValues.html

>> Hold[x] /. OwnValues[x] // ReleaseHold
5

7.4.8. SymbolName

WMA link

SymbolName[s]
returns the name of the symbol s (without any leading context name).

>> SymbolName[x] // InputForm
“x”

7.4.9. SymbolQ

WMA link

SymbolQ[x]
is True if x is a symbol, or False otherwise.

>> SymbolQ[a]
True

>> SymbolQ[1]
False

>> SymbolQ[a + b]
False

7.4.10. Symbol

WMA link

Symbol
is the head of symbols.

>> Head[x]
Symbol

You can use Symbol to create symbols from strings:

>> Symbol["x"] + Symbol["x"]
2x

91

https://reference.wolfram.com/language/ref/SymbolName.html
https://reference.wolfram.com/language/ref/SymbolName.html
https://reference.wolfram.com/language/ref/Symbol.html

7.4.11. ValueQ

WMA link

ValueQ[expr]
returns True if and only if expr is defined.

>> ValueQ[x]
False

>> x = 1;

>> ValueQ[x]
True

92

https://reference.wolfram.com/language/ref/ValueQ.html

8. Binary Data

Binary data is a type of data that is represented in the binary, sequences of zeros or ones. Computer-
generated information often comes in this form.

Contents

8.1. Binary Reading and Writing 93
8.1.1. BinaryRead 93
8.1.2. BinaryReadList 94
8.1.3. BinaryWrite 94

8.2. Binary Types 96
8.2.1. Byte 96

8.3. Byte Arrays 97
8.3.1. ByteArray 97

8.4. System-related binary handling . . . 97
8.4.1. ByteOrdering 97
8.4.2. $ByteOrdering 97

8.1. Binary Reading and Writing

8.1.1. BinaryRead

WMA link

BinaryRead[stream]
reads one byte from the stream as an integer from 0 to 255.

BinaryRead[stream, type]
reads one object of specified type from the stream.

BinaryRead[stream, {type1, type2, ...}]
reads a sequence of objects of specified types.

>> strm = OpenWrite[BinaryFormat -> True]
OutputStream

[
/tmp/tmpfli77xbw, 3

]
>> BinaryWrite[strm, {97, 98, 99}]

OutputStream
[
/tmp/tmpfli77xbw, 3

]
>> Close[strm];

>> strm = OpenRead[%, BinaryFormat -> True]
InputStream

[
/tmp/tmpfli77xbw, 3

]
>> BinaryRead[strm]

97

93

https://reference.wolfram.com/language/ref/BinaryRead.html

>> BinaryRead[strm, {"Character8", "Character8"}]
{b, c}

If you read past the end of the file, you will get EndOfFile symbols:

>> BinaryRead[strm, {"Character8", "Character8"}]
{EndOfFile, EndOfFile}

>> DeleteFile[Close[strm]];

8.1.2. BinaryReadList

WMA link

BinaryReadList[stream]
reads all remaining bytes from the stream or file as an integer from 0 to 255.

BinaryReadList[stream, type]
reads objects of the specified type file a stream or file until the end of the file. The list of
objects is returned.

BinaryReadList[stream, {type1, type2, ...}]
reads a sequence of types, until the end of the file.

>> strm = OpenWrite[BinaryFormat -> True]
OutputStream

[
/tmp/tmp_hve1h7b, 3

]
>> BinaryWrite[strm, {97, 98, 99}]

OutputStream
[
/tmp/tmp_hve1h7b, 3

]
>> Close[strm];

>> strm = OpenRead[%, BinaryFormat -> True]
InputStream

[
/tmp/tmp_hve1h7b, 3

]
>> BinaryReadList[strm]

{97, 98, 99}

>> DeleteFile[Close[strm]];

8.1.3. BinaryWrite

WMA link

94

https://reference.wolfram.com/language/ref/BinaryReadList.html
https://reference.wolfram.com/language/ref/BinaryWrite.html

BinaryWrite[channel, b]
writes a single byte given as an integer from 0 to 255.

BinaryWrite[channel, {b1, b2, ...}]
writes a sequence of byte.

BinaryWrite[channel, “string”]
writes the raw characters in a string.

BinaryWrite[channel, x, type]
writes x as the specified type.

BinaryWrite[channel, {x1, x2, ...}, type]
writes a sequence of objects as the specified type.

BinaryWrite[channel, {x1, x2, ...}, {type1, type2, ...}]
writes a sequence of objects using a sequence of specified types.

>> strm = OpenWrite[BinaryFormat -> True]
OutputStream

[
/tmp/tmpkyr5blqs, 3

]
>> BinaryWrite[strm, {39, 4, 122}]

OutputStream
[
/tmp/tmpkyr5blqs, 3

]
>> Close[strm];

>> strm = OpenRead[%, BinaryFormat -> True]
InputStream

[
/tmp/tmpkyr5blqs, 3

]
>> BinaryRead[strm]

39

>> BinaryRead[strm, "Byte"]
4

>> BinaryRead[strm, "Character8"]
z

>> DeleteFile[Close[strm]];

Write a String

>> strm = OpenWrite[BinaryFormat -> True]
OutputStream

[
/tmp/tmp0tm8nwvc, 3

]
>> BinaryWrite[strm, "abc123"]

OutputStream
[
/tmp/tmp0tm8nwvc, 3

]
>> pathname = Close[%]

/tmp/tmp0tm8nwvc

Read as Bytes

>> strm = OpenRead[%, BinaryFormat -> True]
InputStream

[
/tmp/tmp0tm8nwvc, 3

]

95

>> BinaryRead[strm, {"Character8", "Character8", "Character8", "
Character8", "Character8", "Character8", "Character8"}]

{a, b, c, 1, 2, 3, EndOfFile}

>> pathname = Close[strm]
/tmp/tmp0tm8nwvc

Read as Characters

>> strm = OpenRead[%, BinaryFormat -> True]
InputStream

[
/tmp/tmp0tm8nwvc, 3

]
>> BinaryRead[strm, {"Byte", "Byte", "Byte", "Byte", "Byte", "Byte", "

Byte"}]

{97, 98, 99, 49, 50, 51, EndOfFile}

>> DeleteFile[Close[strm]];

Write Type

>> strm = OpenWrite[BinaryFormat -> True]
OutputStream

[
/tmp/tmpkend76ua, 3

]
>> BinaryWrite[strm, 97, "Byte"]

OutputStream
[
/tmp/tmpkend76ua, 3

]
>> BinaryWrite[strm, {97, 98, 99}, {"Byte", "Byte", "Byte"}]

OutputStream
[
/tmp/tmpkend76ua, 3

]
>> DeleteFile[Close[%]];

8.2. Binary Types

8.2.1. Byte

WMA link

Byte
is a data type for Read.

96

https://reference.wolfram.com/language/ref/Byte.html

8.3. Byte Arrays

8.3.1. ByteArray

WMA link

ByteArray[{b1, b2, ...}]
Represents a sequence of Bytes b1, b2, ...

ByteArray[“string”]
Constructs a byte array where bytes comes from decode a b64-encoded String

>> A=ByteArray[{1, 25, 3}]
ByteArray [<3>]

>> A[[2]]
25

>> Normal[A]
{1, 25, 3}

>> ToString[A]
ByteArray[<3>]

>> ByteArray["ARkD"]
ByteArray [<3>]

>> B=ByteArray["asy"]
The first argument in Bytearray[asy] should be a B64 encoded string
or a vector of integers.
$Failed

8.4. System-related binary handling

8.4.1. ByteOrdering

WMA link

ByteOrdering
is an option for BinaryRead, BinaryWrite, and related functions that specifies what or-
dering of bytes should be assumed for your computer system..

8.4.2. $ByteOrdering

WMA link

97

https://reference.wolfram.com/language/ref/ByteArray.html
https://reference.wolfram.com/language/ref/ByteOrdering.html
https://reference.wolfram.com/language/ref/$ByteOrdering.html

$ByteOrdering
returns the native ordering of bytes in binary data on your computer system.

98

9. Code Compilation

Code compilation allows Mathics functions to be run faster.

When LLVM and Python libraries are available, compilation produces LLVM code.

Contents

9.1. Compile 99
9.2. CompiledFunction 100

9.1. Compile

WMA link

Compile[{x1, x2, ...}, expr]
Compiles expr assuming each xi is a Real number.

Compile[{{x1, t1} {x2, t1} ...}, expr]
Compiles assuming each xi matches type ti.

Compilation is performed using llvmlite , or Python’s builtin “compile” function.

>> cf = Compile[{x, y}, x + 2 y]

>> cf[2.5, 4.3]
11.1

>> cf = Compile[{{x, _Real}}, Sin[x]]

>> cf[1.4]
0.98545

Compile supports basic flow control:

>> cf = Compile[{{x, _Real}, {y, _Integer}}, If[x == 0.0 && y <= 0, 0.0,
Sin[x ^ y] + 1 / Min[x, 0.5]] + 0.5]

>> cf[3.5, 2]
2.18888

Loops and variable assignments are supported usinv Python builtin “compile” function:

>> Compile[{{a, _Integer}, {b, _Integer}}, While[b != 0, {a, b} = {b,
Mod[a, b]}]; a] (* GCD of a, b *)

99

https://reference.wolfram.com/language/ref/Compile.html

9.2. CompiledFunction

WMA link

CompiledFunction[args...]
represents compiled code for evaluating a compiled function.

>> sqr = Compile[{x}, x x]

>> Head[sqr]
CompiledFunction

>> sqr[2]
4.

100

https://reference.wolfram.com/language/ref/CompiledFunction.html

10. Colors

Programmatic support for symbolic colors.

Contents

10.1. Color Directives 101
10.1.1. CMYKColor 101
10.1.2. ColorDistance 102
10.1.3. GrayLevel 102
10.1.4. Hue 103
10.1.5. LABColor 104
10.1.6. LCHColor 104
10.1.7. LUVColor 104
10.1.8. Opacity 104
10.1.9. RGBColor 106
10.1.10. XYZColor 106

10.2. Color Operations 107
10.2.1. Blend 107
10.2.2. ColorConvert 107
10.2.3. ColorNegate 108
10.2.4. Darker 108
10.2.5. DominantColors 109
10.2.6. Lighter 111

10.3. Named Colors 112
10.3.1. Black 112
10.3.2. Blue 112
10.3.3. Brown 113

10.3.4. Cyan 114
10.3.5. Gray 114
10.3.6. Green 115
10.3.7. LightBlue 116
10.3.8. LightBrown 117
10.3.9. LightCyan 117
10.3.10. LightGray 118
10.3.11. LightGreen 118
10.3.12. LightMagenta 119
10.3.13. LightOrange 120
10.3.14. LightPink 120
10.3.15. LightPurple 121
10.3.16. LightRed 121
10.3.17. LightYellow 122
10.3.18. Magenta 122
10.3.19. Orange 123
10.3.20. Pink 124
10.3.21. Purple 124
10.3.22. Red 125
10.3.23. White 126
10.3.24. Yellow 126

10.1. Color Directives

There are many different way to specify color, and we support many of these.

We can convert between the different color formats.

10.1.1. CMYKColor

CYMYK color model (WMA link)

101

https://en.wikipedia.org/wiki/CMYK_color_model
https://reference.wolfram.com/language/ref/CMYKColor.html

CMYKColor[c, m, y, k]
represents a color with the specified cyan, magenta, yellow and black components.

>> Graphics[MapIndexed[{CMYKColor @@ #1, Disk[2*#2 ~Join~{0}]} &,
IdentityMatrix[4]], ImageSize->Small]

10.1.2. ColorDistance

Color difference (WMA link)

ColorDistance[c1, c2]
returns a measure of color distance between the colors c1 and c2.

ColorDistance[list, c2]
returns a list of color distances between the colors in list and c2.

The option DistanceFunction specifies themethod used tomeasure the color distance. Available options
are:

• CIE76: Euclidean distance in the LABColor space

• CIE94: Euclidean distance in the LCHColor space

• CIE2000 or CIEDE2000: CIE94 distance with corrections

• CMC: Color Measurement Committee metric (1984)

• DeltaL: difference in the L component of LCHColor

• DeltaC: difference in the C component of LCHColor

• DeltaH: difference in the H component of LCHColor

It is also possible to specify a custom distance.

>> ColorDistance[Magenta, Green]
2.2507

>> ColorDistance[{Red, Blue}, {Green, Yellow}, DistanceFunction -> {"CMC
", "Perceptibility"}]

{1.0495, 1.27455}

10.1.3. GrayLevel

WMA link

102

https://en.wikipedia.org/wiki/Color_difference
https://reference.wolfram.com/language/ref/ColorDistance.html
https://en.wikipedia.org/wiki/Color_difference#CIE76
https://en.wikipedia.org/wiki/Color_difference#CIE94
https://en.wikipedia.org/wiki/Color_difference#CIEDE2000
https://reference.wolfram.com/language/ref/GrayLevel.html

GrayLevel[g]
represents a shade of gray specified by g, ranging from 0 (black) to 1 (white).

GrayLevel[g, a]
represents a shade of gray specified by g with opacity a.

10.1.4. Hue

WMA link

Hue[h, s, l, a]
represents the color with hue h, saturation s, lightness l and opacity a.

Hue[h, s, l]
is equivalent to Hue[h, s, l, 1].

Hue[h, s]
is equivalent to Hue[h, s, 1, 1].

Hue[h]
is equivalent to Hue[h, 1, 1, 1].

>> Graphics[Table[{EdgeForm[Gray], Hue[h, s], Disk[{12h, 8s}]}, {h, 0,
1, 1/6}, {s, 0, 1, 1/4}]]

>> Graphics[Table[{EdgeForm[{GrayLevel[0, 0.5]}], Hue[(-11+q+10r)/72, 1,
1, 0.6], Disk[(8-r){Cos[2Pi q/12], Sin[2Pi q/12]}, (8-r)/3]}, {r,

6}, {q, 12}]]

103

https://reference.wolfram.com/language/ref/Hue.html

10.1.5. LABColor

WMA link

LABColor[l, a, b]
represents a color with the specified lightness, red/green and yellow/blue components
in the CIE 1976 L*a*b* (CIELAB) color space.

10.1.6. LCHColor

WMA link

LCHColor[l, c, h]
represents a color with the specified lightness, chroma and hue components in the
CIELCh CIELab cube color space.

10.1.7. LUVColor

WMA link

LCHColor[l, u, v]
represents a color with the specified components in the CIE 1976 L*u*v* (CIELUV) color
space.

10.1.8. Opacity

Alpha compositing (WMA link)

Opacity[level]
is a graphics directive that sets the opacity to level; level is a value between 0 and 1.

104

https://reference.wolfram.com/language/ref/LABColor.html
https://reference.wolfram.com/language/ref/LCHColor.html
https://reference.wolfram.com/language/ref/LUVColor.html
https://en.wikipedia.org/wiki/Alpha_compositing
https://reference.wolfram.com/language/ref/Opacity.html

>> Graphics[{Blue, Disk[{.5, 1}, 1], Opacity[.4], Red, Disk[], Opacity
[.2], Green, Disk[{-.5, 1}, 1]}]

>> Graphics3D[{Blue, Sphere[], Opacity[.4], Red, Cuboid[]}]

Notice that Opacity does not overwrite the value of the alpha channel if it is set in a color directive:

>> Graphics[{Blue, Disk[], RGBColor[1,0,0,1],Opacity[.2], Rectangle
[{0,0},{1,1}]}]

105

10.1.9. RGBColor

RGB color model (WMA link)

RGBColor[r, g, b]
represents a color with the specified red, green and blue components. These values
should be a number between 0 and 1. Unless specified using the form below or using
Opacity 10.1.8, default opacity is 1, a solid opaque color.

RGBColor[r, g, b, a]
Same as above but an opacity value is specified. a must have value between 0 and 1.
RGBColor[r,g,b,a] is equivalent to {RGBColor[r,g,b],Opacity[a
]}.

A swatch of color green:

>> RGBColor[0, 1, 0]

Let’s show what goes on in the process of boxing the above to make this display:

>> RGBColor[0, 1, 0] // ToBoxes
StyleBox

[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [0, 1, 0] , RectangleBox
[

{0, 0}
]}

, AspectRatio− > Automatic, Axes− > False, AxesStyle
− > {} , Background− > Automatic, ImageSize− > 16, LabelStyle
−> {} , PlotRange−>Automatic, PlotRangePadding−>Automatic, TicksStyle
− > {}

]
, ImageSizeMultipliers− > {1, 1} , ShowStringCharacters− > True

]
A swatch of color green which is 1/8 opaque:

>> RGBColor[0, 1, 0, 0.125]

A series of small disks of the primary colors:

>> Graphics[MapIndexed[{RGBColor @@ #1, Disk[2*#2 ~Join~{0}]} &,
IdentityMatrix[3]], ImageSize->Small]

10.1.10. XYZColor

WMA link

106

https://en.wikipedia.org/wiki/RGB_color_model
https://reference.wolfram.com/language/ref/RGBColor.html
https://reference.wolfram.com/language/ref/XYZColor.html

XYZColor[x, y, z]
represents a color with the specified components in the CIE 1931 XYZ color space.

10.2. Color Operations

Functions for manipulating colors and color images.

10.2.1. Blend

WMA link

Blend[{c1, c2}]
represents the color between c1 and c2.

Blend[{c1, c2}, x]
represents the color formed by blending c1 and c2 with factors 1 - x and x respectively.

Blend[{c1, c2, ..., cn}, x]
blends between the colors c1 to cn according to the factor x.

>> Blend[{Red, Blue}]

>> Blend[{Red, Blue}, 0.3]

>> Blend[{Red, Blue, Green}, 0.75]

>> Graphics[Table[{Blend[{Red, Green, Blue}, x], Rectangle[{10 x, 0}]},
{x, 0, 1, 1/10}]]

>> Graphics[Table[{Blend[{RGBColor[1, 0.5, 0, 0.5], RGBColor[0, 0, 1,
0.5]}, x], Disk[{5x, 0}]}, {x, 0, 1, 1/10}]]

10.2.2. ColorConvert

WMA link

107

https://reference.wolfram.com/language/ref/Blend.html
https://reference.wolfram.com/language/ref/ColorConvert.html

ColorConvert[c, colspace]
returns the representation of c in the color space colspace. c may be a color or an image.

Valid values for colspace are:

CMYK: convert to CMYKColor Grayscale: convert to GrayLevel HSB: convert to Hue LAB: concert to
LABColor LCH: convert to LCHColor LUV: convert to LUVColor RGB: convert to RGBColor XYZ: convert
to XYZColor

10.2.3. ColorNegate

Color Inversion (WMA link)

ColorNegate[color]
returns the negative of a color, that is, the RGB color subtracted from white.

ColorNegate[image]
returns an image where each pixel has its color negated.

Yellow is RGBColor[1.0, 1.0, 0.0] So when inverted or subtracted from White, we get blue:

>> ColorNegate[Yellow] == Blue
True

>> ColorNegate[Import["ExampleData/sunflowers.jpg"]]

10.2.4. Darker

WMA link

Darker[c, f]
is equivalent to Blend[{c, Black}, f].

Darker[c]
is equivalent to Darker[c, 1/3].

108

https://reference.wolfram.com/language/ref/ColorNegate.html
https://reference.wolfram.com/language/ref/Darker.html

>> Graphics[{Darker[Red], Disk[]}]

>> Graphics3D[{Darker[Green], Sphere[]}]

>> Graphics[Table[{Darker[Yellow, x], Disk[{12x, 0}]}, {x, 0, 1, 1/6}]]

10.2.5. DominantColors

WMA link

109

https://reference.wolfram.com/language/ref/DominantColors.html

DominantColors[image]
gives a list of colors which are dominant in the given image.

DominantColors[image, n]
returns at most n colors.

DominantColors[image, n, prop]
returns the given property prop, which may be:

• “Color”: return RGB colors,

• “LABColor”: return LAB colors,

• “Count”: return the number of pixels a dominant color covers,

• “Coverage”: return the fraction of the image a dominant color covers, or

• “CoverageImage”: return a black and white image indicating with white the parts that
are covered by a dominant color.

The option “ColorCoverage” specifies the minimum amount of coverage needed to include a dominant
color in the result.

The option “MinColorDistance” specifies the distance (in LAB color space) up towhich colors aremerged
and thus regarded as belonging to the same dominant color.

>> img = Import["ExampleData/hedy.tif"]

>> DominantColors[img]
{ , , }

>> DominantColors[img, 3]
{ , , }

>> DominantColors[img, 3, "Coverage"]{
68817

103360
,

62249
516800

,
37953

516800

}

110

>> DominantColors[img, 3, "CoverageImage"]

>> DominantColors[img, 3, "Count"]
{344085, 62249, 37953}

>> DominantColors[img, 2, "LABColor"]
{LABColor [0.00581591, 0.00207458,−0.00760911] , }

>> DominantColors[img, MinColorDistance -> 0.5]
{ , }

>> DominantColors[img, ColorCoverage -> 0.15]
{ }

10.2.6. Lighter

WMA link

Lighter[c, f]
is equivalent to Blend[{c, White}, f].

Lighter[c]
is equivalent to Lighter[c, 1/3].

>> Lighter[Orange, 1/4]

>> Graphics[{Lighter[Orange, 1/4], Disk[]}]

>> Graphics[Table[{Lighter[Orange, x], Disk[{12x, 0}]}, {x, 0, 1, 1/6}]]

111

https://reference.wolfram.com/language/ref/Lighter.html

10.3. Named Colors

Mathics has definitions for the most common color names which can be used in a graphics or style
specification.

10.3.1. Black

WMA link

Black
represents the color black in graphics.

>> Graphics[{EdgeForm[Black], Black, Disk[]}, ImageSize->Small]

>> Black // ToBoxes
StyleBox

[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [0, 0, 0] , RectangleBox
[

{0, 0}
]}

, AspectRatio− > Automatic, Axes− > False, AxesStyle
− > {} , Background− > Automatic, ImageSize− > 16, LabelStyle
−> {} , PlotRange−>Automatic, PlotRangePadding−>Automatic, TicksStyle
− > {}

]
, ImageSizeMultipliers− > {1, 1} , ShowStringCharacters− > True

]
WMA link

>> Black

10.3.2. Blue

WMA link

Blue
represents the color blue in graphics.

112

https://reference.wolfram.com/language/ref/black.html
https://reference.wolfram.com/language/ref/Black.html
https://reference.wolfram.com/language/ref/blue.html

>> Graphics[{EdgeForm[Black], Blue, Disk[]}, ImageSize->Small]

>> Blue // ToBoxes
StyleBox

[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [0, 0, 1] , RectangleBox
[

{0, 0}
]}

, AspectRatio− > Automatic, Axes− > False, AxesStyle
− > {} , Background− > Automatic, ImageSize− > 16, LabelStyle
−> {} , PlotRange−>Automatic, PlotRangePadding−>Automatic, TicksStyle
− > {}

]
, ImageSizeMultipliers− > {1, 1} , ShowStringCharacters− > True

]
WMA link

>> Blue

10.3.3. Brown

WMA link

Brown
represents the color brown in graphics.

>> Graphics[{EdgeForm[Black], Brown, Disk[]}, ImageSize->Small]

>> Brown // ToBoxes
StyleBox

[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [0.6, 0.4, 0.2] , RectangleBox
[

{0, 0}
]}

, AspectRatio− > Automatic, Axes− > False, AxesStyle
− > {} , Background− > Automatic, ImageSize− > 16, LabelStyle
−> {} , PlotRange−>Automatic, PlotRangePadding−>Automatic, TicksStyle
− > {}

]
, ImageSizeMultipliers− > {1, 1} , ShowStringCharacters− > True

]

113

https://reference.wolfram.com/language/ref/Blue.html
https://reference.wolfram.com/language/ref/brown.html

WMA link

>> Brown

10.3.4. Cyan

WMA link

Cyan
represents the color cyan in graphics.

>> Graphics[{EdgeForm[Black], Cyan, Disk[]}, ImageSize->Small]

>> Cyan // ToBoxes
StyleBox

[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [0, 1, 1] , RectangleBox
[

{0, 0}
]}

, AspectRatio− > Automatic, Axes− > False, AxesStyle
− > {} , Background− > Automatic, ImageSize− > 16, LabelStyle
−> {} , PlotRange−>Automatic, PlotRangePadding−>Automatic, TicksStyle
− > {}

]
, ImageSizeMultipliers− > {1, 1} , ShowStringCharacters− > True

]
WMA link

>> Cyan

10.3.5. Gray

WMA link

Gray
represents the color gray in graphics.

114

https://reference.wolfram.com/language/ref/Brown.html
https://reference.wolfram.com/language/ref/cyan.html
https://reference.wolfram.com/language/ref/Cyan.html
https://reference.wolfram.com/language/ref/gray.html

>> Graphics[{EdgeForm[Black], Gray, Disk[]}, ImageSize->Small]

>> Gray // ToBoxes
StyleBox

[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , GrayLevel [0.5] , RectangleBox
[

{0, 0}
]}

, AspectRatio− > Automatic, Axes− > False, AxesStyle
− > {} , Background− > Automatic, ImageSize− > 16, LabelStyle
−> {} , PlotRange−>Automatic, PlotRangePadding−>Automatic, TicksStyle
− > {}

]
, ImageSizeMultipliers− > {1, 1} , ShowStringCharacters− > True

]
WMA link

>> Gray

10.3.6. Green

WMA link

Green
represents the color green in graphics.

>> Graphics[{EdgeForm[Black], Green, Disk[]}, ImageSize->Small]

>> Green // ToBoxes
StyleBox

[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [0, 1, 0] , RectangleBox
[

{0, 0}
]}

, AspectRatio− > Automatic, Axes− > False, AxesStyle
− > {} , Background− > Automatic, ImageSize− > 16, LabelStyle
−> {} , PlotRange−>Automatic, PlotRangePadding−>Automatic, TicksStyle
− > {}

]
, ImageSizeMultipliers− > {1, 1} , ShowStringCharacters− > True

]

115

https://reference.wolfram.com/language/ref/Gray.html
https://reference.wolfram.com/language/ref/green.html

WMA link

>> Green

10.3.7. LightBlue

WMA link

LightBlue
represents the color light blue in graphics.

>> Graphics[{EdgeForm[Black], LightBlue, Disk[]}, ImageSize->Small]

>> LightBlue // ToBoxes
StyleBox

[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [0.87, 0.94, 1] , RectangleBox
[

{0, 0}
]}

, AspectRatio− > Automatic, Axes− > False, AxesStyle
− > {} , Background− > Automatic, ImageSize− > 16, LabelStyle
−> {} , PlotRange−>Automatic, PlotRangePadding−>Automatic, TicksStyle
− > {}

]
, ImageSizeMultipliers− > {1, 1} , ShowStringCharacters− > True

]
WMA link

>> Graphics[{LightBlue, EdgeForm[Black], Disk[]}]

116

https://reference.wolfram.com/language/ref/Green.html
https://reference.wolfram.com/language/ref/lightblue.html
https://reference.wolfram.com/language/ref/LightBlue.html

>> Plot[Sin[x], {x, 0, 2 Pi}, Background -> LightBlue]

1 2 3 4 5 6

−1.0

−0.5

0.5

1.0

10.3.8. LightBrown

WMA link

LightBrown
represents the color light brown in graphics.

>> Graphics[{EdgeForm[Black], LightBrown, Disk[]}, ImageSize->Small]

>> LightBrown // ToBoxes
StyleBox

[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [0.94, 0.91, 0.88] , RectangleBox
[

{0, 0}
]}

, AspectRatio− > Automatic, Axes− > False, AxesStyle
− > {} , Background− > Automatic, ImageSize− > 16, LabelStyle
−> {} , PlotRange−>Automatic, PlotRangePadding−>Automatic, TicksStyle
− > {}

]
, ImageSizeMultipliers− > {1, 1} , ShowStringCharacters− > True

]

10.3.9. LightCyan

WMA link

LightCyan
represents the color light cyan in graphics.

117

https://reference.wolfram.com/language/ref/lightbrown.html
https://reference.wolfram.com/language/ref/lightcyan.html

>> Graphics[{EdgeForm[Black], LightCyan, Disk[]}, ImageSize->Small]

>> LightCyan // ToBoxes
StyleBox

[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [0.9, 1., 1.] , RectangleBox
[

{0, 0}
]}

, AspectRatio− > Automatic, Axes− > False, AxesStyle
− > {} , Background− > Automatic, ImageSize− > 16, LabelStyle
−> {} , PlotRange−>Automatic, PlotRangePadding−>Automatic, TicksStyle
− > {}

]
, ImageSizeMultipliers− > {1, 1} , ShowStringCharacters− > True

]

10.3.10. LightGray

WMA link

LightGray
represents the color light gray in graphics.

>> Graphics[{EdgeForm[Black], LightGray, Disk[]}, ImageSize->Small]

>> LightGray // ToBoxes
StyleBox

[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , GrayLevel [0.666667, 1.] , RectangleBox
[

{0, 0}
]}

, AspectRatio− > Automatic, Axes− > False, AxesStyle
− > {} , Background− > Automatic, ImageSize− > 16, LabelStyle
−> {} , PlotRange−>Automatic, PlotRangePadding−>Automatic, TicksStyle
− > {}

]
, ImageSizeMultipliers− > {1, 1} , ShowStringCharacters− > True

]

10.3.11. LightGreen

WMA link

118

https://reference.wolfram.com/language/ref/lightgray.html
https://reference.wolfram.com/language/ref/lightgreen.html

LightGreen
represents the color light green in graphics.

>> Graphics[{EdgeForm[Black], LightGreen, Disk[]}, ImageSize->Small]

>> LightGreen // ToBoxes
StyleBox

[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [0.88, 1., 0.88] , RectangleBox
[

{0, 0}
]}

, AspectRatio− > Automatic, Axes− > False, AxesStyle
− > {} , Background− > Automatic, ImageSize− > 16, LabelStyle
−> {} , PlotRange−>Automatic, PlotRangePadding−>Automatic, TicksStyle
− > {}

]
, ImageSizeMultipliers− > {1, 1} , ShowStringCharacters− > True

]

10.3.12. LightMagenta

WMA link

LightMagenta
represents the color light magenta in graphics.

>> Graphics[{EdgeForm[Black], LightMagenta, Disk[]}, ImageSize->Small]

>> LightMagenta // ToBoxes
StyleBox

[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [1., 0.333333, 1.] , RectangleBox
[

{0, 0}
]}

, AspectRatio− > Automatic, Axes− > False, AxesStyle
− > {} , Background− > Automatic, ImageSize− > 16, LabelStyle
−> {} , PlotRange−>Automatic, PlotRangePadding−>Automatic, TicksStyle
− > {}

]
, ImageSizeMultipliers− > {1, 1} , ShowStringCharacters− > True

]

119

https://reference.wolfram.com/language/ref/lightmagenta.html

10.3.13. LightOrange

WMA link

LightOrange
represents the color light orange in graphics.

>> Graphics[{EdgeForm[Black], LightOrange, Disk[]}, ImageSize->Small]

>> LightOrange // ToBoxes
StyleBox

[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [1, 0.9, 0.8] , RectangleBox
[

{0, 0}
]}

, AspectRatio− > Automatic, Axes− > False, AxesStyle
− > {} , Background− > Automatic, ImageSize− > 16, LabelStyle
−> {} , PlotRange−>Automatic, PlotRangePadding−>Automatic, TicksStyle
− > {}

]
, ImageSizeMultipliers− > {1, 1} , ShowStringCharacters− > True

]

10.3.14. LightPink

WMA link

LightPink
represents the color light pink in graphics.

>> Graphics[{EdgeForm[Black], LightPink, Disk[]}, ImageSize->Small]

120

https://reference.wolfram.com/language/ref/lightorange.html
https://reference.wolfram.com/language/ref/lightpink.html

>> LightPink // ToBoxes
StyleBox

[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [1., 0.925, 0.925] , RectangleBox
[

{0, 0}
]}

, AspectRatio− > Automatic, Axes− > False, AxesStyle
− > {} , Background− > Automatic, ImageSize− > 16, LabelStyle
−> {} , PlotRange−>Automatic, PlotRangePadding−>Automatic, TicksStyle
− > {}

]
, ImageSizeMultipliers− > {1, 1} , ShowStringCharacters− > True

]

10.3.15. LightPurple

WMA link

LightPurple
represents the color light purple in graphics.

>> Graphics[{EdgeForm[Black], LightPurple, Disk[]}, ImageSize->Small]

>> LightPurple // ToBoxes
StyleBox

[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [0.94, 0.88, 0.94] , RectangleBox
[

{0, 0}
]}

, AspectRatio− > Automatic, Axes− > False, AxesStyle
− > {} , Background− > Automatic, ImageSize− > 16, LabelStyle
−> {} , PlotRange−>Automatic, PlotRangePadding−>Automatic, TicksStyle
− > {}

]
, ImageSizeMultipliers− > {1, 1} , ShowStringCharacters− > True

]

10.3.16. LightRed

WMA link

LightRed
represents the color light red in graphics.

121

https://reference.wolfram.com/language/ref/lightpurple.html
https://reference.wolfram.com/language/ref/lightred.html

>> Graphics[{EdgeForm[Black], LightRed, Disk[]}, ImageSize->Small]

>> LightRed // ToBoxes
StyleBox

[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [1., 0.85, 0.85] , RectangleBox
[

{0, 0}
]}

, AspectRatio− > Automatic, Axes− > False, AxesStyle
− > {} , Background− > Automatic, ImageSize− > 16, LabelStyle
−> {} , PlotRange−>Automatic, PlotRangePadding−>Automatic, TicksStyle
− > {}

]
, ImageSizeMultipliers− > {1, 1} , ShowStringCharacters− > True

]

10.3.17. LightYellow

WMA link

LightYellow
represents the color light yellow in graphics.

>> Graphics[{EdgeForm[Black], LightYellow, Disk[]}, ImageSize->Small]

>> LightYellow // ToBoxes
StyleBox

[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [1., 1., 0.333333] , RectangleBox
[

{0, 0}
]}

, AspectRatio− > Automatic, Axes− > False, AxesStyle
− > {} , Background− > Automatic, ImageSize− > 16, LabelStyle
−> {} , PlotRange−>Automatic, PlotRangePadding−>Automatic, TicksStyle
− > {}

]
, ImageSizeMultipliers− > {1, 1} , ShowStringCharacters− > True

]

10.3.18. Magenta

WMA link

122

https://reference.wolfram.com/language/ref/lightyellow.html
https://reference.wolfram.com/language/ref/magenta.html

Magenta
represents the color magenta in graphics.

>> Graphics[{EdgeForm[Black], Magenta, Disk[]}, ImageSize->Small]

>> Magenta // ToBoxes
StyleBox

[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [1, 0, 1] , RectangleBox
[

{0, 0}
]}

, AspectRatio− > Automatic, Axes− > False, AxesStyle
− > {} , Background− > Automatic, ImageSize− > 16, LabelStyle
−> {} , PlotRange−>Automatic, PlotRangePadding−>Automatic, TicksStyle
− > {}

]
, ImageSizeMultipliers− > {1, 1} , ShowStringCharacters− > True

]
WMA link

>> Magenta

10.3.19. Orange

WMA link

Orange
represents the color orange in graphics.

>> Graphics[{EdgeForm[Black], Orange, Disk[]}, ImageSize->Small]

123

https://reference.wolfram.com/language/ref/Magenta.html
https://reference.wolfram.com/language/ref/orange.html

>> Orange // ToBoxes
StyleBox

[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [1, 0.5, 0] , RectangleBox
[

{0, 0}
]}

, AspectRatio− > Automatic, Axes− > False, AxesStyle
− > {} , Background− > Automatic, ImageSize− > 16, LabelStyle
−> {} , PlotRange−>Automatic, PlotRangePadding−>Automatic, TicksStyle
− > {}

]
, ImageSizeMultipliers− > {1, 1} , ShowStringCharacters− > True

]

10.3.20. Pink

WMA link

Pink
represents the color pink in graphics.

>> Graphics[{EdgeForm[Black], Pink, Disk[]}, ImageSize->Small]

>> Pink // ToBoxes
StyleBox

[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [1., 0.5, 0.5] , RectangleBox
[

{0, 0}
]}

, AspectRatio− > Automatic, Axes− > False, AxesStyle
− > {} , Background− > Automatic, ImageSize− > 16, LabelStyle
−> {} , PlotRange−>Automatic, PlotRangePadding−>Automatic, TicksStyle
− > {}

]
, ImageSizeMultipliers− > {1, 1} , ShowStringCharacters− > True

]

10.3.21. Purple

WMA link

Purple
represents the color purple in graphics.

124

https://reference.wolfram.com/language/ref/pink.html
https://reference.wolfram.com/language/ref/purple.html

>> Graphics[{EdgeForm[Black], Purple, Disk[]}, ImageSize->Small]

>> Purple // ToBoxes
StyleBox

[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [0.5, 0, 0.5] , RectangleBox
[

{0, 0}
]}

, AspectRatio− > Automatic, Axes− > False, AxesStyle
− > {} , Background− > Automatic, ImageSize− > 16, LabelStyle
−> {} , PlotRange−>Automatic, PlotRangePadding−>Automatic, TicksStyle
− > {}

]
, ImageSizeMultipliers− > {1, 1} , ShowStringCharacters− > True

]

10.3.22. Red

WMA link

Red
represents the color red in graphics.

>> Graphics[{EdgeForm[Black], Red, Disk[]}, ImageSize->Small]

>> Red // ToBoxes
StyleBox

[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [1, 0, 0] , RectangleBox
[

{0, 0}
]}

, AspectRatio− > Automatic, Axes− > False, AxesStyle
− > {} , Background− > Automatic, ImageSize− > 16, LabelStyle
−> {} , PlotRange−>Automatic, PlotRangePadding−>Automatic, TicksStyle
− > {}

]
, ImageSizeMultipliers− > {1, 1} , ShowStringCharacters− > True

]
WMA link

>> Red

125

https://reference.wolfram.com/language/ref/red.html
https://reference.wolfram.com/language/ref/Red.html

10.3.23. White

WMA link

White
represents the color white in graphics.

>> Graphics[{EdgeForm[Black], White, Disk[]}, ImageSize->Small]

>> White // ToBoxes
StyleBox

[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , GrayLevel [1] , RectangleBox
[

{0, 0}
]}

, AspectRatio− > Automatic, Axes− > False, AxesStyle
− > {} , Background− > Automatic, ImageSize− > 16, LabelStyle
−> {} , PlotRange−>Automatic, PlotRangePadding−>Automatic, TicksStyle
− > {}

]
, ImageSizeMultipliers− > {1, 1} , ShowStringCharacters− > True

]
WMA link

>> White

10.3.24. Yellow

WMA link

Yellow
represents the color yellow in graphics.

>> Graphics[{EdgeForm[Black], Yellow, Disk[]}, ImageSize->Small]

126

https://reference.wolfram.com/language/ref/white.html
https://reference.wolfram.com/language/ref/White.html
https://reference.wolfram.com/language/ref/yellow.html

>> Yellow // ToBoxes
StyleBox

[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [1, 1, 0] , RectangleBox
[

{0, 0}
]}

, AspectRatio− > Automatic, Axes− > False, AxesStyle
− > {} , Background− > Automatic, ImageSize− > 16, LabelStyle
−> {} , PlotRange−>Automatic, PlotRangePadding−>Automatic, TicksStyle
− > {}

]
, ImageSizeMultipliers− > {1, 1} , ShowStringCharacters− > True

]
WMA link

>> Yellow

127

https://reference.wolfram.com/language/ref/Yellow.html

11. Compress Functions

Contents

11.1. Compress 128
11.2. Uncompress 128

11.1. Compress

WMA link

Compress[expr]
gives a compressed string representation of expr.

>> Compress[N[Pi, 10]]
eJwz1jM0MTS1NDIzNQEADRsCNw==

11.2. Uncompress

WMA link

Uncompress[“string”]
recovers an expression from a string generated by Compress.

>> Compress["Mathics is cool"]
eJxT8k0sychMLlbILFZIzs/PUQIANFwF1w==

>> Uncompress[%]
Mathics is cool

>> a = x ^ 2 + y Sin[x] + 10 Log[15];

>> b = Compress[a];

>> Uncompress[b]

x2 + ySin [x] + 10Log [15]

128

https://reference.wolfram.com/language/ref/Compress.html
https://reference.wolfram.com/language/ref/Uncompress.html

12. Date and Time

Dates and times are represented symbolically; computations can be performed on them.

Date object can also input and output dates and times in a wide range of formats, as well as handle
calendars.

Contents

12.1. $DateStringFormat 129
12.2. $SystemTimeZone 129
12.3. $TimeZone 130
12.4. AbsoluteTime 130
12.5. AbsoluteTiming 130
12.6. DateDifference 131
12.7. DateList 131
12.8. DateObject 132
12.9. DatePlus 132

12.10. DateString 133
12.11. EasterSunday 134
12.12. Now 134
12.13. SessionTime 134
12.14. TimeConstrained 135
12.15. TimeRemaining 135
12.16. TimeUsed 135
12.17. Timing 136

12.1. $DateStringFormat

WMA link

$DateStringFormat
gives the format used for dates generated by DateString.

>> $DateStringFormat
{DateTimeShort}

12.2. $SystemTimeZone

WMA link

$SystemTimeZone
gives the current time zone for the computer system on which Mathics is being run.

>> $SystemTimeZone
−5.

129

https://reference.wolfram.com/language/ref/$DateStringFormat.html
https://reference.wolfram.com/language/ref/$SystemTimeZone.html

12.3. $TimeZone

Time Zone (WMA)

$TimeZone
gives the current time zone to assume for dates and times.

>> $TimeZone
−5.

12.4. AbsoluteTime

WMA link

AbsoluteTime[]
gives the local time in seconds since epoch January 1, 1900, in your time zone.

AbsoluteTime[{y, m, d, h, m, s}]
gives the absolute time specification corresponding to a date list.

AbsoluteTime[“string”]
gives the absolute time specification for a given date string.

AbsoluteTime[{“string”,{e1, e2, ...}}]
takgs the date string to contain the elements “ei”.

>> AbsoluteTime[]
3.96592*∧9

>> AbsoluteTime[{2000}]
3155673600

>> AbsoluteTime[{"01/02/03", {"Day", "Month", "YearShort"}}]
3253046400

>> AbsoluteTime["6 June 1991"]
2885155200

>> AbsoluteTime[{"6-6-91", {"Day", "Month", "YearShort"}}]
2885155200

12.5. AbsoluteTiming

WMA link

AbsoluteTiming[expr]
evaluates expr, returning a list of the absolute number of seconds in real time that have
elapsed, together with the result obtained.

130

https://en.wikipedia.org/wiki/Time_zone
https://reference.wolfram.com/language/ref/$TimeZone.html
https://reference.wolfram.com/language/ref/AbsoluteTime.html
https://reference.wolfram.com/language/ref/AbsoluteTiming.html

>> AbsoluteTiming[50!]
{0.000074625, 30414093201713378043612608166064768844377641568960512000000000000}

>> Attributes[AbsoluteTiming]
{HoldAll, Protected}

12.6. DateDifference

WMA link

DateDifference[date1, date2]
returns the difference between date1 and date2 in days.

DateDifference[date1, date2, unit]
returns the difference in the specified unit.

DateDifference[date1, date2, {unit1, unit2, ...}]
represents the difference as a list of integer multiples of each unit, with any remainder
expressed in the smallest unit.

>> DateDifference[{2042, 1, 4}, {2057, 1, 1}]
5476

>> DateDifference[{1936, 8, 14}, {2000, 12, 1}, "Year"]
{64.3425, Year}

>> DateDifference[{2010, 6, 1}, {2015, 1, 1}, "Hour"]
{40200, Hour}

>> DateDifference[{2003, 8, 11}, {2003, 10, 19}, {"Week", "Day"}]
{{9, Week} , {6, Day}}

12.7. DateList

WMA link

DateList[]
returns the current local time in the form {year, month, day, hour, minute, second}.

DateList[time]
returns a formatted date for the number of seconds time since epoch Jan 1 1900.

DateList[{y, m, d, h, m, s}]
converts an incomplete date list to the standard representation.

>> DateList[0]
{1900, 1, 1, 0, 0, 0.}

131

https://reference.wolfram.com/language/ref/DateDifference.html
https://reference.wolfram.com/language/ref/DateList.html

>> DateList[3155673600]
{2000, 1, 1, 0, 0, 0.}

>> DateList[{2003, 5, 0.5, 0.1, 0.767}]
{2003, 4, 30, 12, 6, 46.02}

>> DateList[{2012, 1, 300., 10}]
{2012, 10, 26, 10, 0, 0.}

>> DateList["31/10/1991"]
{1991, 10, 31, 0, 0, 0.}

>> DateList["1/10/1991"]
The interpretation of 1/10/1991 is ambiguous.
{1991, 1, 10, 0, 0, 0.}

>> DateList[{"31/10/91", {"Day", "Month", "YearShort"}}]
{1991, 10, 31, 0, 0, 0.}

>> DateList[{"31 10/91", {"Day", " ", "Month", "/", "YearShort"}}]
{1991, 10, 31, 0, 0, 0.}

If not specified, the current year assumed

>> DateList[{"5/18", {"Month", "Day"}}]
{2025, 5, 18, 0, 0, 0.}

12.8. DateObject

WMA link

DateObject[...]
Returns an object codifying DateList....

>> DateObject[{2020, 4, 15}][
Wed 15 Apr 2020 00:00:00 GTM− 5

]

12.9. DatePlus

WMA link

132

https://reference.wolfram.com/language/ref/DateObject.html
https://reference.wolfram.com/language/ref/DatePlus.html

DatePlus[date, n]
finds the date n days after date.

DatePlus[date, {n, “unit”}]
finds the date n units after date.

DatePlus[date, {{n1, “unit1”}, {n2, “unit2”}, ...}]
finds the date which is ni specified units after date.

DatePlus[n]
finds the date n days after the current date.

DatePlus[o f f set]
finds the date which is offset from the current date.

Add 73 days to Feb 5, 2010:

>> DatePlus[{2010, 2, 5}, 73]
{2010, 4, 19}

Add 8 weeks and 1 day to March 16, 1999:

>> DatePlus[{2010, 2, 5}, {{8, "Week"}, {1, "Day"}}]
{2010, 4, 3}

12.10. DateString

WMA link

DateString[]
returns the current local time and date as a string.

DateString[elem]
returns the time formatted according to elems.

DateString[{e1, e2, ...}]
concatenates the time formatted according to elements ei.

DateString[time]
returns the date string of an AbsoluteTime.

DateString[{y, m, d, h, m, s}]
returns the date string of a date list specification.

DateString[string]
returns the formatted date string of a date string specification.

DateString[spec, elems]
formats the time in turns of elems. Both spec and elems can take any of the above formats.

The current date and time:

>> DateString[];

>> DateString[{1991, 10, 31, 0, 0}, {"Day", " ", "MonthName", " ", "Year
"}]

31 October 1991

133

https://reference.wolfram.com/language/ref/DateString.html

>> DateString[{2007, 4, 15, 0}]
Sun 15 Apr 2007 00:00:00

>> DateString[{1979, 3, 14}, {"DayName", " ", "Month", "-", "YearShort
"}]

Wednesday 03-79

Non-integer values are accepted too:

>> DateString[{1991, 6, 6.5}]
Thu 6 Jun 1991 12:00:00

12.11. EasterSunday

Date of Easter (WMA link)

EasterSunday[year]
returns the date of the Gregorian Easter Sunday as {year, month, day}.

>> EasterSunday[2000]
{2000, 4, 23}

>> EasterSunday[2030]
{2030, 4, 21}

12.12. Now

WMA link

Now
gives the current time on the system.

>> Now[
Wed 3 Sep 2025 19:23:05 GTM− 5

]

12.13. SessionTime

WMA link

134

https://en.wikipedia.org/wiki/Date_of_Easter
https://reference.wolfram.com/language/Calendar/ref/EasterSunday.html
https://reference.wolfram.com/language/ref/Now.html
https://reference.wolfram.com/language/ref/SessionTime.html

SessionTime[]
returns the total time in seconds since this session started.

>> SessionTime[]
75.9413

12.14. TimeConstrained

WMA link

TimeConstrained[expr, t]
evaluates $expr$, stopping after t seconds.

TimeConstrained[expr, t, f ailexpr]
returns $failexpr$ if the time constraint is not met.

Possible issues: for certain time-consuming functions (like simplify) which are based on sympy or other
libraries, it is possible that the evaluation continues after the timeout. However, at the end of the eval-
uation, the function will return $Aborted and the results will not affect the state of the Mathics3 kernel.

12.15. TimeRemaining

WMA link

TimeRemaining[]
Gives the number of seconds remaining until the earliest enclosing TimeConstrainedwill
request the current computation to stop.

TimeConstrained[expr, t, f ailexpr]
returns f ailexpr if the time constraint is not met.

If TimeConstrained is called out of a TimeConstrained expression, returns Infinity:

>> TimeRemaining[]
∞

>> TimeConstrained[1+2; Print[TimeRemaining[]], 0.9]
0.899472

12.16. TimeUsed

WMA link

135

https://reference.wolfram.com/language/ref/TimeConstrained.html
https://reference.wolfram.com/language/ref/TimeRemaining.html
https://reference.wolfram.com/language/ref/TimeUsed.html

TimeUsed[]
returns the total CPU time used for this session, in seconds.

>> TimeUsed[]
80.3014

12.17. Timing

WMA link

Timing[expr]
measures the processor time taken to evaluate expr. It returns a list containing the mea-
sured time in seconds and the result of the evaluation.

>> Timing[50!]
{0.000078113, 30414093201713378043612608166064768844377641568960512000000000000}

>> Attributes[Timing]
{HoldAll, Protected}

136

https://reference.wolfram.com/language/ref/Timing.html

13. Definition Attributes

While a definition like cube[x_] = x^3 gives a way to specify values of a function, attributes allow a way
to specify general properties of functions and symbols. This is independent of the parameters they take
and the values they produce.

The builtin-attributes having a predefined meaning in Mathics3 which are described below.

However in contrast to Mathematica®, you can set any symbol as an attribute.

Contents

13.1. Attributes 137
13.2. ClearAttributes 138
13.3. Constant 139
13.4. Flat 139
13.5. HoldAll 140
13.6. HoldAllComplete 140
13.7. HoldFirst 140
13.8. HoldRest 141
13.9. Listable 141
13.10. Locked 141
13.11. NHoldAll 142

13.12. NHoldFirst 142
13.13. NHoldRest 142
13.14. NumericFunction 143
13.15. OneIdentity 143
13.16. Orderless 144
13.17. Protect 144
13.18. Protected 145
13.19. ReadProtected 146
13.20. SequenceHold 146
13.21. SetAttributes 147
13.22. Unprotect 148

13.1. Attributes

WMA link

Attributes[symbol]
returns the attributes of symbol.

Attributes[“string”]
returns the attributes of Symbol[“string”].

Attributes[symbol] = {attr1, attr2}
sets the attributes of symbol, replacing any existing attributes.

>> Attributes[Plus]
{Flat, Listable, NumericFunction, OneIdentity, Orderless, Protected}

>> Attributes["Plus"]
{Flat, Listable, NumericFunction, OneIdentity, Orderless, Protected}

137

https://reference.wolfram.com/language/ref/Attributes.html

Attributes always considers the head of an expression:

>> Attributes[a + b + c]
{Flat, Listable, NumericFunction, OneIdentity, Orderless, Protected}

You can assign values to Attributes to set attributes:

>> Attributes[f] = {Flat, Orderless}
{Flat, Orderless}

>> f[b, f[a, c]]
f [a, b, c]

Attributes must be symbols:

>> Attributes[f] := {a + b}
Argument a + b at position 1 is expected to be a symbol.
$Failed

Use Symbol to convert strings to symbols:

>> Attributes[f] = Symbol["Listable"]
Listable

>> Attributes[f]
{Listable}

13.2. ClearAttributes

WMA link

ClearAttributes[symbol, attrib]
removes attrib from symbol’s attributes.

>> SetAttributes[f, Flat]

>> Attributes[f]
{Flat}

>> ClearAttributes[f, Flat]

>> Attributes[f]
{}

Attributes that are not even set are simply ignored:

>> ClearAttributes[{f}, {Flat}]

138

https://reference.wolfram.com/language/ref/ClearAttributes.html

>> Attributes[f]
{}

13.3. Constant

WMA link

Constant
is an attribute that indicates that a symbol is a constant.

Mathematical constants like E have attribute Constant:

>> Attributes[E]
{Constant, Protected, ReadProtected}

Constant symbols cannot be used as variables in Solve and related functions:

>> Solve[x + E == 0, E]
E is not a valid variable.
Solve [x + E==0, E]

13.4. Flat

WMA link

Flat
is an attribute that specifies that nested occurrences of a function should be automatically
flattened.

A symbol with the Flat attribute represents an associative mathematical operation:

>> SetAttributes[f, Flat]

>> f[a, f[b, c]]
f [a, b, c]

Flat is taken into account in pattern matching:

>> f[a, b, c] /. f[a, b] -> d
f [d, c]

139

https://reference.wolfram.com/language/ref/Constant.html
https://reference.wolfram.com/language/ref/Flat.html

13.5. HoldAll

WMA link

HoldAll
is an attribute specifying that all arguments of a function should be left unevaluated.

>> Attributes[Function]
{HoldAll, Protected}

13.6. HoldAllComplete

WMA link

HoldAllComplete
is an attribute that includes the effects of HoldAll and SequenceHold, and also protects
the function from being affected by the upvalues of any arguments.

HoldAllComplete even prevents upvalues from being used, and includes SequenceHold.

>> SetAttributes[f, HoldAllComplete]

>> f[a] ^= 3;

>> f[a]
f [a]

>> f[Sequence[a, b]]
f
[
Sequence [a, b]

]

13.7. HoldFirst

WMA link

HoldFirst
is an attribute specifying that the first argument of a function should be left unevaluated.

>> Attributes[Set]
{HoldFirst, Protected, SequenceHold}

140

https://reference.wolfram.com/language/ref/HoldAll.html
https://reference.wolfram.com/language/ref/HoldAllComplete.html
https://reference.wolfram.com/language/ref/HoldFirst.html

13.8. HoldRest

WMA link

HoldRest
is an attribute specifying that all but the first argument of a function should be left un-
evaluated.

>> Attributes[If]
{HoldRest, Protected}

13.9. Listable

WMA link

Listable
is an attribute specifying that a function should be automatically applied to each element
of a list.

>> SetAttributes[f, Listable]

>> f[{1, 2, 3}, {4, 5, 6}]
{ f [1, 4] , f [2, 5] , f [3, 6]}

>> f[{1, 2, 3}, 4]
{ f [1, 4] , f [2, 4] , f [3, 4]}

>> {{1, 2}, {3, 4}} + {5, 6}
{{6, 7} , {9, 10}}

13.10. Locked

WMA link

Locked
is an attribute that prevents attributes on a symbol from being modified.

The attributes of Locked symbols cannot be modified:

>> Attributes[lock] = {Flat, Locked};

>> SetAttributes[lock, {}]
Symbol lock is locked.

141

https://reference.wolfram.com/language/ref/HoldRest.html
https://reference.wolfram.com/language/ref/Listable.html
https://reference.wolfram.com/language/ref/Locked.html

>> ClearAttributes[lock, Flat]
Symbol lock is locked.

>> Attributes[lock] = {}
Symbol lock is locked.
{}

>> Attributes[lock]
{Flat, Locked}

However, their values might be modified (as long as they are not Protected too):

>> lock = 3
3

13.11. NHoldAll

WMA link

NHoldAll
is an attribute that protects all arguments of a function from numeric evaluation.

>> N[f[2, 3]]
f [2., 3.]

>> SetAttributes[f, NHoldAll]

>> N[f[2, 3]]
f [2, 3]

13.12. NHoldFirst

WMA link

NHoldFirst
is an attribute that protects the first argument of a function from numeric evaluation.

13.13. NHoldRest

WMA link

142

https://reference.wolfram.com/language/ref/NHoldAll.html
https://reference.wolfram.com/language/ref/NHoldFirst.html
https://reference.wolfram.com/language/ref/NHoldRest.html

NHoldRest
is an attribute that protects all but the first argument of a function from numeric evalua-
tion.

13.14. NumericFunction

WMA link

NumericFunction
is an attribute that indicates that a symbol is the head of a numeric function.

Mathematical functions like Sqrt have attribute NumericFunction:

>> Attributes[Sqrt]
{Listable, NumericFunction, Protected}

Expressions with a head having this attribute, and with all the elements being numeric expressions, are
considered numeric expressions:

>> NumericQ[Sqrt[1]]
True

>> NumericQ[a]=True; NumericQ[Sqrt[a]]
True

>> NumericQ[a]=False; NumericQ[Sqrt[a]]
False

13.15. OneIdentity

WMA link

OneIdentity
is an attribute assigned to a symbol, say f , indicating that f [x], f [f [x]], etc. are all equiv-
alent to x in pattern matching.

>> a /. f[x_:0, u_] -> {u}
a

Here is how OneIdentity changes the pattern matched above :

>> SetAttributes[f, OneIdentity]

>> a /. f[x_:0, u_] -> {u}
{a}

143

https://reference.wolfram.com/language/ref/NumericFunction.html
https://reference.wolfram.com/language/ref/OneIdentity.html

However, without a default argument, the pattern does not match:

>> a /. f[u_] -> {u}
a

OneIdentity does not change evaluation:

>> f[a]
f [a]

13.16. Orderless

WMA link

Orderless
is an attribute that can be assigned to a symbol f to indicate that the elements ei in ex-
pressions of the form f [e1, e2, ...] should automatically be sorted into canonical order.
This property is accounted for in pattern matching.

The elements of an Orderless function are automatically sorted:

>> SetAttributes[f, Orderless]

>> f[c, a, b, a + b, 3, 1.0]
f [1., 3, a, b, c, a + b]

A symbol with the Orderless attribute represents a commutative mathematical operation.

>> f[a, b] == f[b, a]
True

Orderless affects pattern matching:

>> SetAttributes[f, Flat]

>> f[a, b, c] /. f[a, c] -> d
f [b, d]

13.17. Protect

WMA link

144

https://reference.wolfram.com/language/ref/Orderless.html
https://reference.wolfram.com/language/ref/Protect.html

Protect[s1, s2, ...]
sets the attribute Protected for the symbols si.

Protect[str1, str2, ...]
protects all symbols whose names textually match stri.

>> A = {1, 2, 3};

>> Protect[A]

>> A[[2]] = 4;
Symbol A is Protected.

>> A
{1, 2, 3}

13.18. Protected

WMA link

Protected
is an attribute that prevents values on a symbol from being modified.

Values of Protected symbols cannot be modified:

>> Attributes[p] = {Protected};

>> p = 2;
Symbol p is Protected.

>> f[p] ^= 3;
Tag p in f[p] is Protected.

>> Format[p] = "text";
Symbol p is Protected.

However, attributes might still be set:

>> SetAttributes[p, Flat]

>> Attributes[p]
{Flat, Protected}

Thus, you can easily remove the attribute Protected:

>> Attributes[p] = {};

>> p = 2
2

145

https://reference.wolfram.com/language/ref/Protected.html

You can also use Protect or Unprotect, resp.

>> Protect[p]

>> Attributes[p]
{Protected}

>> Unprotect[p]

If a symbol is Protected and Locked, it can never be changed again:

>> SetAttributes[p, {Protected, Locked}]

>> p = 2
Symbol p is Protected.
2

>> Unprotect[p]
Symbol p is locked.

13.19. ReadProtected

WMA link

ReadProtected
is an attribute that prevents values on a symbol from being read.

Values associated with ReadProtected symbols cannot be seen in Definition:

>> ClearAll[p]

>> p = 3;

>> Definition[p]
p = 3

>> SetAttributes[p, ReadProtected]

>> Definition[p]
Attributes

[
p
]

= {ReadProtected}

13.20. SequenceHold

WMA link

146

https://reference.wolfram.com/language/ref/ReadProtected.html
https://reference.wolfram.com/language/ref/SequenceHold.html

SequenceHold
is an attribute that prevents Sequence objects from being spliced into a function’s argu-
ments.

Normally, Sequence will be spliced into a function:

>> f[Sequence[a, b]]
f [a, b]

It does not for SequenceHold functions:

>> SetAttributes[f, SequenceHold]

>> f[Sequence[a, b]]
f
[
Sequence [a, b]

]
E.g., Set has attribute SequenceHold to allow assignment of sequences to variables:

>> s = Sequence[a, b];

>> s
Sequence [a, b]

>> Plus[s]
a + b

13.21. SetAttributes

WMA link

SetAttributes[symbol, attrib]
adds attrib to the list of symbol’s attributes.

>> SetAttributes[f, Flat]

>> Attributes[f]
{Flat}

Multiple attributes can be set at the same time using lists:

>> SetAttributes[{f, g}, {Flat, Orderless}]

>> Attributes[g]
{Flat, Orderless}

147

https://reference.wolfram.com/language/ref/SetAttributes.html

13.22. Unprotect

WMA link

Unprotect[s1, s2, ...]
removes the attribute Protected for the symbols si.

Unprotect[str]
unprotects symbols whose names textually match str.

148

https://reference.wolfram.com/language/ref/Unprotect.html

14. Descriptive Statistics

Function which operate on explicit data and symbolic representations of statistical distributions.

Contents

14.1. Dependency and Dispursion Statistics 149
14.1.1. Correlation 149
14.1.2. Covariance 149

14.2. General Statistics 150
14.2.1. CentralMoment 150

14.3. Location Statistics 150
14.3.1. Mean 150

14.4. Order Statistics 150
14.4.1. Quantile 151
14.4.2. Quartiles 151

14.4.3. RankedMax 152
14.4.4. RankedMin 152
14.4.5. ReverseSort 152
14.4.6. Sort 153
14.4.7. TakeLargest 153
14.4.8. TakeSmallest 154

14.5. Shape Statistics 154
14.5.1. Kurtosis 154
14.5.2. Skewness 155

14.1. Dependency and Dispursion Statistics

14.1.1. Correlation

Pearson correlation coefficient (WMA)

Correlation[a, b]
computes Pearson’s correlation of two equal-sized vectors a and b.

An example from Wikipedia:

>> Correlation[{10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5}, {8.04, 6.95,
7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68}]
0.816421

14.1.2. Covariance

Covariance (WMA)

Covariance[a, b]
computes the covariance between the equal-sized vectors a and b.

149

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://reference.wolfram.com/language/ref/Correlation.html
https://en.wikipedia.org/wiki/Covariance
https://reference.wolfram.com/language/ref/Covariance.html

>> Covariance[{0.2, 0.3, 0.1}, {0.3, 0.3, -0.2}]
0.025

14.2. General Statistics

14.2.1. CentralMoment

Central moment (WMA)

CentralMoment[list, r]
gives the the rth central moment (i.e. the rth moment about the mean) of list.

>> CentralMoment[{1.1, 1.2, 1.4, 2.1, 2.4}, 4]
0.100845

14.3. Location Statistics

14.3.1. Mean

WMA link

Mean[list]
returns the statistical mean of list.

>> Mean[{26, 64, 36}]
42

>> Mean[{1, 1, 2, 3, 5, 8}]
10
3

>> Mean[{a, b}]
a + b

2

14.4. Order Statistics

In statistics, an order statistic gives the k-th smallest value.

Together with rank statistics these are fundamental tools in non-parametric statistics and inference.

Important special cases of order statistics are finding minimum and maximum value of a sample and
sample quantiles.

150

https://en.wikipedia.org/wiki/Central_moment
https://reference.wolfram.com/language/ref/CentralMoment.html
https://reference.wolfram.com/language/ref/Mean.html
https://en.wikipedia.org/wiki/Order_statistic
https://en.wikipedia.org/wiki/Ranking

14.4.1. Quantile

Quantile (WMA link)

In statistics and probability, quantiles are cut points dividing the range of a probability distribution into
continuous intervals with equal probabilities, or dividing the observations in a sample in the same way.

Quantile is also known as value at risk (VaR) or fractile.

Quantile[list, q]
returns the qth quantile of list.

Quantile[list, q, {{a, b}, {c, d}}]
uses the quantile definition specified by parameters a, b, c, d.

For a list of length n, Quantile[list, q, {{a, b}, {c, d}}] depends on x = a + (n + b)q.
If x is an integer, the result is s[[x]], where s=Sort[list,Less].
Otherwise, the result is: s[[Floor[x]]] + (s[[Ceiling[x]]] - s[[Floor[x]]])(c + d FractionalPart[x]),
with the indices taken to be 1 or n if they are out of range.
The default choice of parameters is {{0,0},{1,0}}.

Common choices of parameters include:

• {{0, 0}, {1, 0}} inverse empirical CDF (default)

• {{0, 0}, {0, 1}} linear interpolation (California method)

Quantile[list,q] always gives a result equal to an element of list.

>> Quantile[Range[11], 1/3]
4

>> Quantile[Range[16], 1/4]
4

>> Quantile[{1, 2, 3, 4, 5, 6, 7}, {1/4, 3/4}]
{2, 6}

14.4.2. Quartiles

Quartile (WMA link)

Quartiles[list]
returns the 1/4, 1/2, and 3/4 quantiles of list.

>> Quartiles[Range[25]]{
27
4

, 13,
77
4

}

151

https://en.wikipedia.org/wiki/Quantile
https://reference.wolfram.com/language/ref/Quantile.html
https://en.wikipedia.org/wiki/Quartile
https://reference.wolfram.com/language/ref/Quartiles.html

14.4.3. RankedMax

WMA link

RankedMax[list, n]
returns the nth largest element of list (with n = 1 yielding the largest element, n = 2
yielding the second largest element, and so on).

>> RankedMax[{482, 17, 181, -12}, 2]
181

14.4.4. RankedMin

WMA link

RankedMin[list, n]
returns the nth smallest element of list (with n = 1 yielding the smallest element, n = 2
yielding the second smallest element, and so on).

>> RankedMin[{482, 17, 181, -12}, 2]
17

14.4.5. ReverseSort

WMA link

ReverseSort[list]
sorts list (or the elements of any other expression) according to reverse canonical order-
ing.

ReverseSort[list, p]
sorts using p to determine the order of two elements.

>> ReverseSort[{c, b, d, a}]
{d, c, b, a}

You can specify a binary comparison function:

>> ReverseSort[{1, 2, 0, 3}, Less]
{3, 2, 1, 0}

Using Greater for the above, reverses the reverse sort:

152

https://reference.wolfram.com/language/ref/RankedMax.html
https://reference.wolfram.com/language/ref/RankedMin.html
https://reference.wolfram.com/language/ref/ReverseSort.html

>> ReverseSort[{1, 2, 0, 3}, Greater]
{0, 1, 2, 3}

See also Sort 14.4.6.

14.4.6. Sort

WMA link

Sort[list]
sorts list (or the elements of any other expression) according to canonical ordering.

Sort[list, p]
sorts using p to determine the order of two elements.

>> Sort[{4, 1.0, a, 3+I}]
{1., 3 + I, 4, a}

Sort uses OrderedQ to determine ordering by default. You can sort patterns according to their precedence
using PatternsOrderedQ:

>> Sort[{items___, item_, OptionsPattern[], item_symbol, item_?test},
PatternsOrderedQ]

{item_symbol, item_? test, item_, items___, OptionsPattern []}

When sorting patterns, values of atoms do not matter:

>> Sort[{a, b/;t}, PatternsOrderedQ]
{b/;t, a}

>> Sort[{2+c_, 1+b__}, PatternsOrderedQ]
{2 + c_, 1 + b__}

>> Sort[{x_ + n_*y_, x_ + y_}, PatternsOrderedQ]
{x_ + n_y_, x_ + y_}

See also ReverseSort 14.4.5.

14.4.7. TakeLargest

WMA link

TakeLargest[list, f , n]
returns the a sorted list of the n largest items in list.

List the largest two numbers of a list:

153

https://reference.wolfram.com/language/ref/Sort.html
https://reference.wolfram.com/language/ref/TakeLargest.html

>> TakeLargest[{100, -1, 50, 10}, 2]
{100, 50}

None, Null, Indeterminate and expressions with head Missing are ignored by default:

>> TakeLargest[{-8, 150, Missing[abc]}, 2]
{150,−8}

You may specify which items are ignored using the option ExcludedForms:

>> TakeLargest[{-8, 150, Missing[abc]}, 2, ExcludedForms -> {}]
{Missing [abc] , 150}

14.4.8. TakeSmallest

WMA link

TakeSmallest[list, n]
returns the a sorted list of the n smallest items in list.

List the smallest two numbers of a list:

>> TakeSmallest[{100, -1, 50, 10}, 2]
{−1, 10}

For details on how to use the ExcludedForms option, see TakeLargest 14.4.7.

14.5. Shape Statistics

14.5.1. Kurtosis

Kurtosis (WMA)

Kurtosis[list]
gives the Pearson measure of kurtosis for list (a measure of existing outliers).

>> Kurtosis[{1.1, 1.2, 1.4, 2.1, 2.4}]
1.42098

154

https://reference.wolfram.com/language/ref/TakeSmallest.html
https://en.wikipedia.org/wiki/Kurtosis
https://reference.wolfram.com/language/ref/Kurtosis.html

14.5.2. Skewness

Skewness (WMA)

Skewness[list]
gives Pearson’s moment coefficient of skewness for list (a measure for estimating the
symmetry of a distribution).

>> Skewness[{1.1, 1.2, 1.4, 2.1, 2.4}]
0.407041

155

https://en.wikipedia.org/wiki/Skewness
https://reference.wolfram.com/language/ref/Skewness.html

15. Directories and Directory Operations

Contents

15.1. Directory Names 156
15.1.1. DirectoryName 156
15.1.2. DirectoryQ 156
15.1.3. FileNameDepth 157
15.1.4. FileNameJoin 157
15.1.5. FileNameSplit 157
15.1.6. ParentDirectory 158

15.2. Directory Operations 158
15.2.1. CreateDirectory 158
15.2.2. DeleteDirectory 158
15.2.3. RenameDirectory 159

15.3. System File Directories 159
15.3.1. $BaseDirectory 159
15.3.2. $InitialDirectory 159
15.3.3. $InstallationDirectory 159
15.3.4. $RootDirectory 160
15.3.5. $TemporaryDirectory 160

15.4. User File Directories 160
15.4.1. $HomeDirectory 160
15.4.2. $Path 161
15.4.3. $UserBaseDirectory 161

15.1. Directory Names

15.1.1. DirectoryName

WMA link

DirectoryName[“name”]
extracts the directory name from a filename.

>> DirectoryName["a/b/c"]
a/b

>> DirectoryName["a/b/c", 2]
a

15.1.2. DirectoryQ

WMA link

DirectoryQ[“name”]
returns True if the directory called name exists and False otherwise.

156

https://reference.wolfram.com/language/ref/DirectoryName.html
https://reference.wolfram.com/language/ref/DirectoryQ.html

>> DirectoryQ["ExampleData/"]
True

>> DirectoryQ["ExampleData/MythicalSubdir/"]
False

15.1.3. FileNameDepth

WMA link

FileNameDepth[“name”]
gives the number of path parts in the given filename.

>> FileNameDepth["a/b/c"]
3

>> FileNameDepth["a/b/c/"]
3

15.1.4. FileNameJoin

WMA link

FileNameJoin[{“dir1”, “dir2”, ...}]
joins the diri together into one path.

FileNameJoin[..., OperatingSystem->``os']'
yields a file name in the format for the specified operating system. Possible choices are
“Windows”, “MacOSX”, and “Unix”.

>> FileNameJoin[{"dir1", "dir2", "dir3"}]
dir1/dir2/dir3

>> FileNameJoin[{"dir1", "dir2", "dir3"}, OperatingSystem -> "Unix"]
dir1/dir2/dir3

>> FileNameJoin[{"dir1", "dir2", "dir3"}, OperatingSystem -> "Windows"]
dir1\dir2\dir3

15.1.5. FileNameSplit

WMA link

FileNameSplit[“ f ilenames”]
splits a f ilename into a list of parts.

157

https://reference.wolfram.com/language/ref/FileNameDepth.html
https://reference.wolfram.com/language/ref/FileNameJoin.html
https://reference.wolfram.com/language/ref/FileNameSplit.html

>> FileNameSplit["example/path/file.txt"]
{example, path, file.txt}

15.1.6. ParentDirectory

WMA link

ParentDirectory[]
returns the parent of the current working directory.

ParentDirectory[“dir”]
returns the parent dir.

>> ParentDirectory[]
/src/external-vcs/github/Mathics3/mathics-core

15.2. Directory Operations

15.2.1. CreateDirectory

WMA link

CreateDirectory[“dir”]
creates a directory called dir.

CreateDirectory[]
creates a temporary directory.

>> dir = CreateDirectory[]
/tmp/mtzq8v694

15.2.2. DeleteDirectory

WMA link

DeleteDirectory[“dir”]
deletes a directory called dir.

>> dir = CreateDirectory[]
/tmp/maruh8t4t

>> DeleteDirectory[dir]

158

https://reference.wolfram.com/language/ref/ParentDirectory.html
https://reference.wolfram.com/language/ref/CreateDirectory.html
https://reference.wolfram.com/language/ref/DeleteDirectory.html

>> DirectoryQ[dir]
False

15.2.3. RenameDirectory

WMA link

RenameDirectory[“dir1”, “dir2”]
renames directory dir1 to dir2.

15.3. System File Directories

15.3.1. $BaseDirectory

WMA link

$BaseDirectory
returns the folder where user configurations are stored.

>> $BaseDirectory
/src/external-vcs/github/Mathics3/mathics-core/mathics

15.3.2. $InitialDirectory

WMA link

$InitialDirectory
returns the directory from which
emphMathics3 was started.

>> $InitialDirectory
/src/external-vcs/github/Mathics3/mathics-core/mathics

15.3.3. $InstallationDirectory

WMA link

159

https://reference.wolfram.com/language/ref/RenameDirectory.html
https://reference.wolfram.com/language/ref/$BaseDirectory.html
https://reference.wolfram.com/language/ref/$InitialDirectory.html
https://reference.wolfram.com/language/ref/InstallationDirectory.html

$InstallationDirectory
returns the top-level directory in which
emphMathics3 was installed.

>> $InstallationDirectory
/src/external-vcs/github/Mathics3/mathics-core/mathics

15.3.4. $RootDirectory

WMA link

$RootDirectory
returns the system root directory.

>> $RootDirectory
/

15.3.5. $TemporaryDirectory

WMA link

$TemporaryDirectory
returns the directory used for temporary files.

>> $TemporaryDirectory
/tmp

15.4. User File Directories

15.4.1. $HomeDirectory

WMA link

$HomeDirectory
returns the users HOME directory.

>> $HomeDirectory
/home/rocky

160

https://reference.wolfram.com/language/ref/$RootDirectory.html
https://reference.wolfram.com/language/ref/$TemporaryDirectory.html
https://reference.wolfram.com/language/ref/HomeDirectory.html

15.4.2. $Path

WMA link

$Path
returns the list of directories to search when looking for a file.

>> $Path
{., /home/rocky, /home/rocky/.local/var/Mathics3/Packages, /src/external-vcs/github/Mathics3/mathics-core/mathics/data, /src/external-vcs/github/Mathics3/mathics-core/mathics/Packages}

15.4.3. $UserBaseDirectory

WMA link

$UserBaseDirectory
returns the folder where user configurations are stored.

>> $UserBaseDirectory
/home/rocky/.mathics

161

https://reference.wolfram.com/language/ref/Path.html
https://reference.wolfram.com/language/ref/UserBaseDirectory.html

16. Distance and Similarity Measures

Different measures of distance or similarity for different types of analysis.

Contents

16.1. Cluster Analysis 162
16.1.1. ClusteringComponents 162
16.1.2. FindClusters 163
16.1.3. Nearest 164

16.2. Numerical Data 164
16.2.1. BrayCurtisDistance 164
16.2.2. CanberraDistance 165
16.2.3. ChessboardDistance 165
16.2.4. CosineDistance 165

16.2.5. EuclideanDistance 166
16.2.6. ManhattanDistance 167
16.2.7. SquaredEuclideanDistance . . 167

16.3. String Distances and Similarity
Measures 167

16.3.1. DamerauLevenshteinDistance 167
16.3.2. EditDistance 168
16.3.3. HammingDistance 169

16.1. Cluster Analysis

16.1.1. ClusteringComponents

WMA link

ClusteringComponents[list]
forms clusters from list and returns a list of cluster indices, in which each element shows
the index of the cluster in which the corresponding element in list ended up.

ClusteringComponents[list, k]
forms k clusters from list and returns a list of cluster indices, inwhich each element shows
the index of the cluster in which the corresponding element in list ended up.

For more detailed documentation regarding options and behavior, see FindClusters[].

>> ClusteringComponents[{1, 2, 3, 1, 2, 10, 100}]
{1, 1, 1, 1, 1, 1, 2}

>> ClusteringComponents[{10, 100, 20}, Method -> "KMeans"]
{1, 0, 1}

162

https://reference.wolfram.com/language/ref/ClusteringComponents.html

16.1.2. FindClusters

WMA link

FindClusters[list]
returns a list of clusters formed from the elements of list. The number of cluster is deter-
mined automatically.

FindClusters[list, k]
returns a list of k clusters formed from the elements of list.

>> FindClusters[{1, 2, 20, 10, 11, 40, 19, 42}]
{{1, 2, 20, 10, 11, 19} , {40, 42}}

>> FindClusters[{25, 100, 17, 20}]
{{25, 17, 20} , {100}}

>> FindClusters[{3, 6, 1, 100, 20, 5, 25, 17, -10, 2}]
{{3, 6, 1, 5,−10, 2} , {100} , {20, 25, 17}}

>> FindClusters[{1, 2, 10, 11, 20, 21}]
{{1, 2} , {10, 11} , {20, 21}}

>> FindClusters[{1, 2, 10, 11, 20, 21}, 2]
{{1, 2, 10, 11} , {20, 21}}

>> FindClusters[{1 -> a, 2 -> b, 10 -> c}]
{{a, b} , {c}}

>> FindClusters[{1, 2, 5} -> {a, b, c}]
{{a, b} , {c}}

>> FindClusters[{1, 2, 3, 1, 2, 10, 100}, Method -> "Agglomerate"]
{{1, 2, 3, 1, 2, 10} , {100}}

>> FindClusters[{1, 2, 3, 10, 17, 18}, Method -> "Agglomerate"]
{{1, 2, 3} , {10} , {17, 18}}

>> FindClusters[{{1}, {5, 6}, {7}, {2, 4}}, DistanceFunction -> (Abs[
Length[#1] - Length[#2]]&)]

{{{1} , {7}} , {{5, 6} , {2, 4}}}

>> FindClusters[{"meep", "heap", "deep", "weep", "sheep", "leap", "keep
"}, 3]

{{meep, deep, weep, keep} , {heap, leap} , {sheep}}

FindClusters’ automatic distance function detection supports scalars, numeric tensors, boolean vectors
and strings.

The Method option must be either “Agglomerate” or “Optimize”. If not specified, it defaults to “Opti-
mize”. Note that the Agglomerate and Optimize methods usually produce different clusterings.

The runtime of the Agglomerate method is quadratic in the number of clustered points n, builds the

163

https://reference.wolfram.com/language/ref/FindClusters.html

clustering from the bottomup, and is exact (no element of randomness). TheOptimizemethod’s runtime
is linear in n, Optimize builds the clustering from top down, and uses random sampling.

16.1.3. Nearest

WMA link

Nearest[list, x]
returns the one item in list that is nearest to x.

Nearest[list, x, n]
returns the n nearest items.

Nearest[list, x, {n, r}]
returns up to n nearest items that are not farther from x than r.

Nearest[{p1 -> q1, p2 -> q2, ...}, x]
returns q1, q2, ... but measures the distances using p1, p2, ...

Nearest[{p1, p2, ...} -> {q1, q2, ...}, x]
returns q1, q2, ... but measures the distances using p1, p2, ...

>> Nearest[{5, 2.5, 10, 11, 15, 8.5, 14}, 12]
{11}

Return all items within a distance of 5:

>> Nearest[{5, 2.5, 10, 11, 15, 8.5, 14}, 12, {All, 5}]
{11, 10, 14}

>> Nearest[{Blue -> "blue", White -> "white", Red -> "red", Green -> "
green"}, {Orange, Gray}]

{{red} , {white}}

>> Nearest[{{0, 1}, {1, 2}, {2, 3}} -> {a, b, c}, {1.1, 2}]
{b}

16.2. Numerical Data

16.2.1. BrayCurtisDistance

Bray-Curtis Dissimilarity (WMA)

BrayCurtisDistance[u, v]
returns the Bray-Curtis distance between u and v.

The Bray-Curtis distance is equivalent to Total[Abs[u-v]]/Total[Abs[u+v]].

164

https://reference.wolfram.com/language/ref/Nearest.html
https://en.wikipedia.org/wiki/Bray%E2%80%93Curtis_dissimilarity
https://reference.wolfram.com/language/ref/BrayCurtisDistance.html

>> BrayCurtisDistance[-7, 5]
6

>> BrayCurtisDistance[{-1, -1}, {10, 10}]
11
9

16.2.2. CanberraDistance

Canberra distance (WMA)

CanberraDistance[u, v]
returns the canberra distance between u and v, which is a weighted version of the Man-
hattan distance.

>> CanberraDistance[-7, 5]
1

>> CanberraDistance[{-1, -1}, {1, 1}]
2

16.2.3. ChessboardDistance

Chebyshev distance (WMA)

ChessboardDistance[u, v]
returns the chessboard distance (also known as Chebyshev distance) between u and v,
which is the number of moves a king on a chessboard needs to get from square u to
square v.

>> ChessboardDistance[-7, 5]
12

>> ChessboardDistance[{-1, -1}, {1, 1}]
2

16.2.4. CosineDistance

Cosine similarity (WMA)

CosineDistance[u, v]
returns the angular cosine distance between vectors u and v.

165

https://en.wikipedia.org/wiki/Canberra_distance
https://reference.wolfram.com/language/ref/CanberraDistance.html
https://en.wikipedia.org/wiki/Chebyshev_distance
https://reference.wolfram.com/language/ref/ChessboardDistance.html
https://en.wikipedia.org/wiki/Cosine_similarity
https://reference.wolfram.com/language/ref/CosineDistance.html

The cosine distance is equivalent to 1− (u.Conjugate[v])/(Norm[u]Norm[v]).

>> N[CosineDistance[{7, 9}, {71, 89}]]
0.0000759646

When the length of either vector is 0, the result is 0:

>> CosineDistance[{0.0, 0.0}, {x, y}]
0

>> CosineDistance[{1, 0}, {x, y}]

1− Conjugate [x]√
Abs [x]2 + Abs

[
y
]2

The order of the vectors influences the result:

>> CosineDistance[{x, y}, {1, 0}]

1− x√
Abs [x]2 + Abs

[
y
]2

Cosine distance includes a dot product scaled by norms:

>> CosineDistance[{a, b, c}, {x, y, z}]

1 +
−aConjugate [x]− bConjugate

[
y
]
− cConjugate [z]√

Abs [a]2 + Abs [b]2 + Abs [c]2
√

Abs [x]2 + Abs
[
y
]2 + Abs [z]2

A Cosine distance applied to complex numbers, uses Abs[] for Norm[] and complex multiplication for
dot product, 1 - u * Conjugate[v] / (Abs[u] Abs[v]):

>> CosineDistance[1+2I, 5]

1−
(

1
5

+
2I
5

)√
5

16.2.5. EuclideanDistance

Euclidean similarity (WMA)

EuclideanDistance[u, v]
returns the euclidean distance between u and v.

>> EuclideanDistance[-7, 5]
12

>> EuclideanDistance[{-1, -1}, {1, 1}]

2
√

2

166

https://en.wikipedia.org/wiki/Euclidean_distance
https://reference.wolfram.com/language/ref/EuclideanDistance.html

>> EuclideanDistance[{a, b}, {c, d}]√
Abs [a − c]2 + Abs [b − d]2

16.2.6. ManhattanDistance

Manhattan distance (WMA)

ManhattanDistance[u, v]
returns the Manhattan distance between u and v, which is the number of horizontal or
vertical moves in the gridlike Manhattan city layout to get from u to v.

>> ManhattanDistance[-7, 5]
12

>> ManhattanDistance[{-1, -1}, {1, 1}]
4

16.2.7. SquaredEuclideanDistance

WMA link

SquaredEuclideanDistance[u, v]
returns squared the euclidean distance between u and v.

>> SquaredEuclideanDistance[-7, 5]
144

>> SquaredEuclideanDistance[{-1, -1}, {1, 1}]
8

16.3. String Distances and Similarity Measures

16.3.1. DamerauLevenshteinDistance

WMA link

DamerauLevenshteinDistance[a, b]
returns the Damerau-Levenshtein distance of a and b, which is defined as the minimum
number of transpositions, insertions, deletions and substitutions needed to transformone
into the other. In contrast to EditDistance, DamerauLevenshteinDistance counts transpo-
sition of adjacent items (e.g. “ab” into “ba”) as one operation of change.

167

https://en.wikipedia.org/wiki/Taxicab_geometry
https://reference.wolfram.com/language/ref/ManhattanDistance.html
https://reference.wolfram.com/language/ref/SquaredEuclideanDistance.html
https://reference.wolfram.com/language/ref/DamerauLevenshteinDistance.html

>> DamerauLevenshteinDistance["kitten", "kitchen"]
2

>> DamerauLevenshteinDistance["abc", "ac"]
1

>> DamerauLevenshteinDistance["abc", "acb"]
1

>> DamerauLevenshteinDistance["azbc", "abxyc"]
3

The IgnoreCase option makes DamerauLevenshteinDistance ignore the case of letters:

>> DamerauLevenshteinDistance["time", "Thyme"]
3

>> DamerauLevenshteinDistance["time", "Thyme", IgnoreCase -> True]
2

DamerauLevenshteinDistance also works on lists:

>> DamerauLevenshteinDistance[{1, E, 2, Pi}, {1, E, Pi, 2}]
1

16.3.2. EditDistance

WMA link

EditDistance[a, b]
returns the Levenshtein distance of a and b, which is defined as the minimum number of
insertions, deletions and substitutions on the constituents of a and b needed to transform
one into the other.

>> EditDistance["kitten", "kitchen"]
2

>> EditDistance["abc", "ac"]
1

>> EditDistance["abc", "acb"]
2

>> EditDistance["azbc", "abxyc"]
3

The IgnoreCase option makes EditDistance ignore the case of letters:

>> EditDistance["time", "Thyme"]
3

168

https://reference.wolfram.com/language/ref/EditDistance.html

>> EditDistance["time", "Thyme", IgnoreCase -> True]
2

EditDistance also works on lists:

>> EditDistance[{1, E, 2, Pi}, {1, E, Pi, 2}]
2

16.3.3. HammingDistance

WMA link

HammingDistance[u, v]
returns the Hamming distance between u and v, i.e. the number of different elements. u
and v may be lists or strings.

>> HammingDistance[{1, 0, 1, 0}, {1, 0, 0, 1}]
2

>> HammingDistance["time", "dime"]
1

>> HammingDistance["TIME", "dime", IgnoreCase -> True]
1

169

https://reference.wolfram.com/language/ref/HammingDistance.html

17. Drawing Graphics

Contents

17.1. AbsoluteThickness 170
17.2. Arrow 171
17.3. Arrowheads 172
17.4. Circle 174
17.5. Directive 175
17.6. Disk 175
17.7. EdgeForm 177
17.8. FaceForm 178
17.9. FilledCurve 178
17.10. FontColor 179
17.11. Graphics 179
17.12. Inset 182
17.13. Large 182
17.14. Line 182

17.15. Medium 183
17.16. Offset 183
17.17. Point 183
17.18. PointSize 184
17.19. Polygon 185
17.20. Rectangle 187
17.21. RegularPolygon 187
17.22. Show 188
17.23. Small 189
17.24. Text 190
17.25. Thick 190
17.26. Thickness 190
17.27. Thin 191
17.28. Tiny 191

17.1. AbsoluteThickness

WMA link

AbsoluteThickness[p]
sets the line thickness for subsequent graphics primitives to p points.

>> Graphics[Table[{AbsoluteThickness[t], Line[{{20 t, 10}, {20 t, 80}}],
Text[ToString[t]<>"pt", {20 t, 0}]}, {t, 0, 10}]]

0pt 1pt 2pt 3pt 4pt 5pt 6pt 7pt 8pt 9pt 10pt

170

https://reference.wolfram.com/language/ref/AbsoluteThickness.html

17.2. Arrow

WMA link

Arrow[{p1, p2}]
represents a line from p1 to p2 that ends with an arrow at p2.

Arrow[{p1, p2}, s]
represents a line with arrow that keeps a distance of s from p1 and p2.

Arrow[{point1, point2}, {s1, s2}]
represents a line with arrow that keeps a distance of s1 from p1 and a distance of s2 from
p2.

Arrow[{point1, point2}, {s1, s2}]
represents a line with arrow that keeps a distance of s1 from p1 and a distance of s2 from
p2.

>> Graphics[Arrow[{{0,0}, {1,1}}]]

>> Graphics[{Circle[], Arrow[{{2, 1}, {0, 0}}, 1]}]

Arrows can also be drawn in 3D by giving point in three dimensions:

171

https://reference.wolfram.com/language/ref/Arrow.html

>> Graphics3D[Arrow[{{1, 1, -1}, {2, 2, 0}, {3, 3, -1}, {4, 4, 0}}]]

Keeping distances may happen across multiple segments:

>> Table[Graphics[{Circle[], Arrow[Table[{Cos[phi],Sin[phi]},{phi,0,2*Pi
,Pi/2}],{d, d}]}],{d,0,2,0.5}]

, , , ,



17.3. Arrowheads

WMA link

172

https://reference.wolfram.com/language/ref/Arrowheads.html

Arrowheads[s]
specifies that Arrow[] draws one arrow of size s (relative to width of image, defaults to
0.04).

Arrowheads[{spec1, spec2, ..., specn}]
specifies that Arrow[] draws n arrows as defined by spec1, spec2, ... specn.

Arrowheads[{{s}}]
specifies that one arrow of size s should be drawn.

Arrowheads[{{s, pos}}]
specifies that one arrow of size s should be drawn at position pos (for the arrow to be on
the line, pos has to be between 0, i.e. the start for the line, and 1, i.e. the end of the line).

Arrowheads[{{s, pos, g}}]
specifies that one arrow of size s should be drawn at position pos using Graphics g.

Arrows on both ends can be achieved using negative sizes:

>> Graphics[{Circle[],Arrowheads[{-0.04, 0.04}], Arrow[{{0, 0}, {2, 2}},
{1,1}]}]

You may also specify our own arrow shapes:

>> Graphics[{Circle[], Arrowheads[{{0.04, 1, Graphics[{Red, Disk[]}]}}],
Arrow[{{0, 0}, {Cos[Pi/3],Sin[Pi/3]}}]}]

173

>> Graphics[{Arrowheads[Table[{0.04, i/10, Graphics[Disk[]]},{i,1,10}]],
Arrow[{{0, 0}, {6, 5}, {1, -3}, {-2, 2}}]}]

17.4. Circle

WMA link

Circle[{cx, cy}, r]
draws a circle with center (c_x, c_y) and radius r.

Circle[{cx, cy}, {rx, ry}]
draws an ellipse.

Circle[{cx, cy}]
chooses radius 1.

Circle[]
chooses center (0, 0) and radius 1.

>> Graphics[{Red, Circle[{0, 0}, {2, 1}]}]

174

https://reference.wolfram.com/language/ref/Circle.html

>> Graphics[{Circle[], Disk[{0, 0}, {1, 1}, {0, 2.1}]}]

Target practice:

>> Graphics[Circle[], Axes-> True]

−1.0 −0.5 0.5 1.0

−1.0

−0.5

0.5

1.0

17.5. Directive

WMA link

Directive[g1, g2, ...]
represents a single graphics directive composed of the directives g1, g2, ...

17.6. Disk

WMA link

175

https://reference.wolfram.com/language/ref/Directive.html
https://reference.wolfram.com/language/ref/Disk.html

Disk[{cx, cy}, r]
fills a circle with center (cx, cy) and radius r.

Disk[{cx, cy}, {rx, ry}]
fills an ellipse.

Disk[{cx, cy}]
chooses radius 1.

Disk[]
chooses center (0, 0)’ and radius 1.

Disk[{x, y}, ..., {t1, t2}]
is a sector from angle t1 to t2.

>> Graphics[{Blue, Disk[{0, 0}, {2, 1}]}]

The outer border can be drawn using EdgeForm:

>> Graphics[{EdgeForm[Black], Red, Disk[]}]

Disk can also draw sectors of circles and ellipses

176

>> Graphics[Disk[{0, 0}, 1, {Pi / 3, 2 Pi / 3}]]

>> Graphics[{Blue, Disk[{0, 0}, {1, 2}, {Pi / 3, 5 Pi / 3}]}]

17.7. EdgeForm

WMA link

EdgeForm[g]
is a graphics directive that specifies that edges of filled graphics objects are to be drawn
using the graphics directive or list of directives g.

177

https://reference.wolfram.com/language/ref/EdgeForm.html

>> Graphics[{EdgeForm[{Thick, Green}], Disk[]}]

>> Graphics[{Style[Disk[],EdgeForm[{Thick,Red}]], Circle[{1,1}]}]

17.8. FaceForm

WMA link

FaceForm[g]
is a graphics directive that specifies that faces of filled graphics objects are to be drawn
using the graphics directive or list of directives g.

17.9. FilledCurve

WMA link

FilledCurve[{segment1, segment2 ...}]
represents a filled curve.

178

https://reference.wolfram.com/language/ref/FaceForm.html
https://reference.wolfram.com/language/ref/FilledCurve.html

>> Graphics[FilledCurve[{Line[{{0, 0}, {1, 1}, {2, 0}}]}]]

>> Graphics[FilledCurve[{BezierCurve[{{0, 0}, {1, 1}, {2, 0}}], Line
[{{3, 0}, {0, 2}}]}]]

17.10. FontColor

WMA link

FontColor
is an option for Style to set the font color.

17.11. Graphics

WMA link

Graphics[primitives, options]
represents a graphic.

Options include:

• Axes

• TicksStyle

• AxesStyle

• LabelStyle

179

https://reference.wolfram.com/language/ref/FontColor.html
https://reference.wolfram.com/language/ref/Graphics.html

• AspectRatio

• PlotRange

• PlotRangePadding

• ImageSize

• Background

>> Graphics[{Blue, Line[{{0,0}, {1,1}}]}]

Graphics supports PlotRange:

>> Graphics[{Rectangle[{1, 1}]}, Axes -> True, PlotRange -> {{-2, 1.5},
{-1, 1.5}}]

−2.0 −1.5 −1.0 −0.5 0.5 1.0 1.5

−1.0

−0.5

0.5

1.0

1.5

180

>> Graphics[{Rectangle[],Red,Disk[{1,0}]},PlotRange->{{0,1},{0,1}}]

Graphics produces GraphicsBox boxes:

>> Graphics[Rectangle[]] // ToBoxes // Head
GraphicsBox

The Background option allows to set the color of the background:

>> Graphics[{Green, Disk[]}, Background->RGBColor[.6, .7, 1.]]

In TeXForm, Graphics produces Asymptote figures:

>> Graphics[Circle[]] // TeXForm

\begin{asy}
usepackage(”amsmath”);
size(5.869cm, 5.8333cm);
draw(ellipse((175,175),175,175), rgb(0, 0, 0)+linewidth(1.0667));
clip(box((-0.53333,0.53333), (350.53,349.47)));
\end{asy}

181

17.12. Inset

WMA link

Text[obj]
represents an object obj inset in a graphic.

Text[obj, pos]
represents an object obj inset in a graphic at position pos.

Text[obj, pos, opos]
represents an object obj inset in a graphic at position pos, in away that the position opos
of obj coincides with pos in the enclosing graphic.

17.13. Large

WMA link

ImageSize -> Large
produces a large image.

17.14. Line

WMA link

Line[{point1, point2 ...}]
represents the line primitive.

Line[{{point11, point12, ...}, {point21, point22, ...}, ...}]
represents a number of line primitives.

>> Graphics[Line[{{0,1},{0,0},{1,0},{1,1}}]]

182

https://reference.wolfram.com/language/ref/Inset.html
https://reference.wolfram.com/language/ref/Large.html
https://reference.wolfram.com/language/ref/Line.html

>> Graphics3D[Line[{{0,0,0},{0,1,1},{1,0,0}}]]

17.15. Medium

WMA link

ImageSize -> Medium
produces a medium-sized image.

17.16. Offset

WMA link

Offset[{dx, dy}, position]
gives the position of a graphical object obtained by starting at the specified position and
then moving by absolute offset {dx,dy}.

17.17. Point

WMA link

Point[{point1, point2 ...}]
represents the point primitive.

Point[{{p11, p12, ...}, {p21, p22, ...}, ...}]
represents a number of point primitives.

183

https://reference.wolfram.com/language/ref/Medium.html
https://reference.wolfram.com/language/ref/Offset.html
https://reference.wolfram.com/language/ref/Point.html

Points are rendered if possible as circular regions. Their diameters can be specified using PointSize.

Points can be specified as {x, y}:

>> Graphics[Point[{0, 0}]]

>> Graphics[Point[Table[{Sin[t], Cos[t]}, {t, 0, 2. Pi, Pi / 15.}]]]

or as {x, y, z}:

>> Graphics3D[{Orange, PointSize[0.05], Point[Table[{Sin[t], Cos[t], 0},
{t, 0, 2 Pi, Pi / 15.}]]}]

17.18. PointSize

WMA link

PointSize[t]
sets the diameter of points to t, which is relative to the overall width.

PointSize can be used for both two- and three-dimensional graphics. The initial default pointsize is
0.008 for two-dimensional graphics and 0.01 for three-dimensional graphics.

>> Table[Graphics[{PointSize[r], Point[{0, 0}]}], {r, {0.02, 0.05, 0.1,
0.3}}] , , ,



184

https://reference.wolfram.com/language/ref/PointSize.html

>> Table[Graphics3D[{PointSize[r], Point[{0, 0, 0}]}], {r, {0.05, 0.1,
0.8}}]

, ,



17.19. Polygon

WMA link

Polygon[{point1, point2 ...}]
represents the filled polygon primitive.

Polygon[{{p11, p12, ...}, {p21, p22, ...}, ...}]
represents a number of filled polygon primitives.

A Right Triangle:

185

https://reference.wolfram.com/language/ref/Polygon.html

>> Graphics[Polygon[{{1,0},{0,0},{0,1}}]]

Notice that there is a line connecting from the last point to the first one.

A point is an element of the polygon if a ray from the point in any direction in the plane crosses the
boundary line segments an odd number of times.

>> Graphics[Polygon[{{150,0},{121,90},{198,35},{102,35},{179,90}}]]

>> Graphics3D[Polygon[{{0,0,0},{0,1,1},{1,0,0}}]]

186

17.20. Rectangle

WMA link

Rectangle[{xmin, ymin}]
represents a unit square with bottom-left corner at {xmin, ymin}.

’Rectangle[{xmin, ymin}, {xmax, ymax}]
is a rectangle extending from {xmin, ymin} to {xmax, ymax}.

>> Graphics[Rectangle[]]

>> Graphics[{Blue, Rectangle[{0.5, 0}], Orange, Rectangle[{0, 0.5}]}]

17.21. RegularPolygon

WMA link

187

https://reference.wolfram.com/language/ref/Rectangle.html
https://reference.wolfram.com/language/ref/RegularPolygon.html

RegularPolygon[n]
gives the regular polygon with n edges.

RegularPolygon[r, n]
gives the regular polygon with n edges and radius r.

RegularPolygon[{r, ϕ}, n]
gives the regular polygon with radius r with one vertex drawn at angle ϕ.

RegularPolygon[{x, y}, r, n]
gives the regular polygon centered at the position {x, y}.

>> Graphics[RegularPolygon[5]]

>> Graphics[{Yellow, Rectangle[], Orange, RegularPolygon[{1, 1}, {0.25,
0}, 3]}]

17.22. Show

WMA link

Show[graphics, options]
shows a list of graphics with the specified options added.

188

https://reference.wolfram.com/language/ref/Show.html

>> Show[{Plot[x, {x, 0, 10}], ListPlot[{1,2,3}]}]

2 4 6 8 10

2

4

6

8

10

, 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

, AspectRatio

− > Automatic, Axes− > False, AxesStyle− > {} , Background
− > Automatic, ImageSize− > Automatic, LabelStyle− > {} , PlotRange

− > Automatic, PlotRangePadding− > Automatic, TicksStyle− > {}



17.23. Small

WMA link

ImageSize -> Small
produces a small image.

189

https://reference.wolfram.com/language/ref/Small.html

17.24. Text

WMA link

Text[“text”, {x, y}]
draws text centered on position {x, y}.

>> Graphics[{Text["First", {0, 0}], Text["Second", {1, 1}]}, Axes->True,
PlotRange->{{-2, 2}, {-2, 2}}]

First

Second

−2 −1 1 2

−2

−1

1

2

17.25. Thick

WMA link

Thick
sets the line width for subsequent graphics primitives to 2pt.

17.26. Thickness

WMA link

Thickness[t]
sets the line thickness for subsequent graphics primitives to t times the size of the plot
area.

190

https://reference.wolfram.com/language/ref/Text.html
https://reference.wolfram.com/language/ref/Thick.html
https://reference.wolfram.com/language/ref/Thickness.html

>> Graphics[{Thickness[0.2], Line[{{0, 0}, {0, 5}}]}, Axes->True,
PlotRange->{{-5, 5}, {-5, 5}}]

−4 −2 2 4

−4

−2

2

4

17.27. Thin

WMA link

Thin
sets the line width for subsequent graphics primitives to 0.5pt.

17.28. Tiny

WMA link

ImageSize -> Tiny
produces a tiny image.

191

https://reference.wolfram.com/language/ref/Thin.html
https://reference.wolfram.com/language/ref/Tiny.html

18. Evaluation Control

Mathics3 takes an expression that it is given, and evaluates it. Built into the evaluation are primitives
that allow finer control over the process of evaluation in cases where it is needed.

Contents

18.1. $IterationLimit 192
18.2. $RecursionLimit 192
18.3. Evaluate 193
18.4. Hold 194
18.5. HoldComplete 194

18.6. HoldForm 194
18.7. ReleaseHold 194
18.8. Sequence 195
18.9. Unevaluated 196

18.1. $IterationLimit

WMA link

$IterationLimit
specifies the maximum number of times a reevaluation of an expression may happen.

Calculations terminated by $IterationLimit return $Aborted:

>> $IterationLimit
4096

The iteration limit protects against runaway definitions:

>> Block[{$IterationLimit = 20}, yin := yang; yang := yin; yin]
Iteration limit of 20 exceeded.
$Aborted

18.2. $RecursionLimit

WMA link

$RecursionLimit
specifies themaximum allowable recursion depth after which a calculation is terminated.

192

https://reference.wolfram.com/language/ref/$IterationLimit.html
https://reference.wolfram.com/language/ref/$RecursionLimit.html

Calculations terminated by $RecursionLimit return $Aborted:

>> a = a + a
Recursion depth of 200 exceeded.
$Aborted

>> $RecursionLimit
200

>> $RecursionLimit = x;
Cannot set $RecursionLimit to x; value must be an integer between 20
and 512; use the MATHICS_MAX_RECURSION_DEPTH environment variable to
allow higher limits.

>> $RecursionLimit = 512
512

>> a = a + a
Recursion depth of 512 exceeded.
$Aborted

18.3. Evaluate

WMA link

Evaluate[expr]
forces evaluation of expr, even if it occurs inside a held argument or a Hold form.

Create a function f with a held argument:

>> SetAttributes[f, HoldAll]

>> f[1 + 2]
f [1 + 2]

Evaluate forces evaluation of the argument, even though f has the HoldAll attribute:

>> f[Evaluate[1 + 2]]
f [3]

>> Hold[Evaluate[1 + 2]]
Hold [3]

>> HoldComplete[Evaluate[1 + 2]]
HoldComplete [Evaluate [1 + 2]]

>> Evaluate[Sequence[1, 2]]
Sequence [1, 2]

193

https://reference.wolfram.com/language/ref/Evaluate.html

18.4. Hold

WMA link

Hold[expr]
prevents expr from being evaluated.

>> Attributes[Hold]
{HoldAll, Protected}

18.5. HoldComplete

WMA link

HoldComplete[expr]
prevents expr from being evaluated, and also prevents Sequence objects from being
spliced into argument lists.

>> Attributes[HoldComplete]
{HoldAllComplete, Protected}

18.6. HoldForm

WMA link

HoldForm[expr]
is equivalent to Hold[$expr$], but prints as expr.

>> HoldForm[1 + 2 + 3]
1 + 2 + 3

HoldForm has attribute HoldAll:

>> Attributes[HoldForm]
{HoldAll, Protected}

18.7. ReleaseHold

WMA link

194

https://reference.wolfram.com/language/ref/Hold.html
https://reference.wolfram.com/language/ref/HoldComplete.html
https://reference.wolfram.com/language/ref/HoldForm.html
https://reference.wolfram.com/language/ref/ReleaseHold.html

ReleaseHold[expr]
removes any Hold, HoldForm, HoldPattern or HoldComplete head from expr.

>> x = 3;

>> Hold[x]
Hold [x]

>> ReleaseHold[Hold[x]]
3

>> ReleaseHold[y]
y

18.8. Sequence

WMA link

Sequence[x1, x2, ...]
represents a sequence of arguments to a function.

Sequence is automatically spliced in, except when a function has attribute SequenceHold (like assign-
ment functions).

>> f[x, Sequence[a, b], y]
f
[
x, a, b, y

]
>> Attributes[Set]

{HoldFirst, Protected, SequenceHold}

>> a = Sequence[b, c];

>> a
Sequence [b, c]

Apply Sequence to a list to splice in arguments:

>> list = {1, 2, 3};

>> f[Sequence @@ list]
f [1, 2, 3]

Inside Hold or a function with a held argument, Sequence is spliced in at the first level of the argument:

>> Hold[a, Sequence[b, c], d]
Hold [a, b, c, d]

If Sequence appears at a deeper level, it is left unevaluated:

195

https://reference.wolfram.com/language/ref/Sequence.html

>> Hold[{a, Sequence[b, c], d}]
Hold

[
{a, Sequence [b, c] , d}

]

18.9. Unevaluated

WMA link

Unevaluated[expr]
temporarily leaves expr in an unevaluated form when it appears as a function argument.

Unevaluated is automatically removed when function arguments are evaluated:

>> Sqrt[Unevaluated[x]]
√

x

>> Length[Unevaluated[1+2+3+4]]
4

Unevaluated has attribute HoldAllComplete:

>> Attributes[Unevaluated]
{HoldAllComplete, Protected}

Unevaluated is maintained for arguments to non-executed functions:

>> f[Unevaluated[x]]
f [Unevaluated [x]]

Likewise, its kept in flattened arguments and sequences:

>> Attributes[f] = {Flat};

>> f[a, Unevaluated[f[b, c]]]
f [a, Unevaluated [b] , Unevaluated [c]]

>> g[a, Sequence[Unevaluated[b], Unevaluated[c]]]
g [a, Unevaluated [b] , Unevaluated [c]]

However, unevaluated sequences are kept:

>> g[Unevaluated[Sequence[a, b, c]]]
g
[
Unevaluated

[
Sequence [a, b, c]

]]

196

https://reference.wolfram.com/language/ref/Unevaluated.html

19. Expression Structure

Contents

19.1. Expression Sizes and Signatures . . . 197
19.1.1. ByteCount 197
19.1.2. Hash 197
19.1.3. LeafCount 198

19.2. Head-Related Operations 198
19.2.1. Operate 198
19.2.2. Through 199

19.3. Structural Expression Functions . . . 199
19.3.1. Depth 199
19.3.2. FreeQ 200
19.3.3. Level 200
19.3.4. MapApply (@@@) 201
19.3.5. Null 202
19.3.6. SortBy 202

19.1. Expression Sizes and Signatures

19.1.1. ByteCount

WMA link

ByteCount[expr]
gives the internal memory space used by expr, in bytes.

The results may heavily depend on the Python implementation in use.

19.1.2. Hash

Hash function (WMA link)

Hash[expr]
returns an integer hash for the given expr.

Hash[expr, type]
returns an integer hash of the specified type for the given expr.
The types supported are “MD5”, “Adler32”, “CRC32”, “SHA”, “SHA224”, “SHA256”,
“SHA384”, and “SHA512”.

Hash[expr, type, f ormat]
Returns the hash in the specified format.

>> Hash["The Adventures of Huckleberry Finn"]
213425047836523694663619736686226550816

197

https://reference.wolfram.com/language/ref/ByteCount.html
https://en.wikipedia.org/wiki/Hash_function
https://reference.wolfram.com/language/ref/Hash.html

>> Hash["The Adventures of Huckleberry Finn", "SHA256"]
95092649594590384288057183408609254918934351811669818342876362244564858646638

>> Hash[1/3]
56073172797010645108327809727054836008

>> Hash[{a, b, {c, {d, e, f}}}]
135682164776235407777080772547528225284

>> Hash[SomeHead[3.1415]]
47205238268993602951487675588386522878

>> Hash[{a, b, c}, "xyzstr"]
Hash

[
{a, b, c} , xyzstr, Integer

]

19.1.3. LeafCount

WMA link

LeafCount[expr]
returns the total number of indivisible subexpressions in expr.

>> LeafCount[1 + x + y^a]
6

>> LeafCount[f[x, y]]
3

>> LeafCount[{1 / 3, 1 + I}]
7

>> LeafCount[Sqrt[2]]
5

>> LeafCount[100!]
1

19.2. Head-Related Operations

19.2.1. Operate

WMA link

Operate[p, expr]
applies p to the head of expr.

Operate[p, expr, n]
applies p to the nth head of expr.

198

https://reference.wolfram.com/language/ref/LeafCount.html
https://reference.wolfram.com/language/ref/Operate.html

>> Operate[p, f[a, b]]
p
[

f
]

[a, b]

The default value of n is 1:

>> Operate[p, f[a, b], 1]
p
[

f
]

[a, b]

With n=0, Operate acts like Apply:

>> Operate[p, f[a][b][c], 0]
p
[

f [a] [b] [c]
]

19.2.2. Through

WMA link

Through[p[f][x]]
gives p[f [x]].

>> Through[f[g][x]]
f
[
g [x]

]
>> Through[p[f, g][x]]

p
[

f [x] , g [x]
]

19.3. Structural Expression Functions

19.3.1. Depth

WMA link

Depth[expr]
gives the depth of expr.

The depth of an expression is defined as one plus the maximum number of Part indices required to
reach any part of expr, except for heads.

>> Depth[x]
1

>> Depth[x + y]
2

199

https://reference.wolfram.com/language/ref/Through.html
https://reference.wolfram.com/language/ref/Depth.html

>> Depth[{{{{x}}}}]
5

Complex numbers are atomic, and hence have depth 1:

>> Depth[1 + 2 I]
1

Depth ignores heads:

>> Depth[f[a, b][c]]
2

19.3.2. FreeQ

WMA link

FreeQ[expr, x]
returns True if expr does not contain the expression x.

>> FreeQ[y, x]
True

>> FreeQ[a+b+c, a+b]
False

>> FreeQ[{1, 2, a^(a+b)}, Plus]
False

>> FreeQ[a+b, x_+y_+z_]
True

>> FreeQ[a+b+c, x_+y_+z_]
False

>> FreeQ[x_+y_+z_][a+b]
True

19.3.3. Level

WMA link

Level[expr, levelspec]
gives a list of all subexpressions of expr at the level(s) specified by levelspec.

Level uses standard level specifications:

200

https://reference.wolfram.com/language/ref/FreeQ.html
https://reference.wolfram.com/language/ref/Level.html

n
levels 1 through n

Infinity
all levels from level 1

{n}
level n only

{m, n}
levels m through n

Level 0 corresponds to the whole expression.

A negative level -n consists of parts with depth n.

Level -1 is the set of atoms in an expression:

>> Level[a + b ^ 3 * f[2 x ^ 2], {-1}]
{a, b, 3, 2, x, 2}

>> Level[{{{{a}}}}, 3]
{{a} , {{a}} , {{{a}}}}

>> Level[{{{{a}}}}, -4]
{{{{a}}}}

>> Level[{{{{a}}}}, -5]
{}

>> Level[h0[h1[h2[h3[a]]]], {0, -1}]
{a, h3 [a] , h2 [h3 [a]] , h1 [h2 [h3 [a]]] , h0 [h1 [h2 [h3 [a]]]]}

Use the option Heads -> True to include heads:

>> Level[{{{{a}}}}, 3, Heads -> True]
{List, List, List, {a} , {{a}} , {{{a}}}}

>> Level[x^2 + y^3, 3, Heads -> True]{
Plus, Power, x, 2, x2, Power, y, 3, y3

}
>> Level[a ^ 2 + 2 * b, {-1}, Heads -> True]

{Plus, Power, a, 2, Times, 2, b}

>> Level[f[g[h]][x], {-1}, Heads -> True]
{ f , g, h, x}

>> Level[f[g[h]][x], {-2, -1}, Heads -> True]{
f , g, h, g [h] , x, f

[
g [h]

]
[x]
}

19.3.4. MapApply (@@@)

WMA link

201

https://reference.wolfram.com/language/ref/MapApply.html

MapApply[f , expr]
f @@@ $expr$

is equivalent to Apply[f, $expr$, {1}].

>> f @@@ {{a, b}, {c, d}}
{ f [a, b] , f [c, d]}

19.3.5. Null

WMA link

Null
is the implicit result of expressions that do not yield a result.

>> FullForm[a:=b]
Null

It is not displayed in StandardForm,

>> a:=b

in contrast to the empty string:

>> ""

19.3.6. SortBy

WMA link

SortBy[list, f]
sorts list (or the elements of any other expression) according to canonical ordering of the
keys that are extracted from the list’s elements using f . Chunks of elements that appear
the same under f are sorted according to their natural order (without applying f).

SortBy[f]
creates an operator function that, when applied, sorts by f .

>> SortBy[{{5, 1}, {10, -1}}, Last]
{{10,−1} , {5, 1}}

>> SortBy[Total][{{5, 1}, {10, -9}}]
{{10,−9} , {5, 1}}

202

https://reference.wolfram.com/language/ref/Null.html
https://reference.wolfram.com/language/ref/SortBy.html

20. File Formats

Built-in Importers.

Contents

20.1. HTML 203
20.1.1. HTML‘DataImport 203
20.1.2. HTML‘FullDataImport 203
20.1.3. HTML‘Parser‘HTMLGet . . . 204
20.1.4. HTML‘Parser‘HTMLGetString 204
20.1.5. HTML‘HyperlinksImport . . 204
20.1.6. HTML‘ImageLinksImport . . 204
20.1.7. HTML‘PlaintextImport 204
20.1.8. HTML‘SourceImport 205
20.1.9. HTML‘TitleImport 205

20.1.10. HTML‘XMLObjectImport . . 205
20.2. XML 205

20.2.1. XML‘PlaintextImport 205
20.2.2. XML‘TagsImport 206
20.2.3. XMLElement 206
20.2.4. XML‘Parser‘XMLGet 206
20.2.5. XML‘Parser‘XMLGetString . . 206
20.2.6. XMLObject 206
20.2.7. XML‘XMLObjectImport . . . 207

20.1. HTML

Basic implementation for a HTML importer.

20.1.1. HTML‘DataImport

HTML`DataImport[``filename']'
imports data from a HTML file.

>> Import["ExampleData/PrimeMeridian.html", "Data"][[1, 1, 2, 3]]
{Washington, D.C., 77°03�56.07� W (1897) or 77°04�02.24� W (NAD
27) or 77°04�01.16� W (NAD 83), New Naval Observatory meridian}

20.1.2. HTML‘FullDataImport

HTML`FullDataImport[``filename']'
imports data from a HTML file.

203

20.1.3. HTML‘Parser‘HTMLGet

HTMLGet[str]
Parses str as HTML code.

20.1.4. HTML‘Parser‘HTMLGetString

HTML`Parser`HTMLGetString[``string']'
parses HTML code contained in “string”.

20.1.5. HTML‘HyperlinksImport

HTML`HyperlinksImport[``filename']'
imports hyperlinks from a HTML file.

>> Import["ExampleData/PrimeMeridian.html", "Hyperlinks"][[1]]
/wiki/Prime_meridian_(Greenwich)

20.1.6. HTML‘ImageLinksImport

HTML`ImageLinksImport[``filename']'
imports links to the images included in a HTML file.

>> Import["ExampleData/PrimeMeridian.html", "ImageLinks"][[6]]
//upload.wikimedia.org/wikipedia/commons/thumb/d/d5/Prime_meridian.jpg/180px-Prime_meridian.jpg

20.1.7. HTML‘PlaintextImport

HTML`PlaintextImport[``filename']'
imports plane text from a HTML file.

>> DeleteDuplicates[StringCases[Import["ExampleData/PrimeMeridian.html
"], RegularExpression["Wiki[a-z]+"]]]

{Wikipedia, Wikidata, Wikibase, Wikimedia}

204

20.1.8. HTML‘SourceImport

HTML`SourceImport[``filename']'
imports source code from a HTML file.

>> DeleteDuplicates[StringCases[Import["ExampleData/PrimeMeridian.html",
"Source"], RegularExpression["<t[a-z]+>"]]]

{<title>, <tr>, <th>, <td>}

20.1.9. HTML‘TitleImport

HTML`TitleImport[``filename']'
imports the title string from a HTML file.

>> Import["ExampleData/PrimeMeridian.html", "Title"]
Prime meridian - Wikipedia

20.1.10. HTML‘XMLObjectImport

HTML`XMLObjectImport[``filename']'
imports XML objects from a HTML file.

>> Part[Import["ExampleData/PrimeMeridian.html", "XMLObject"], 2, 3, 1,
3, 2]

XMLElement
[
title, {} , {Prime meridian - Wikipedia}

]

20.2. XML

Basic implementation for an XML importer.

20.2.1. XML‘PlaintextImport

WMA link

XML`PlaintextImport[``string']'
parses “string” as XML code, and returns it as plain text.

205

https://reference.wolfram.com/language/ref/PlaintextImport.html

>> StringReplace[StringTake[Import["ExampleData/InventionNo1.xml", "
Plaintext"],31],FromCharacterCode[10]->"/"]

MuseScore 1.2/2012-09-12/5.7/40

20.2.2. XML‘TagsImport

XML`TagsImport[``string']'
parses “string” as XML code, and returns a list with the tags found.

>> Take[Import["ExampleData/InventionNo1.xml", "Tags"], 10]
{accidental, alter, arpeggiate, articulations, attributes, backup, bar-style, barline, beam, beat-type}

20.2.3. XMLElement

WMA link

XMLElement[tag, {attr1, val1, ...}, {data, ...}]
represents an element in symbolic XML.

20.2.4. XML‘Parser‘XMLGet

XMLGet[...]
Internal. Document me.

20.2.5. XML‘Parser‘XMLGetString

XML`Parser`XMLGetString[``string']'
parses “string” as XML code, and returns an XMLObject.

>> Head[XML`Parser`XMLGetString["<a>"]]
XMLObject [Document]

20.2.6. XMLObject

WMA link

206

https://reference.wolfram.com/language/ref/XMLElement.html
https://reference.wolfram.com/language/ref/XMLObject.html

XMLObject[``type']'
represents the head of an XML object in symbolic XML.

20.2.7. XML‘XMLObjectImport

XML`XMLObjectImport[``string']'
parses “string” as XML code, and returns a list of XMLObjects found.

>> Part[Import["ExampleData/InventionNo1.xml", "XMLObject"], 2, 3, 1]
XMLElement

[
identification, {} ,

{
XMLElement

[
encoding, {} ,

{
XMLElement

[
software, {} , {MuseScore

1.2}
]

, XMLElement
[
encoding-date, {} , {2012-09-12}

]}]}]
>> Part[Import["ExampleData/Namespaces.xml"], 2]

XMLElement
[
book, {{http://www.w3.org/2000/xmlns/, xmlns}

− > urn:loc.gov:books} ,
{
XMLElement

[
title, {} , {Cheaper by the Dozen}

]
, XMLElement

[
{urn:ISBN:0- 395-36 341-6, number} , {} , {1568491379}

]
, XMLElement

[
notes, {} ,

{
XMLElement

[
p, {{http://www.w3.org/2000/xmlns/, xmlns}−> http://www.w3.org/1999/xhtml} ,

{
This

is a, XMLElement
[
i, {} , {funny, book!}

]}]}]}]

207

21. File Operations

Contents

21.1. File Path Manipulation 208
21.1.1. FileNameDrop 208

21.2. File Properties 209
21.2.1. FileDate 209
21.2.2. FileHash 209

21.2.3. FileType 210
21.2.4. SetFileDate 210

21.3. File Utilities 211
21.3.1. FindList 211

21.1. File Path Manipulation

21.1.1. FileNameDrop

WMA link

FileNameDrop[“path”, n]
drops the first n path elements in the file name path.

FileNameDrop[“path”, -n]
drops the last n path elements in the file name path.

FileNameDrop[“path”, {m, n}]
drops elements m through n path elements in the file name path.

FileNameDrop[“path”]
drops the last path elements in the file name path.

>> path = FileNameJoin[{"a","b","c"}]
a/b/c

>> FileNameDrop[path, -1]
a/b

A shorthand for the above:

>> FileNameDrop[path]
a/b

208

https://reference.wolfram.com/language/ref/FileNameDrop.html

21.2. File Properties

21.2.1. FileDate

WMA link

FileDate[f ile, types]
returns the time and date at which the file was last modified.

>> FileDate["ExampleData/sunflowers.jpg"]
{2023, 1, 14, 22, 50, 39.}

>> FileDate["ExampleData/sunflowers.jpg", "Access"]
{2025, 9, 3, 3, 42, 53.}

>> FileDate["ExampleData/sunflowers.jpg", "Creation"]
Missing

[
NotApplicable

]
>> FileDate["ExampleData/sunflowers.jpg", "Change"]

{2024, 10, 5, 12, 50, 53.}

>> FileDate["ExampleData/sunflowers.jpg", "Modification"]
{2023, 1, 14, 22, 50, 39.}

>> FileDate["ExampleData/sunflowers.jpg", "Rules"]{
Access− > {2025, 9, 3, 3, 42, 53.} , Creation− > Missing

[
NotApplicable

]
, Change− > {2024, 10, 5, 12, 50, 53.} , Modification

− > {2023, 1, 14, 22, 50, 39.}
}

21.2.2. FileHash

WMA link

FileHash[f ile]
returns an integer hash for the given f ile.

FileHash[f ile, type]
returns an integer hash of the specified type for the given f ile.
The types supported are “MD5”, “Adler32”, “CRC32”, “SHA”, “SHA224”, “SHA256”,
“SHA384”, and “SHA512”.

FileHash[f ile, type, f ormat]
gives a hash code in the specified format.

>> FileHash["ExampleData/sunflowers.jpg"]
109937059621979839952736809235486742106

>> FileHash["ExampleData/sunflowers.jpg", "MD5"]
109937059621979839952736809235486742106

209

https://reference.wolfram.com/language/ref/FileDate.html
https://reference.wolfram.com/language/ref/FileHash.html

>> FileHash["ExampleData/sunflowers.jpg", "Adler32"]
1607049478

>> FileHash["ExampleData/sunflowers.jpg", "SHA256"]
111619807552579450300684600241129773909359865098672286468229443390003894913065

21.2.3. FileType

WMA link

FileType[“ f ile”]
gives the type of a file, a string. This is typically File, Directory or None.

>> FileType["ExampleData/sunflowers.jpg"]
File

>> FileType["ExampleData"]
Directory

>> FileType["ExampleData/nonexistent"]
None

21.2.4. SetFileDate

WMA link

SetFileDate[“ f ile”]
set the file access and modification dates of f ile to the current date.

SetFileDate[“ f ile”, date]
set the file access and modification dates of f ile to the specified date list.

SetFileDate[“ f ile”, date, “type”]
set the file date of f ile to the specified date list. The “type” can be one of “Access”,
“Creation”, “Modi f ication”, or All.

Create a temporary file (for example purposes)

>> tmpfilename = $TemporaryDirectory <> "/tmp0";

>> Close[OpenWrite[tmpfilename]];

>> SetFileDate[tmpfilename, {2002, 1, 1, 0, 0, 0.}, "Access"];

210

https://reference.wolfram.com/language/ref/FileType.html
https://reference.wolfram.com/language/ref/SetFileDate.html

21.3. File Utilities

21.3.1. FindList

WMA link

FindList[f ile, text]
returns a list of all lines in f ile that contain text.

FindList[f ile, {text1, text2, ...}]
returns a list of all lines in f ile that contain any of the specified string.

FindList[{ f ile1, f ile2, ...}, ...]
returns a list of all lines in any of the f ilei that contain the specified strings.

>> stream = FindList["ExampleData/EinsteinSzilLetter.txt", "uranium"];

>> Length[stream]
7

>> FindList["ExampleData/EinsteinSzilLetter.txt", "uranium", 1]
{in manuscript, leads me to expect that the element uranium may be turned into}

211

https://reference.wolfram.com/language/ref/FindList.html

22. Forms of Input and Output

A Form format specifies the way Mathics Expression input is read or output written.

The variable $OutputForms’ 22.2.1 has a list of Forms defined.

See also WMA link.

Contents

22.1. Form Functions 212
22.1.1. BaseForm 212
22.1.2. FullForm 213
22.1.3. InputForm 213
22.1.4. MathMLForm 214
22.1.5. MatrixForm 214
22.1.6. NumberForm 214
22.1.7. OutputForm 215
22.1.8. PythonForm 216
22.1.9. StandardForm 216
22.1.10. SympyForm 217

22.1.11. TableForm 217
22.1.12. TeXForm 219
22.1.13. TraditionalForm 219

22.2. Form Variables 219
22.2.1. $OutputForms 219
22.2.2. $PrintForms 219

22.3. Forms which are not in
$OutputForms 220

22.3.1. SequenceForm 220
22.3.2. StringForm 220

22.1. Form Functions

22.1.1. BaseForm

WMA link

BaseForm[expr, n]
prints numbers in expr in base n.

A binary integer:

>> BaseForm[33, 2]
SubscriptBox [100001, 2]

A hexadecimal number:

>> BaseForm[234, 16]
SubscriptBox [ea, 16]

212

https://reference.wolfram.com/language/tutorial/TextualInputAndOutput.html#12368
https://reference.wolfram.com/language/ref/BaseForm.html

A binary real number:

>> BaseForm[12.3, 2]
SubscriptBox [1100.01001100110011001, 2]

>> BaseForm[-42, 16]
SubscriptBox [-2a, 16]

>> BaseForm[x, 2]
x

>> BaseForm[12, 3] // FullForm
BaseForm [12, 3]

Bases must be between 2 and 36:

>> BaseForm[12, -3]

>> BaseForm[12, 100]

22.1.2. FullForm

WMA link

FullForm[expr]
displays the underlying form of expr.

>> FullForm[a + b * c]
Plus [a, Times [b, c]]

>> FullForm[2/3]
Rational [2, 3]

>> FullForm["A string"]
“A string”

22.1.3. InputForm

WMA link

InputForm[expr]
displays expr in an unambiguous form suitable for input.

>> InputForm[a + b * c]
a + b ∗ c

213

https://reference.wolfram.com/language/ref/FullForm.html
https://reference.wolfram.com/language/ref/InputForm.html

>> InputForm["A string"]
“A string”

>> InputForm[f'[x]]
Derivative [1]

[
f
]

[x]

>> InputForm[Derivative[1, 0][f][x]]
Derivative [1, 0]

[
f
]

[x]

22.1.4. MathMLForm

WMA link

MathMLForm[expr]
displays expr as a MathML expression.

>> MathMLForm[HoldForm[Sqrt[a^3]]]
<math display=”block”><msqrt> <msup><mi>a</mi>
<mn>3</mn></msup> </msqrt></math>

>> MathMLForm[\[Mu]]
<math display=”block”><mi>µ</mi></math>

This can causes the TeX to fail # » MathMLForm[Graphics[Text[“µ”]]] # = ...

= ...

22.1.5. MatrixForm

WMA link

MatrixForm[m]
displays a matrix m, hiding the underlying list structure.

>> Array[a,{4,3}]//MatrixForm
a [1, 1] a [1, 2] a [1, 3]
a [2, 1] a [2, 2] a [2, 3]
a [3, 1] a [3, 2] a [3, 3]
a [4, 1] a [4, 2] a [4, 3]



22.1.6. NumberForm

WMA link

214

https://reference.wolfram.com/language/ref/MathMLForm.html
https://reference.wolfram.com/language/ref/MatrixForm.html
https://reference.wolfram.com/language/ref/NumberForm.html

NumberForm[expr, n]
prints a real number expr with n-digits of precision.

NumberForm[expr, {n, f }]
prints with n-digits and f digits to the right of the decimal point.

>> NumberForm[N[Pi], 10]
3.141592654

>> NumberForm[N[Pi], {10, 6}]
3.141593

>> NumberForm[N[Pi]]
3.14159

22.1.7. OutputForm

WMA link

OutputForm[expr]
displays expr in a plain-text form.

>> OutputForm[f'[x]]
f ′ [x]

>> OutputForm[Derivative[1, 0][f][x]]
Derivative [1, 0]

[
f
]

[x]

OutputForm is used by default:

>> OutputForm[{"A string", a + b}]
{A string, a + b}

>> {"A string", a + b}
{A string, a + b}

215

https://reference.wolfram.com/language/ref/OutputForm.html

>> OutputForm[Graphics[Rectangle[]]]

22.1.8. PythonForm

PythonForm[expr]
returns an approximate equivalent of expr in Python, when that is possible. We assume
that Python has SymPy imported. No explicit import will be include in the result.

>> PythonForm[Infinity]
math.inf

>> PythonForm[Pi]
sympy.pi

>> E // PythonForm
sympy.E

>> {1, 2, 3} // PythonForm
(1, 2, 3)

22.1.9. StandardForm

WMA link

StandardForm[expr]
displays expr in the default form.

>> StandardForm[a + b * c]
a + bc

>> StandardForm["A string"]
A string

216

https://reference.wolfram.com/language/ref/StandardForm.html

>> f'[x]
f ′ [x]

22.1.10. SympyForm

SympyForm[expr]
returns an Sympy expr in Python. Sympy is used internally to implement a number of
Mathics functions, like Simplify.

>> SympyForm[Pi^2]
pi**2

>> E^2 + 3E // SympyForm
exp(2) + 3*E

22.1.11. TableForm

WMA link

TableForm[expr]
displays expr as a table.

>> TableForm[Array[a, {3,2}],TableDepth->1]
{a [1, 1] , a [1, 2]}
{a [2, 1] , a [2, 2]}
{a [3, 1] , a [3, 2]}

A table of Graphics:

217

https://reference.wolfram.com/language/ref/TableForm.html

>> Table[Style[Graphics[{EdgeForm[{Black}], RGBColor[r,g,b], Rectangle
[]}], ImageSizeMultipliers->{0.2, 1}], {r,0,1,1/2}, {g,0,1,1/2}, {b
,0,1,1/2}] // TableForm

218

22.1.12. TeXForm

WMA link

TeXForm[expr]
displays expr using TeX math mode commands.

>> TeXForm[HoldForm[Sqrt[a^3]]]
\sqrt{a∧3}

22.1.13. TraditionalForm

WMA link

TraditionalForm[expr]
displays expr in a format similar to the traditional mathematical notation, where function
evaluations are represented by brackets instead of square brackets.

22.2. Form Variables

22.2.1. $OutputForms

$OutputForms
contains the list of all output forms. It is updated automatically when new OutputForms
are defined by setting format values.

>> $OutputForms
{TableForm, FullForm, TeXForm, SympyForm, TraditionalForm, BaseForm, PythonForm, StandardForm, MatrixForm, InputForm, MathMLForm, OutputForm, MyForm}

22.2.2. $PrintForms

$PrintForms
contains the list of basic print forms. It is updated automatically when new PrintForms
are defined by setting format values.

>> $PrintForms
{FullForm, TeXForm, SympyForm, TraditionalForm, PythonForm, StandardForm, InputForm, MathMLForm, OutputForm, MyForm}

219

https://reference.wolfram.com/language/ref/TeXForm.html
https://reference.wolfram.com/language/ref/TraditionalForm.html

Suppose now that we want to add a new format MyForm. Initially, it does not belong to $PrintForms:

>> MemberQ[$PrintForms, MyForm]
True

Now, let’s define a format rule:

>> Format[F[x_], MyForm] := "F<<" <> ToString[x] <> ">>"

Now, the new format belongs to the $PrintForms list

>> MemberQ[$PrintForms, MyForm]
True

22.3. Forms which are not in $OutputForms

22.3.1. SequenceForm

WMA link

SequenceForm[expr1, expr2, ..]
format the textual concatenation of the printed forms of expi. SequenceForm

has been superseded by Row 34.12 and Text (which is not implemented yet).

>> SequenceForm["[", "x = ", 56, "]"]
[x = 56]

22.3.2. StringForm

WMA link

StringForm[str, expr1, expr2, ...]
displays the string str, replacing placeholders in str with the corresponding expressions.

>> StringForm["`1` bla `2` blub `` bla `2`", a, b, c]
a bla b blub c bla b

220

https://reference.wolfram.com/language/ref/SequenceForm.html
https://reference.wolfram.com/language/ref/StringForm.html

23. Functional Programming

Functional programming is a programming paradigmwhere programs are constructed by applying and
composing functions.

It is made richer by expressions like f [x] being treating as symbolic data.

This is term is often used in contrast to Procedural programming.

Contents

23.1. Applying Functions to Lists 221
23.1.1. Apply (@@) 221
23.1.2. Map (/@) 222
23.1.3. MapAt 223
23.1.4. MapIndexed 224
23.1.5. MapThread 225
23.1.6. Scan 225
23.1.7. Thread 226

23.2. Function Application 226
23.2.1. Function (&) 226
23.2.2. Slot 227
23.2.3. SlotSequence 228

23.3. Functional Composition and
Operator Forms 228

23.3.1. Composition 229
23.3.2. Identity 229

23.4. Iteratively Applying Functions . . . 229
23.4.1. FixedPoint 230
23.4.2. FixedPointList 230
23.4.3. Fold 231
23.4.4. FoldList 231
23.4.5. Nest 232
23.4.6. NestList 232
23.4.7. NestWhile 233

23.1. Applying Functions to Lists

Many computations can be conveniently specified in terms of applying functions in parallel to many
elements in a list.

Many mathematical functions are automatically taken to be “listable”, so that they are always applied
to every element in a list.

23.1.1. Apply (@@)

WMA link

Apply[f , expr]
f @@ $expr$

replaces the head of expr with f .
Apply[f , expr, levelspec]

applies f on the parts specified by levelspec.

221

https://en.wikipedia.org/wiki/Functional_programming
https://reference.wolfram.com/language/ref/Apply.html

>> f @@ {1, 2, 3}
f [1, 2, 3]

>> Plus @@ {1, 2, 3}
6

The head of expr need not be List:

>> f @@ (a + b + c)
f [a, b, c]

Apply on level 1:

>> Apply[f, {a + b, g[c, d, e * f], 3}, {1}]{
f [a, b] , f

[
c, d, e f

]
, 3
}

The default level is 0:

>> Apply[f, {a, b, c}, {0}]
f [a, b, c]

Range of levels, including negative level (counting from bottom):

>> Apply[f, {{{{{a}}}}}, {2, -3}]{{
f
[

f
[
{a}
]]}}

Convert all operations to lists:

>> Apply[List, a + b * c ^ e * f[g], {0, Infinity}]
{a, {b, {g} , {c, e}}}

23.1.2. Map (/@)

WMA link

Map[f , expr] or f /@ $expr$
applies f to each part on the first level of expr.

Map[f , expr, levelspec]
applies f to each level specified by levelspec of expr.

>> f /@ {1, 2, 3}
{ f [1] , f [2] , f [3]}

>> #^2& /@ {1, 2, 3, 4}
{1, 4, 9, 16}

222

https://reference.wolfram.com/language/ref/Map.html

Map f on the second level:

>> Map[f, {{a, b}, {c, d, e}}, {2}]
{{ f [a] , f [b]} , { f [c] , f [d] , f [e]}}

Include heads:

>> Map[f, a + b + c, Heads->True]
f [Plus]

[
f [a] , f [b] , f [c]

]

23.1.3. MapAt

WMA link

MapAt[f , expr, n]
applies f to the element at position n in expr. If n is negative, the position is counted from
the end.

MapAt[f, expr, {i, j ...}]
applies f to the part of expr at position {i, j, ...}.

MapAt[f , pos]
represents an operator form of MapAt that can be applied to an expression.

Map function f to the second element of an simple flat list:

>> MapAt[f, {a, b, c}, 2]
{a, f [b] , c}

Above, we specified a simple integer value 2. In general, the expression can be an arbitrary vector.

Using MapAt with Function[0], we can zero a value or values in a vector:

>> MapAt[0&, {{1, 1}, {1, 1}}, {2, 1}]
{{1, 1} , {0, 1}}

When the dimension of the replacement expression is less than the vector, that element’s dimension
changes:

>> MapAt[0&, {{0, 1}, {1, 0}}, 2]
{{0, 1} , 0}

So now compare what happen when using {{2}, {1}} instead of {2, 1} above:

>> MapAt[0&, {{0, 1}, {1, 0}}, {{2}, {1}}]
{0, 0}

Map f onto the last element of a list:

223

https://reference.wolfram.com/language/ref/MapAt.html

>> MapAt[f, {a, b, c}, -1]
{a, b, f [c]}

Same as above, but use the operator form of MapAt:

>> MapAt[f, -1][{a, b, c}]
{a, b, f [c]}

Map f onto at the second position of an association:

>> MapAt[f, <|"a" -> 1, "b" -> 2, "c" -> 3, "d" -> 4|>, 2]
{a− > 1, b− > f [2] , c− > 3, d− > 4}

Same as above, but select the second-from-the-end position:

>> MapAt[f, <|"a" -> 1, "b" -> 2, "c" -> 3, "d" -> 4|>, -2]
{a− > 1, b− > 2, c− > f [3] , d− > 4}

23.1.4. MapIndexed

WMA link

MapIndexed[f , expr]
applies f to each part on the first level of expr, including the part positions in the call to
f .

MapIndexed[f , expr, levelspec]
applies f to each level specified by levelspec of expr.

>> MapIndexed[f, {a, b, c}]{
f
[
a, {1}

]
, f
[
b, {2}

]
, f
[
c, {3}

]}
Include heads (index 0):

>> MapIndexed[f, {a, b, c}, Heads->True]
f
[
List, {0}

] [
f
[
a, {1}

]
, f
[
b, {2}

]
, f
[
c, {3}

]]
Map on levels 0 through 1 (outer expression gets index {}):

>> MapIndexed[f, a + b + c * d, {0, 1}]
f
[

f
[
a, {1}

]
+ f
[
b, {2}

]
+ f
[
cd, {3}

]
, {}
]

Get the positions of atoms in an expression (convert operations to List first to disable Listable func-
tions):

>> expr = a + b * f[g] * c ^ e;

224

https://reference.wolfram.com/language/ref/MapIndexed.html

>> listified = Apply[List, expr, {0, Infinity}];

>> MapIndexed[#2 &, listified, {-1}]
{{1} , {{2, 1} , {{2, 2, 1}} , {{2, 3, 1} , {2, 3, 2}}}}

Replace the heads with their positions, too:

>> MapIndexed[#2 &, listified, {-1}, Heads -> True]
{0}

[
{1} , {2, 0}

[
{2, 1} , {2, 2, 0}

[
{2, 2, 1}

]
, {2, 3, 0}

[
{2, 3, 1} , {2, 3, 2}

]]]
The positions are given in the same format as used by Extract. Thus, mapping Extract on the indices
given by MapIndexed re-constructs the original expression:

>> MapIndexed[Extract[expr, #2] &, listified, {-1}, Heads -> True]
a + b f

[
g
]

ce

23.1.5. MapThread

WMA link

’MapThread[f , {{a1, a2, ...}, {b1, b2, ...}, ...}]
returns {f[a_1, b_1, ...], f[a_2, b_2, ...], ...}.

MapThread[f , {expr1, expr2, ...}, n]
applies f at level n.

>> MapThread[f, {{a, b, c}, {1, 2, 3}}]
{ f [a, 1] , f [b, 2] , f [c, 3]}

>> MapThread[f, {{{a, b}, {c, d}}, {{e, f}, {g, h}}}, 2]{{
f [a, e] , f

[
b, f
]}

,
{

f
[
c, g
]

, f [d, h]
}}

23.1.6. Scan

WMA link

Scan[f , expr]
applies f to each element of expr and returns Null.

Scan[f , expr, levelspec]
applies f to each level specified by levelspec of expr.

>> Scan[Print, {1, 2, 3}]
1

2

3

225

https://reference.wolfram.com/language/ref/MapThread.html
https://reference.wolfram.com/language/ref/Scan.html

23.1.7. Thread

WMA link

Thread[f[args]]
threads f over any lists that appear in args.

Thread[f[args], h]
threads over any parts with head h.

>> Thread[f[{a, b, c}]]
{ f [a] , f [b] , f [c]}

>> Thread[f[{a, b, c}, t]]
{ f [a, t] , f [b, t] , f [c, t]}

>> Thread[f[a + b + c], Plus]
f [a] + f [b] + f [c]

Functions with attribute Listable are automatically threaded over lists:

>> {a, b, c} + {d, e, f} + g
{a + d + g, b + e + g, c + f + g}

23.2. Function Application

23.2.1. Function (&)

WMA link

Function[body]
$body$ &

represents a pure function with parameters #1, #2, etc.
Function[{x1, x2, ...}, body]

represents a pure function with parameters x1, x2, etc.
Function[{x1, x2, ...}, body, attr]

assume that the function has the attributes attr.

>> f := # ^ 2 &

>> f[3]
9

>> #^3& /@ {1, 2, 3}
{1, 8, 27}

>> #1+#2&[4, 5]
9

226

https://reference.wolfram.com/language/ref/Thread.html
https://reference.wolfram.com/language/ref/Function.html

You can use Function with named parameters:

>> Function[{x, y}, x * y][2, 3]
6

Parameters are renamed, when necessary, to avoid confusion:

>> Function[{x}, Function[{y}, f[x, y]]][y]
Function

[
{y$} , f

[
y, y$

]]
>> Function[{y}, f[x, y]] /. x->y

Function
[
{y} , f

[
y, y
]]

>> Function[y, Function[x, y^x]][x][y]
xy

>> Function[x, Function[y, x^y]][x][y]
xy

Slots in inner functions are not affected by outer function application:

>> g[#] & [h[#]] & [5]
g [h [5]]

In the evaluation process, the attributes associated with an Expression are determined by its Head. If
the Head is also a non-atomic Expression, in general, no Attribute is assumed. In particular, it is what
happens when the head of the expression has the form:

“Function[body]“ or: “Function[vars, body]“

>> h := Function[{x}, Hold[1+x]]

>> h[1 + 1]
Hold [1 + 2]

Notice that Hold in the body prevents the evaluation of 1 + x, but not the evaluation of 1 + 1. To avoid
that evaluation, of its arguments, the Head should have the attribute HoldAll. This behavior can be
obtained by using the three arguments form version of this expression:

>> h:= Function[{x}, Hold[1+x], HoldAll]

>> h[1+1]
Hold [1 + (1 + 1)]

In this case, the attribute HoldAll is assumed, preventing the evaluation of the argument 1 + 1 before
passing it to the function body.

23.2.2. Slot

WMA link

227

https://reference.wolfram.com/language/ref/Slot.html

#n
represents the n-th argument to a pure function.

#
is short-hand for #1.

#0
represents the pure function itself.

>> #
#1

Unused arguments are simply ignored:

>> {#1, #2, #3}&[1, 2, 3, 4, 5]
{1, 2, 3}

Recursive pure functions can be written using #0:

>> If[#1<=1, 1, #1 #0[#1-1]]& [10]
3628800

23.2.3. SlotSequence

WMA link

##
is the sequence of arguments supplied to a pure function.

##n
starts with the n-th argument.

>> Plus[##]& [1, 2, 3]
6

>> Plus[##2]& [1, 2, 3]
5

>> FullForm[##]
SlotSequence [1]

23.3. Functional Composition and Operator Forms

Functional Composition is a way to combine simple functions to build more complicated ones. Like the
usual composition of functions in mathematics, the result of each function is passed as the argument of
the next, and the result of the last one is the result of the whole.

The symbolic structure of Mathics3 makes it easy to create “operators” that can be composed and ma-
nipulated symbolically—forming “pipelines” of operations—and then applied to arguments.

228

https://reference.wolfram.com/language/ref/SlotSequence.html
https://en.wikipedia.org/wiki/Function_composition_(computer_science)

Some built-in functions also directly support a “curried” form, in which they can immediately be given
as symbolic operators.

23.3.1. Composition

WMA link

Composition[f , g]
returns the composition of two functions f and g.

>> Composition[f, g][x]
f
[
g [x]

]
>> Composition[f, g, h][x, y, z]

f
[
g
[
h
[
x, y, z

]]]
>> Composition[]

Identity

>> Composition[][x]
x

>> Attributes[Composition]
{Flat, OneIdentity, Protected}

>> Composition[f, Composition[g, h]]
Composition

[
f , g, h

]

23.3.2. Identity

WMA link

Identity[x]
is the identity function, which returns x unchanged.

>> Identity[x]
x

>> Identity[x, y]
Identity

[
x, y
]

23.4. Iteratively Applying Functions

Functional iteration is an elegant way to represent repeated operations that is used a lot.

229

https://reference.wolfram.com/language/ref/Composition.html
https://reference.wolfram.com/language/ref/Identity.html

23.4.1. FixedPoint

WMA link

FixedPoint[f , expr]
starting with expr, iteratively applies f until the result no longer changes.

FixedPoint[f , expr, n]
performs at most n iterations. The same that using MaxIterations− > n

>> FixedPoint[Cos, 1.0]
0.739085

>> FixedPoint[#+1 &, 1, 20]
21

23.4.2. FixedPointList

WMA link

FixedPointList[f , expr]
starting with expr, iteratively applies f until the result no longer changes, and returns a
list of all intermediate results.

FixedPointList[f , expr, n]
performs at most n iterations.

>> FixedPointList[Cos, 1.0, 4]
{1., 0.540302, 0.857553, 0.65429, 0.79348}

Observe the convergence of Newton’s method for approximating square roots:

>> newton[n_] := FixedPointList[.5(# + n/#)&, 1.];

>> newton[9]
{1., 5., 3.4, 3.02353, 3.00009, 3., 3., 3.}

Compute the Hailstone Number: for 14:

>> collatz[1] := 1;

>> collatz[x_ ? EvenQ] := x / 2;

>> collatz[x_] := 3 x + 1;

>> list = FixedPointList[collatz, 14]
{14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 1}

Plot this:

230

https://reference.wolfram.com/language/ref/FixedPoint.html
https://reference.wolfram.com/language/ref/FixedPointList.html
https://mathworld.wolfram.com/HailstoneNumber.html

>> ListLinePlot[list]

5 10 15

10

20

30

40

50

23.4.3. Fold

WMA link

Fold[f , x, list]
returns the result of iteratively applying the binary operator f to each element of list,
starting with x.

Fold[f , list]
is equivalent to Fold[f, First[$list$], Rest[$list$]].

>> Fold[Plus, 5, {1, 1, 1}]
8

>> Fold[f, 5, {1, 2, 3}]
f
[

f
[

f [5, 1] , 2
]

, 3
]

23.4.4. FoldList

WMA link

FoldList[f , x, list]
returns a list starting with x, where each element is the result of applying the binary
operator f to the previous result and the next element of list.

FoldList[f , list]
is equivalent to FoldList[f, First[$list$], Rest[$list$]].

>> FoldList[f, x, {1, 2, 3}]{
x, f [x, 1] , f

[
f [x, 1] , 2

]
, f
[

f
[

f [x, 1] , 2
]

, 3
]}

>> FoldList[Times, {1, 2, 3}]
{1, 2, 6}

231

https://reference.wolfram.com/language/ref/Fold.html
https://reference.wolfram.com/language/ref/FoldList.html

23.4.5. Nest

WMA link

Nest[f , expr, n]
starting with expr, iteratively applies f n times and returns the final result.

>> Nest[f, x, 3]
f
[

f
[

f [x]
]]

>> Nest[(1+#)^ 2 &, x, 2](
1 + (1 + x)2

)2

>> Nest[Subsuperscript[#,#,#]&,0,5]

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

00
0

23.4.6. NestList

WMA link

NestList[f , expr, n]
starting with expr, iteratively applies f n times and returns a list of all intermediate re-
sults.

>> NestList[f, x, 3]{
x, f [x] , f

[
f [x]

]
, f
[

f
[

f [x]
]]}

>> NestList[2 # &, 1, 8]
{1, 2, 4, 8, 16, 32, 64, 128, 256}

Chaos game rendition of the Sierpinski triangle:

>> vertices = {{0,0}, {1,0}, {.5, .5 Sqrt[3]}};

232

https://reference.wolfram.com/language/ref/Nest.html
https://reference.wolfram.com/language/ref/NestList.html

>> points = NestList[.5(vertices[[RandomInteger[{1,3}]]] + #)&,
{0.,0.}, 500];

>> Graphics[Point[points], ImageSize->Small]

23.4.7. NestWhile

WMA link

NestWhile[f , expr, test]
applies a function f repeatedly on an expression expr, until applying test on the result no
longer yields True.

NestWhile[f , expr, test, m]
supplies the last m results to test (default value: 1).

NestWhile[f , expr, test, All]
supplies all results gained so far to test.

Divide by 2 until the result is no longer an integer:

>> NestWhile[#/2&, 10000, IntegerQ]
625
2

Calculate the sum of third powers of the digits of a number until the same result appears twice:

>> NestWhile[Total[IntegerDigits[#]^3] &, 5, UnsameQ, All]
371

Print the intermediate results:

>> NestWhile[Total[IntegerDigits[#]^3] &, 5, (Print[{##}]; UnsameQ[##])
&, All]
{5}

{5, 125}

{5, 125, 134}

{5, 125, 134, 92}

{5, 125, 134, 92, 737}

{5, 125, 134, 92, 737, 713}

{5, 125, 134, 92, 737, 713, 371}

{5, 125, 134, 92, 737, 713, 371, 371}

371

233

https://reference.wolfram.com/language/ref/NestWhile.html

24. Functions used in Quantum Mechanics

Contents

24.1. Angular Momentum 234
24.1.1. ClebschGordan 234
24.1.2. PauliMatrix 235

24.1.3. SixJSymbol 235
24.1.4. ThreeJSymbol 236

24.1. Angular Momentum

Angular momentum in physics is the rotational analog of linear momentum. It is an important quantity
in physics because it is a conserved quantity the total angular momentum of a closed system remains
constant.

24.1.1. ClebschGordan

Clebsch-Gordan coefficients matrices (SymPy, WMA)

ClebschGordan[{j1, m1}, {j2, m2}, {j m}]
returns the Clebsch-Gordan coefficient for the decomposition of |j, m⟩ in terms of |j1, m⟩,
|j2, m2⟩.

>> ClebschGordan[{3 / 2, 3 / 2}, {1 / 2, -1 / 2}, {1, 1}]
√

3
2

ClebschGordan works with integer and half‐integer arguments:

>> ClebschGordan[{1/2, -1/2}, {1/2, -1/2}, {1, -1}]
1

>> ClebschGordan[{1/2, -1/2}, {1, 0}, {1/2, -1/2}]

−
√

3
3

Compare with WMA example:

>> ClebschGordan[{5, 0}, {4, 0}, {1, 0}] == Sqrt[5 / 33]
True

234

https://en.wikipedia.org/wiki/Angular_momentum
https://en.wikipedia.org/wiki/Clebsch%E2%80%93Gordan_coefficients
https://docs.sympy.org/latest/modules/physics/quantum/cg.html
https://reference.wolfram.com/language/ref/ClebschGordan

24.1.2. PauliMatrix

Pauli matrices (SymPy, WMA)

PauliMatrix[k]
returns the k-th Pauli spin matrix).

>> Table[PauliMatrix[i], {i, 1, 3}]
{{{0, 1} , {1, 0}} , {{0,−I} , {I, 0}} , {{1, 0} , {0,−1}}}

>> PauliMatrix[1] . PauliMatrix[2] == I PauliMatrix[3]
True

>> MatrixExp[I \[Phi]/2 PauliMatrix[3]]{{
E

I
2 ϕ, 0

}
,
{

0, E
(
− I

2

)
ϕ
}}

>> % /. \[Phi] -> 2 Pi
{{−1, 0} , {0,−1}}

24.1.3. SixJSymbol

6-j symbol (SymPy, WMA)

SixJSymbol[{j1, j2, j3}, {j4, j5, j6}]
returns the values of the Wigner 6-j symbol.

>> SixJSymbol[{1, 2, 3}, {1, 2, 3}]
1

105

SixJSymbol is symmetric under permutations:

>> % == SixJSymbol[{3, 2, 1}, {3, 2, 1}]
True

>> SixJSymbol[{1, 2, 3}, {1, 2, 3}] == SixJSymbol[{2, 1, 3}, {2, 1, 3}]
True

SixJSymbol works with integer and half-integer arguments:

>> SixJSymbol[{1/2, 1/2, 1}, {5/2, 7/2, 3}]

−
√

21
21

Compare with WMA example:

235

https://en.wikipedia.org/wiki/Pauli_matrices
https://docs.sympy.org/latest/modules/physics/matrices.html#sympy.physics.matrices.msigma
https://reference.wolfram.com/language/ref/PauliMatrix.html
https://en.wikipedia.org/wiki/6-j_symbol
https://docs.sympy.org/latest/modules/physics/wigner.html#sympy.physics.wigner.wigner_6j
https://reference.wolfram.com/language/ref/SixJSymbol.html

>> SixJSymbol[{1, 2, 3}, {2, 1, 2}] == 1 / (5 Sqrt[21])
True

Result 0 returned for unphysical cases:

>> SixJSymbol[{1, 2, 3}, {4, 5, 12}]
0

Arguments must be integer or half integer values:

>> SixJSymbol[{0.5, 0.5, 1.1},{0.5, 0.5, 1.1}]
SixJSymbol values {0.5, 0.5, 1.1} {0.5, 0.5, 1.1} must be integer or
half integer and fulfill the triangle relation

SixJSymbol
[
{0.5, 0.5, 1.1} , {0.5, 0.5, 1.1}

]

24.1.4. ThreeJSymbol

3-j symbol (SymPy, WMA)

ThreeJSymbol[{j1, m1}, {j2, m2}, {j3, m3}]
returns the values of the Wigner 3-j symbol.

Compare with SymPy examples:

>> ThreeJSymbol[{2, 0}, {6, 0}, {4, 0}]
√

715
143

ThreeJSymbol is symmetric under permutations:

>> % == ThreeJSymbol[{2, 0}, {4, 0}, {6, 0}] == ThreeJSymbol[{4, 0}, {2,
0}, {6, 0}]

True

>> ThreeJSymbol[{2, 0}, {6, 0}, {4, 1}]
0

Compare with WMA examples:

>> ThreeJSymbol[{6, 0}, {4, 0}, {2, 0}] == Sqrt[5 / 143]
True

>> ThreeJSymbol[{2, 1}, {2, 2}, {4, -3}] == -(1 / (3 Sqrt[2]))
True

>> ThreeJSymbol[{1/2, -1/2}, {1/2, -1/2}, {1, 1}]

−
√

3
3

236

https://en.wikipedia.org/wiki/3-j_symbol
https://docs.sympy.org/latest/modules/physics/wigner.html#sympy.physics.wigner.wigner_3j
https://reference.wolfram.com/language/ref/ThreeJSymbol.html

Result 0 returned for unphysical cases:

>> ThreeJSymbol[{1, 2}, {3, 4}, {5, 12}]
0

Arguments must be integer or half integer values:

>> ThreeJSymbol[{2.1, 6}, {4, 0}, {0, 0}]
ThreeJSymbol values {2.1, 6}, {4, 0}, {0, 0} must be integer or half
integer

ThreeJSymbol
[
{2.1, 6} , {4, 0} , {0, 0}

]

237

25. Global System Information

Contents

25.1. $CommandLine 238
25.2. $Machine 238
25.3. $MachineName 239
25.4. $MaxLengthIntStringConversion . . 239
25.5. $Packages 240
25.6. $ParentProcessID 240
25.7. $ProcessID 241
25.8. $ProcessorType 241
25.9. $PythonImplementation 241
25.10. $ScriptCommandLine 242
25.11. $SessionID 242
25.12. $SystemID 242
25.13. $SystemMemory 242

25.14. $SystemWordLength 243
25.15. $UserName 243
25.16. $Version 243
25.17. $VersionNumber 244
25.18. Breakpoint 244
25.19. Environment 244
25.20. GetEnvironment 245
25.21. MathicsVersion 245
25.22. MemoryAvailable 246
25.23. MemoryInUse 246
25.24. Run 246
25.25. SetEnvironment 246
25.26. Share 247

25.1. $CommandLine

WMA link

$CommandLine
is a list of strings passed on the command line to launch the Mathics3 session.

>> $CommandLine
{docpipeline.py, –output, –keep-going, –load-module, pymathics.icu,pymathics.graph,pymathics.natlang}

25.2. $Machine

WMA link

$Machine
returns a string describing the type of computer system on which the Mathics3 is being
run.

238

https://reference.wolfram.com/language/ref/$CommandLine.html
https://reference.wolfram.com/language/ref/$Machine.html

>> $Machine
linux

25.3. $MachineName

WMA link

$MachineName
is a string that gives the assigned name of the computer on which Mathics3 is being run,
if such a name is defined.

>> $MachineName
milton

25.4. $MaxLengthIntStringConversion

Python 3.11 Integer string conversion length limitation

$MaxLengthIntStringConversion
A positive system integer that fixes the largest size of the string that can appear when
converting an Integer value into a String. When the string value is too large, then the
middle of the integer contains an indication of the number of digits elided inside « ».

If $MaxLengthIntStringConversion is set to 0, there is no bound. Aside from 0, 640 is the
smallest value allowed.
The initial value can be set via environment variable DEFAULT_MAX_STR_DIGITS. If that is not
set, the default value is 7000.

Although Mathics3 can represent integers of arbitrary size, when it formats the value for display, there
can be nonlinear behavior in printing the decimal string or converting it to a String.

Python, in version 3.11 and up, puts a default limit on the size of the number of digits allows when
converting a large integer into a string.

Show the default value of $MaxLengthIntStringConversion:

>> $MaxLengthIntStringConversion
640

500! is a 1135-digit number:

>> 500! //ToString//StringLength
639

We first set $MaxLengthIntStringConversion to the smallest value allowed, so that we can see the trun-
cation of digits in the middle:

239

https://reference.wolfram.com/language/ref/$MachineName.html
https://docs.python.org/3.11/library/stdtypes.html#int-max-str-digits

>> $MaxLengthIntStringConversion = 640
640

Note that setting $MaxLengthIntStringConversion has an effect only on Python 3.11 and later; Pyston
2.x however ignores this.

Now when we print the string value of 500! and Pyston 2.x is not used, the middle digits are removed:

>> 500!
122013682599111006870123878542304692625357434280319284219241358838584537315388199760549644750220328186301361647714820358416337872207817720048078520515932928547790757193933060377296085908627042917454788242491272634430567017327076946106280231045264421887878946575477714986349436778103764427403382736539747138647787849
<< 501 >> 229 913 340 169 552 363 850 942 885 592 018 727 433 795 173 014~
~586 357 570 828 355 780 158 735 432 768 888 680 120 399 882 384 702 151~
~467 605 445 407 663 535 984 174 430 480 128 938 313 896 881 639 487 469~
~658 817 504 506 926 365 338 175 055 478 128 640 000 000 000 000 000 000~
~000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000~
~000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000

To see this easier, manipulate the result as String:

>> bigFactorial = ToString[500!]; StringTake[bigFactorial, {310, 330}]
787849 «501» 229913

The «501» indicates that 501 digits have been omitted in the string conversion.

Other than 0, an Integer value less than 640 is not accepted:

>> $MaxLengthIntStringConversion = 10
10 is not 0 or an Integer value greater than 640.
640

25.5. $Packages

WMA link

$Packages
returns a list of the contexts corresponding to all packages which have been loaded into
Mathics.

>> $Packages
{ImportExport‘, XML‘, Internal‘, System‘, Global‘}

25.6. $ParentProcessID

WMA link

240

https://reference.wolfram.com/language/ref/Packages.html
https://reference.wolfram.com/language/ref/$ParentProcessID.html

$ParentProcesID
gives the ID assigned to the process which invokes Mathics3 by the operating system
under which it is run.

>> $ParentProcessID
1106503

25.7. $ProcessID

WMA link

$ProcessID
gives the ID assigned to the Mathics3 process by the operating system under which it is
run.

>> $ProcessID
1106504

25.8. $ProcessorType

WMA link

$ProcessorType
gives a string giving the architecture of the processor on which Mathics3 is being run.

>> $ProcessorType
x86_64

25.9. $PythonImplementation

$PythonImplementation
gives a string indication the Python implementation used to run Mathics3.

>> $PythonImplementation
CPython 3.13.7.final.0

241

https://reference.wolfram.com/language/ref/ProcessID.html
https://reference.wolfram.com/language/ref/ProcessorType.html

25.10. $ScriptCommandLine

WMA link

$ScriptCommandLine
is a list of string arguments when running the kernel is script mode.

>> $ScriptCommandLine
{}

25.11. $SessionID

WMA link

$SessionID
is a number which is unique to a particular Mathics3 System session.

>> $SessionID
123702811663232

25.12. $SystemID

WMA link

$SystemID
is a short string that identifies the type of computer system onwhich the Mathics3 is being
run.

>> $SystemID
linux

25.13. $SystemMemory

WMA link

$SystemMemory
Returns the total amount of physical memory.

242

https://reference.wolfram.com/language/ref/ScriptCommandLine.html
https://reference.wolfram.com/language/ref/SessionID.html
https://reference.wolfram.com/language/ref/SystemID.html
https://reference.wolfram.com/language/ref/SystemMemory.html

>> $SystemMemory
50240962560

25.14. $SystemWordLength

WMA link

$SystemWordLength
gives the effective number of bits in raw machine words on the computer system where
Mathics3 is running.

>> $SystemWordLength
64

25.15. $UserName

WMA link

$UserName
returns the login name, according to the operative system, of the user that started the
current Mathics3 session.

>> $UserName
rocky

25.16. $Version

WMA link

$Version
returns a string with the current Mathics version and the versions of relevant libraries.

>> $Version
Mathics3 9.0.0 on CPython 3.13.7 (main, Aug 17 2025, 17:14:11) [GCC
13.3.0] using SymPy 1.13.3, mpmath 1.3.0, numpy 2.3.2, cython 3.1.3

243

https://reference.wolfram.com/language/ref/SystemWordLength.html
https://reference.wolfram.com/language/ref/UserName.html
https://reference.wolfram.com/language/ref/Version.html

25.17. $VersionNumber

WMA link

$VersionNumber
is a real number which gives the current Wolfram Language version that Mathics3 tries
to be compatible with.

>> $VersionNumber
10.

25.18. Breakpoint

Python breakpoint()

Breakpoint[]
Invoke a Python breakpoint.

This can be used for debugging the Mathics3 implementation, but if you are familiar with
Python, it might assist in debugging a Mathics3 programs as well.
By default, the Python debugger (pdb) is loaded. For loading other debuggers, change the
environment variable PYTHONBREAKPOINT.

Mathics3 code includes a breakpoint handler function, mathics.disabled_breakpoint which reports
whether Breakpoint[]was encountered inMathics3, or breakpoint()was encountered in theMathics3
source code. In contrast to pdb, trepan3k and other handlers, this breakpoint handler does not stop
inside, it just reports.

Here is how to use mathics.disabled_breakpoint:

>> SetEnvironment["PYTHONBREAKPOINT" -> "mathics.disabled_breakpoint"];

>> Breakpoint[]
Breakpoint []

The environment variable PYTHONBREAKPOINT can be changed at runtime to switch breakpoint() and
Breakpoint[] behavior.

25.19. Environment

WMA link

Environment[var]
gives the value of an operating system environment variable.

244

https://reference.wolfram.com/language/ref/VersionNumber.html
https://docs.python.org/3/library/functions.html#breakpoint
https://reference.wolfram.com/language/ref/Environment.html

>> Environment["HOME"]
/home/rocky

See also ’GetEnvironment’ 25.20 and ’SetEnvironment’ 25.25.

25.20. GetEnvironment

WMA link

GetEnvironment[“var”]
gives the setting corresponding to the variable “var” in the operating system environ-
ment.

GetEnvironment[{“var1”, “var2”, ...}]
gives a list rules for each of the environment variables listed.

GetEnvironment[]
gives a list rules for all environment variables.

On POSIX systems, the following gets the users HOME directory:

>> GetEnvironment["HOME"]
HOME− > /home/rocky

We can get both the HOME directory and the user name in one go:

>> GetEnvironment[{"HOME", "USER"}]
{HOME− > /home/rocky, USER− > rocky}

Arguments however must be strings:

>> GetEnvironment[HOME]
HOME is not ALL or a string or a list of strings.
GetEnvironment [HOME]

See also ’Environment’ 25.19 and ’SetEnvironment’ 25.25.

25.21. MathicsVersion

MathicsVersion
this string is the version of Mathics we are running.

>> MathicsVersion
9.0.0

245

https://reference.wolfram.com/language/ref/GetEnvironment.html

25.22. MemoryAvailable

WMA link

MemoryAvailable
Returns the amount of the available physical memory.

>> MemoryAvailable[]
17702006784

The relationship between $SystemMemory, MemoryAvailable, and MemoryInUse:

>> $SystemMemory > MemoryAvailable[] > MemoryInUse[]
True

25.23. MemoryInUse

WMA link

MemoryInUse[]
Returns the amount of memory used by all of the definitions objects if we can determine
that; -1 otherwise.

>> MemoryInUse[]
22478288

25.24. Run

WMA link

Run[command]
runs command as an external operating system command, returning the exit code re-
turned from running the system command.

>> Run["date"]
0

25.25. SetEnvironment

WMA link

246

https://reference.wolfram.com/language/ref/MemoryAvailable.html
https://reference.wolfram.com/language/ref/MemoryInUse.html
https://reference.wolfram.com/language/ref/Run.html
https://reference.wolfram.com/language/ref/SetEnvironment.html

SetEnvironment[“var” -> “value”]
sets the value of an operating system environment variable.

SetEnvironment[{“var” -> “value”, ...}]
sets more than one environment variable.

Set a single environment variable:

>> SetEnvironment["FOO" -> "bar"]

See that the environment variable has changed:

>> GetEnvironment["FOO"]
FOO− > bar

Set two environment variables:

>> SetEnvironment[{"FOO" -> "baz", "A" -> "B"}]

See that the environment variable has changed:

>> GetEnvironment["FOO"]
FOO− > baz

Environment values must be strings:

>> SetEnvironment["FOO" -> 5]
5 must be a string or None.
$Failed

>> GetEnvironment["FOO"]
FOO− > baz

If the environment name is not a string, the evaluation fails without a message.

>> SetEnvironment[1 -> "bar"]
SetEnvironment [1− > bar]

See also ’Environment’ 25.19 and ’GeEnvironment’ 25.20.

25.26. Share

WMA link

247

https://reference.wolfram.com/language/ref/Share.html

Share[]
release memory forcing Python to do garbage collection. If Python package psutil in-
stalled is the amount of released memoryis returned. Otherwise returns 0. This function
differs from WMA which tries to reduce the amount of memory required to store defini-
tions, by reducing duplicated definitions.

Share[Symbol]
Does the same thing as Share[]; Note: this function differs from WMA which tries to
reduce the amount of memory required to store definitions associated to Symbol.

>> Share[]
1548288

248

26. Graphics and Drawing

Showing something visually can be done in a number of ways:

• Starting with complete images and modifying them using the Image Built-in function.

• Use pre-defined 2D or 3D objects like ’Circle’ 17.4 and ’Cuboid’ 26.4.2 and place them in a coordi-
nate space.

• Compute the points of the space using a function. This is done using functions like ’Plot’ 26.2.15
and ’ListPlot’ 26.2.9.

Contents

26.1. Drawing Options and Option Values 250
26.1.1. Automatic 250
26.1.2. Axes 250
26.1.3. Axis 251
26.1.4. Background 251
26.1.5. Bottom 252
26.1.6. ChartLabels 253
26.1.7. ChartLegends 253
26.1.8. Filling 253
26.1.9. Full 254
26.1.10. ImageSize 254
26.1.11. Joined 255
26.1.12. MaxRecursion 255
26.1.13. Mesh 255
26.1.14. PlotPoints 257
26.1.15. PlotRange 257
26.1.16. TicksStyle 258
26.1.17. Top 259

26.2. Plotting Data 259
26.2.1. BarChart 259
26.2.2. ColorData 261
26.2.3. ColorDataFunction 262
26.2.4. DensityPlot 262
26.2.5. DiscretePlot 264
26.2.6. Histogram 265
26.2.7. ListLinePlot 266
26.2.8. ListLogPlot 267

26.2.9. ListPlot 268
26.2.10. ListStepPlot 269
26.2.11. LogPlot 270
26.2.12. NumberLinePlot 271
26.2.13. ParametricPlot 271
26.2.14. PieChart 272
26.2.15. Plot 275
26.2.16. Plot3D 277
26.2.17. PolarPlot 279

26.3. Splines 281
26.3.1. BernsteinBasis 281
26.3.2. BezierCurve 281
26.3.3. BezierFunction 283

26.4. Three-Dimensional Graphics 283
26.4.1. Cone 283
26.4.2. Cuboid 285
26.4.3. Cylinder 286
26.4.4. Graphics3D 287
26.4.5. Sphere 289
26.4.6. Tube 290

26.5. Uniform Polyhedra 291
26.5.1. Cube 291
26.5.2. Dodecahedron 292
26.5.3. Icosahedron 293
26.5.4. Octahedron 294
26.5.5. Tetrahedron 294
26.5.6. UniformPolyhedron 295

249

26.1. Drawing Options and Option Values

The various common Plot and Graphics options, along with the meaning of specific option values are
described here.

26.1.1. Automatic

WMA link

Automatic
is used to specify an automatically computed option value.

Automatic is the default for PlotRange, ImageSize, and other graphical options:

>> Cases[Options[Plot], HoldPattern[_ :> Automatic]]
{Background:>Automatic, Exclusions:>Automatic, ImageSize:>Automatic, MaxRecursion:>Automatic, PlotRange:>Automatic, PlotRangePadding:>Automatic}

26.1.2. Axes

WMA link

Axes
is an option for charting and graphics functions that specifies whether axes should be
drawn.

• Axes->True draws all axes.

• Axes->False draws no axes.

• Axes->{False,True} draws an axis y but no x axis in two dimensions.

250

https://reference.wolfram.com/language/ref/Automatic.html
https://reference.wolfram.com/language/ref/Axes.html

>> Graphics[Circle[], Axes -> True]

−1.0 −0.5 0.5 1.0

−1.0

−0.5

0.5

1.0

26.1.3. Axis

WMA link

Axis
is a possible value for the Filling option.

>> ListLinePlot[Table[Sin[x], {x, -5, 5, 0.2}], Filling->Axis]

10 20 30 40 50

−1.0

−0.5

0.5

1.0

26.1.4. Background

WMA link

Background
is an option that specifies the color of the background.

The specification must be a Color specification or Automatic:

251

https://reference.wolfram.com/language/ref/Axis.html
https://reference.wolfram.com/language/ref/Background.html

>> Graphics3D[{Arrow[{{0,0,0},{1,0,1},{0,-1,0},{1,1,1}}]}, Background ->
Red]

Notice that opacity cannot be specified by passing a List containing Opacity together with a color
specification like {Red, Opacity[.1]}. Use a color directive with an alpha channel instead:

>> Plot[{Sin[x], Cos[x], x / 3}, {x, -Pi, Pi}, Background -> RGBColor
[0.5, .5, .5, 0.1]]

−3 −2 −1 1 2 3

−1.0

−0.5

0.5

1.0

26.1.5. Bottom

WMA link

Bottom
is a possible value for the Filling option.

252

https://reference.wolfram.com/language/ref/Bottom.html

>> ListLinePlot[Table[Sin[x], {x, -5, 5, 0.2}], Filling->Bottom]

10 20 30 40 50

−1.0

−0.5

0.5

1.0

26.1.6. ChartLabels

WMA link

ChartLabels
is a charting option that specifies what labels should be used for chart elements.

>> PieChart[{30, 20, 10}, ChartLabels -> {Dogs, Cats, Fish}]

Dogs

Cats

Fish

26.1.7. ChartLegends

WMA link

ChartLegends
is an option for charting functions that specifies the legends to be used for chart elements.

26.1.8. Filling

WMA link

253

https://reference.wolfram.com/language/ref/ChartLabels.html
https://reference.wolfram.com/language/ref/ChartLegends.html
https://reference.wolfram.com/language/ref/Filling.html

Filling -> [Top | Bottom| Axis]
Filling is a an option to ListPlot, Plot or Plot3D, and related functions that indicates
what filling to add under point, curves, and surfaces.

>> ListLinePlot[Table[Sin[x], {x, -5, 5, 0.2}], Filling->Axis]

10 20 30 40 50

−1.0

−0.5

0.5

1.0

26.1.9. Full

WMA link

Full
is a possible value for the Mesh and PlotRange options.

26.1.10. ImageSize

WMA link

ImageSize
is an option that specifies the overall size of an image to display.

Specifications for both width and height can be any of the following:

Automatic
determined by location or other dimension (default)

Tiny, Small, Medium, Large
pre defined absolute sizes

>> Plot[Sin[x], {x, 0, 10}, ImageSize -> Small]

2 4 6 8 10

−1.0

−0.5

0.5

1.0

254

https://reference.wolfram.com/language/ref/Full.html
https://reference.wolfram.com/language/ref/ImageSize.html

26.1.11. Joined

WMA link

Joined $boolean$
is an option for Plot that gives whether to join points to make lines.

>> ListPlot[Table[n ^ 2, {n, 10}], Joined->True]

2 4 6 8 10

20

40

60

80

100

26.1.12. MaxRecursion

WMA link

MaxRecursion
is an option for functions like NIntegrate and Plot that specifies howmany recursive sub-
divisions can be made.

>> NIntegrate[Exp[-10^8 x^2], {x, -1, 1}, Method->"Internal",
MaxRecursion -> 3]
0.0777778

>> NIntegrate[Exp[-10^8 x^2], {x, -1, 1}, Method->"Internal",
MaxRecursion -> 6]
0.00972222

26.1.13. Mesh

WMA link

Mesh
is a charting option, such as for Plot, BarChart, PieChart, etc. that specifies the mesh
to be drawn. The default is Mesh->None.

Options include:

255

https://reference.wolfram.com/language/ref/Joined.html
https://reference.wolfram.com/language/ref/MaxRecursion.html
https://reference.wolfram.com/language/ref/Mesh.html

• None: No mesh is drawn

• All: mesh divisions between elements

• Full: mesh divisions between regular datapoints

>> Plot[Sin[Cos[x^2]],{x,-4,4},Mesh->All]

−4 −2 2 4

−0.5

0.5

>> Plot[Sin[x], {x,0,4 Pi}, Mesh->Full]

2 4 6 8 10 12

−1.0

−0.5

0.5

1.0

>> DensityPlot[Sin[x y], {x, -2, 2}, {y, -2, 2}, Mesh->Full]

256

>> Plot3D[Sin[x y], {x, -2, 2}, {y, -2, 2}, Mesh->Full]

26.1.14. PlotPoints

WMA link

PlotPoints n
A number specifies how many initial sample points to use.

>> Plot[Sin[Cos[x^2]],{x,-4,4}, PlotPoints->22]

−4 −2 2 4

−0.5

0.5

26.1.15. PlotRange

WMA link

PlotRange
is a charting option, such as for Plot, BarChart, PieChart, etc. that gives the range of
coordinates to include in a plot.

• All all points are included.

• Automatic - outlying points are dropped.

257

https://reference.wolfram.com/language/ref/PlotPoints.html
https://reference.wolfram.com/language/ref/PlotRange.html

• max - explicit limit for each function.

• {min, max} - explicit limits for y (2D), z (3D), or array values.

• {{xmin, xmax}, {{ymin}, {ymax}} - explicit limits for x and y.

>> Plot[Sin[Cos[x^2]],{x,-4,4}, PlotRange -> All]

−4 −2 2 4

−0.5

0.5

>> Graphics[Disk[], PlotRange -> {{-.5, .5}, {0, 1.5}}]

26.1.16. TicksStyle

WMA link

TicksStyle
is an option for graphics functions which specifies how ticks should be rendered.

• TicksStyle gives styles for both tick marks and tick labels.

• TicksStyle can be used in both two and three-dimensional graphics.

• TicksStyle->list specifies the colors of each of the axes.

258

https://reference.wolfram.com/language/ref/TicksStyle.html

>> Graphics[Circle[], Axes-> True, TicksStyle -> {Blue, Red}]

−1.0 −0.5 0.5 1.0

−1.0

−0.5

0.5

1.0

26.1.17. Top

WMA link

Top
is a possible value for the Filling option.

>> ListLinePlot[Table[Cos[x], {x, -5, 5, 0.2}], Filling->Top]

10 20 30 40 50

−1.0

−0.5

0.5

1.0

26.2. Plotting Data

Plotting functions take a function as a parameter and data, often a range of points, as another parameter,
and plot or show the function applied to the data.

26.2.1. BarChart

WMA link

259

https://reference.wolfram.com/language/ref/Top.html
https://reference.wolfram.com/language/ref/BarChart.html

BarChart[{b1, b2 ...}]
makes a bar chart with lengths b1, b2,

Drawing options include - Charting:

• Mesh

• PlotRange

• ChartLabels

• ChartLegends

• ChartStyle

BarChart specific:

• Axes (default {False, True})

• AspectRatio: (default 1 / GoldenRatio)

A bar chart of a list of heights:

>> BarChart[{1, 4, 2}]

1

2

3

4

>> BarChart[{1, 4, 2}, ChartStyle -> {Red, Green, Blue}]

1

2

3

4

260

>> BarChart[{{1, 2, 3}, {2, 3, 4}}]

1

2

3

4

Chart several datasets with categorical labels:

>> BarChart[{{1, 2, 3}, {2, 3, 4}}, ChartLabels -> {"a", "b", "c"}]

a b c a b c

1

2

3

4

>> BarChart[{{1, 5}, {3, 4}}, ChartStyle -> {{EdgeForm[Thin], White}, {
EdgeForm[Thick], White}}]

1

2

3

4

5

26.2.2. ColorData

WMA link

ColorData[“name”]
returns a color function with the given name.

Define a user-defined color function:

261

https://reference.wolfram.com/language/ref/ColorData.html

>> Unprotect[ColorData]; ColorData["test"] := ColorDataFunction["test",
"Gradients", {0, 1}, Blend[{Red, Green, Blue}, #1] &]; Protect[
ColorData]

Compare it to the default color function, LakeColors:

>> {DensityPlot[x + y, {x, -1, 1}, {y, -1, 1}], DensityPlot[x + y, {x,
-1, 1}, {y, -1, 1}, ColorFunction->"test"]}

,



26.2.3. ColorDataFunction

WMA link

ColorDataFunction[range, ...]
is a function that represents a color scheme.

26.2.4. DensityPlot

WMA link

262

https://reference.wolfram.com/language/ref/ColorDataFunction.html
https://reference.wolfram.com/language/ref/DensityPlot.html

DensityPlot[f , {x, xmin, xmax}, {y, ymin, ymax}]
plots a density plot of f with x ranging from xmin to xmax and y ranging from ymin to ymax.

>> DensityPlot[x ^ 2 + 1 / y, {x, -1, 1}, {y, 1, 4}]

>> DensityPlot[1 / x, {x, 0, 1}, {y, 0, 1}]

>> DensityPlot[Sqrt[x * y], {x, -1, 1}, {y, -1, 1}]

263

>> DensityPlot[1/(x^2 + y^2 + 1), {x, -1, 1}, {y, -2,2}, Mesh->Full]

>> DensityPlot[x^2 y, {x, -1, 1}, {y, -1, 1}, Mesh->All]

26.2.5. DiscretePlot

WMA link

DiscretePlot[expr, {x, nmax}]
plots expr with x ranging from 1 to nmax.

DiscretePlot[expr, {x, nmin, nmax}]
plots expr with x ranging from nmin to nmax.

DiscretePlot[expr, {x, nmin, nmax, dn}]
plots expr with x ranging from nmin to nmax usings steps dn.

DiscretePlot[{expr1, expr2, ...}, ...]
plots the values of all expri.

The number of primes for a number k:

264

https://reference.wolfram.com/language/ref/DiscretePlot.html

>> DiscretePlot[PrimePi[k], {k, 1, 100}]

20 40 60 80 100

5

10

15

20

25

is about the same as Sqrt[k] * 2.5:

>> DiscretePlot[2.5 Sqrt[k], {k, 100}]

20 40 60 80 100

5

10

15

20

25

Notice in the above that when the starting value, nmin, is 1, we can omit it.

A plot can contain several functions, using the same parameter, here x:

>> DiscretePlot[{Sin[Pi x/20], Cos[Pi x/20]}, {x, 0, 40}]

10 20 30

−1.0

−0.5

0.5

1.0

Compare with ’Plot’ 26.2.15.

26.2.6. Histogram

Histogram (WMA link)

Histogram[{x1, x2 ...}]
plots a histogram using the values x1, x2,

265

https://en.wikipedia.org/wiki/Histogram
https://reference.wolfram.com/language/ref/ColorDataFunction.html

>> Histogram[{3, 8, 10, 100, 1000, 500, 300, 200, 10, 20, 200, 100, 200,
300, 500}]

200 400 600 800 1000

2

4

6

8

10

12

>> Histogram[{{1, 2, 10, 5, 50, 20}, {90, 100, 101, 120, 80}}]

20 40 60 80 100 120

1

2

3

4

5

26.2.7. ListLinePlot

WMA link

ListLinePlot[{y1, y2, ...}]
plots a line through a list of y-values, assuming integer x-values 1, 2, 3, ...

ListLinePlot[{{x1, y1}, {x2, y2}, ...}]
plots a line through a list of x, y pairs.

ListLinePlot[{list1, list2, ...}]
plots several lines.

>> ListLinePlot[Table[{n, n ^ 0.5}, {n, 10}]]

2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

3.0

ListPlot accepts a superset of the Graphics options.

266

https://reference.wolfram.com/language/ref/ListLinePlot.html

>> ListLinePlot[{{-2, -1}, {-1, -1}, {1, 3}}, Filling->Axis]

−2.0 −1.5 −1.0 −0.5 0.5 1.0

−1

1

2

3

26.2.8. ListLogPlot

WMA link

ListLogPlot[{y1, y2, ...}]
log plots a list of y-values, assuming integer x-values 1, 2, 3, ...

ListLogPlot[{{x1, y1}, {x2, y2}, ...}]
log plots a list of x, y pairs.

ListLogPlot[{list1, list2, ...}]
log plots several lists of points.

Plotting table of Fibonacci numbers:

>> ListLogPlot[Table[Fibonacci[n], {n, 10}]]

2 4 6 8 10

3.16228

10

31.6228

we see that Fibonacci numbers grow exponentially. So when plotted using on a log scale the result fits
points of a sloped line.

>> ListLogPlot[Table[n!, {n, 10}], Joined -> True]

2 4 6 8 10

10

100

1000

10000

100000

1000000

267

https://reference.wolfram.com/language/ref/ListLogPlot.html

26.2.9. ListPlot

WMA link

ListPlot[{y1, y2, ...}]
plots a list of y-values, assuming integer x-values 1, 2, 3, ...

ListPlot[{{x1, y1}, {x2, y2}, ...}]
plots a list of x, y pairs.

ListPlot[{list1, list2, ...}]
plots several lists of points.

The frequency of Primes:

>> ListPlot[Prime[Range[30]]]

5 10 15 20 25 30

20

40

60

80

100

seems very roughly to fit a table of quadratic numbers:

>> ListPlot[Table[n ^ 2 / 8, {n, 30}]]

1 2 3 4 5 6 7

20

40

60

80

ListPlot accepts some Graphics options:

>> ListPlot[Table[n ^ 2, {n, 30}], Joined->True]

5 10 15 20 25 30

200

400

600

800

268

https://reference.wolfram.com/language/ref/ListPlot.html

Compare with ’Plot’ 26.2.15.

>> ListPlot[Table[n ^ 2, {n, 30}], Filling->Axis]

5 10 15 20 25 30

200

400

600

800

Compare with ’Plot’ 26.2.15.

26.2.10. ListStepPlot

WMA link

ListStepPlot[{y1, y2, ...}]
plots a line through a list of y-values, assuming integer x-values 1, 2, 3, ...

ListStepPlot[{{x1, y1}, {x2, y2}, ...}]
plots a line through a list of x, y pairs.

ListStepPlot[{list1, list2, ...}]
plots several lines.

>> ListStepPlot[{1, 1, 2, 3, 5, 8, 13, 21}]

2 4 6 8

5

10

15

20

ListStepPlot accepts a superset of the Graphics options. By default, ListStepPlots are joined, but that
can be disabled.

269

https://reference.wolfram.com/language/ref/ListStepPlot.html

>> ListStepPlot[{1, 1, 2, 3, 5, 8, 13, 21}, Joined->False]

2 4 6 8

5

10

15

20

The same as the first example but using a list of point as data, and filling the plot to the x axis.

>> ListStepPlot[{{1, 1}, {3, 2}, {4, 5}, {5, 8}, {6, 13}, {7, 21}},
Filling->Axis]

1 2 3 4 5 6 7

5

10

15

20

26.2.11. LogPlot

Semi-log plot (WMA link)

LogPlot[f , {x, xmin, xmax}]
log plots f with x ranging from xmin to xmax.

Plot[{ f1, f2, ...}, {x, xmin, xmax}]
log plots several functions f1, f2, ...

>> LogPlot[x^x, {x, 1, 5}]

1 2 3 4 5

3.16228

10

31.6228

100

316.228

1000

3162.28

270

https://en.wikipedia.org/wiki/Semi-log_plot
https://reference.wolfram.com/language/ref/LogPlot.html

>> LogPlot[{x^x, Exp[x], x!}, {x, 1, 5}]

1 2 3 4 5

3.16228

10

31.6228

100

316.228

1000

26.2.12. NumberLinePlot

WMA link

NumberLinePlot[{v1, v2, ...}]
plots a list of values along a line.

>> NumberLinePlot[Prime[Range[10]]]

5 10 15 20 25

Compare with:

>> NumberLinePlot[Table[x^2, {x, 10}]]

20 40 60 80 100

26.2.13. ParametricPlot

WMA link

ParametricPlot[{ fx, fy}, {u, umin, umax}]
plots a parametric function f with the parameter u ranging from umin to umax.

ParametricPlot[{{ fx, fy}, {gx, gy}, ...}, {u, umin, umax}]
plots several parametric functions f , g, ...

ParametricPlot[{ fx, fy}, {u, umin, umax}, {v, vmin, vmax}]
plots a parametric area.

ParametricPlot[{{ fx, fy}, {gx, gy}, ...}, {u, umin, umax}, {v, vmin, vmax}]
plots several parametric areas.

271

https://reference.wolfram.com/language/ref/NumberLinePlot.html
https://reference.wolfram.com/language/ref/ParametricPlot.html

>> ParametricPlot[{Sin[u], Cos[3 u]}, {u, 0, 2 Pi}]

−1.0 −0.5 0.5 1.0

−1.0

−0.5

0.5

1.0

>> ParametricPlot[{Cos[u] / u, Sin[u] / u}, {u, 0, 50}, PlotRange->0.5]

−0.4 −0.2 0.2 0.4

−0.4

−0.2

0.2

0.4

>> ParametricPlot[{{Sin[u], Cos[u]},{0.6 Sin[u], 0.6 Cos[u]}, {0.2 Sin[u
], 0.2 Cos[u]}}, {u, 0, 2 Pi}, PlotRange->1, AspectRatio->1]

−1.0 −0.5 0.5 1.0

−1.0

−0.5

0.5

1.0

26.2.14. PieChart

Pie Chart (WMA link)

PieChart[{a1, a2 ...}]
draws a pie chart with sector angles proportional to a1, a2,

Drawing options include - Charting:

272

https://en.wikipedia.org/wiki/Pie_chart
https://reference.wolfram.com/language/ref/PieChart.html

• Mesh

• PlotRange

• ChartLabels

• ChartLegends

• ChartStyle

PieChart specific:

• Axes (default: False, False)

• AspectRatio (default 1)

• SectorOrigin: (default {Automatic, 0})

• SectorSpacing” (default Automatic)

A hypothetical comparison between types of pets owned:

>> PieChart[{30, 20, 10}, ChartLabels -> {Dogs, Cats, Fish}]

Dogs

Cats

Fish

A doughnut chart for a list of values:

>> PieChart[{8, 16, 2}, SectorOrigin -> {Automatic, 1.5}]

273

A Pie chart with multiple datasets:

>> PieChart[{{10, 20, 30}, {15, 22, 30}}]

Same as the above, but without gaps between the groups of data:

>> PieChart[{{10, 20, 30}, {15, 22, 30}}, SectorSpacing -> None]

The doughnut chart above with labels on each of the 3 pieces:

>> PieChart[{{10, 20, 30}, {15, 22, 30}}, ChartLabels -> {A, B, C}]

A

B

C

A B

C

274

Negative values are removed, the data below is the same as {1, 3}:

>> PieChart[{1, -1, 3}]

26.2.15. Plot

WMA link

Plot[f , {x, xmin, xmax}]
plots f with x ranging from xmin to xmax.

Plot[{ f1, f2, ...}, {x, xmin, xmax}]
plots several functions f1, f2, ...

>> Plot[{Sin[x], Cos[x], x / 3}, {x, -Pi, Pi}]

−3 −2 −1 1 2 3

−1.0

−0.5

0.5

1.0

>> Plot[Sin[x], {x, 0, 4 Pi}, PlotRange->{{0, 4 Pi}, {0, 1.5}}]

2 4 6 8 10 12

0.5

1.0

1.5

275

https://reference.wolfram.com/language/ref/Plot.html

>> Plot[Tan[x], {x, -6, 6}, Mesh->Full]

−6 −4 −2 2 4 6

−15

−10

−5

5

10

15

>> Plot[x^2, {x, -1, 1}, MaxRecursion->5, Mesh->All]

−1.0 −0.5 0.5 1.0

0.2

0.4

0.6

0.8

>> Plot[Log[x], {x, 0, 5}, MaxRecursion->0]

1 2 3 4 5

−1.0

−0.5

0.5

1.0

1.5

>> Plot[Tan[x], {x, 0, 6}, Mesh->All, PlotRange->{{-1, 5}, {0, 15}},
MaxRecursion->10]

−1 1 2 3 4 5

5

10

15

A constant function:

276

>> Plot[3, {x, 0, 1}]

0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

26.2.16. Plot3D

WMA link

Plot3D[f , {x, xmin, xmax}, {y, ymin, ymax}]
creates a three-dimensional plot of f with x ranging from xmin to xmax and y ranging from
ymin to ymax.

See Drawing Option and Option Values 26.1 for a list of Plot options.

>> Plot3D[x ^ 2 + 1 / y, {x, -1, 1}, {y, 1, 4}]

277

https://reference.wolfram.com/language/ref/Plot3D.html

>> Plot3D[Sin[y + Sin[3 x]], {x, -2, 2}, {y, -2, 2}, PlotPoints->20]

>> Plot3D[x / (x ^ 2 + y ^ 2 + 1), {x, -2, 2}, {y, -2, 2}, Mesh->None]

>> Plot3D[Sin[x y] /(x y), {x, -3, 3}, {y, -3, 3}, Mesh->All]

278

>> Plot3D[Log[x + y^2], {x, -1, 1}, {y, -1, 1}]

26.2.17. PolarPlot

WMA link

PolarPlot[r, {t, tmin, tmax}]
creates a polar plot of curve with radius r as a function of angle t ranging from tmin to
tmax.

In a Polar Plot, a polar coordinate system is used.

A polar coordinate system is a two-dimensional coordinate system in which each point on a plane is
determined by a distance from a reference point and an angle from a reference direction.

Here is a 5-blade propeller, or maybe a flower, using PolarPlot:

>> PolarPlot[Cos[5t], {t, 0, Pi}]

−0.5 0.5 1.0

−1.0

−0.5

0.5

1.0

The number of blades and be change by adjusting the t multiplier.

A slight change adding Abs turns this a clump of grass:

279

https://reference.wolfram.com/language/ref/PolarPlot.html
https://en.wikipedia.org/wiki/Polar_coordinate_system

>> PolarPlot[Abs[Cos[5t]], {t, 0, Pi}]

−1.0 −0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Coils around a ring:

>> PolarPlot[{1, 1 + Sin[20 t] / 5}, {t, 0, 2 Pi}]

−1.0 −0.5 0.5 1.0

−1.0

−0.5

0.5

1.0

A spring having 16 turns:

>> PolarPlot[Sqrt[t], {t, 0, 16 Pi}]

−5 5

−5

5

280

26.3. Splines

ASpline is amathematical function used for interpolation or smoothing. Splines are used both in graph-
ics and computations

26.3.1. BernsteinBasis

Bernstein polynomial basis (SciPy :WMA:

A Bernstein is a polynomial that is a linear combination of Bernstein basis polynomials. With the ad-
vent of computer graphics, Bernstein polynomials, restricted to the interval [0, 1], became important in
the form of Bézier curves. BernsteinBasis[d,n,x] equals Binomial[d, n] x^n (1-x)^(d-n) in the
interval [0, 1] and zero elsewhere.

BernsteinBasis[d,n,x]
returns the nth Bernstein basis of degree d at x.

>> BernsteinBasis[4, 3, 0.5]
0.25

26.3.2. BezierCurve

WMA link

BezierCurve[{pt1, pt2 ...}]
represents a Bézier curve with control points pi.
The result is a curve by combining the Bézier curves when points are taken triples at a
time.

Option:

• SplineDegree->d specifies that the underlying polynomial basis should have maximal degree
d.

Set up some points to form a simple zig-zag...

>> pts = {{0, 0}, {1, 1}, {2, -1}, {3, 0}};

=

281

https://en.wikipedia.org/wiki/Bernstein_polynomial
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BPoly.html
https://reference.wolfram.com/language/ref/BezierCurve.html

>> Graphics[{Line[pts], Red, Point[pts]}]

A composite Bézier curve, shown in blue, smooths the zig zag. Control points are shown in red:

>> Graphics[{BezierCurve[pts], Blue, Line[pts], Red, Point[pts]}]

Extend points...

>> pts = {{0, 0}, {1, 1}, {2, -1}, {3, 0}, {5, 2}, {6, -1}, {7, 3}};

=

A longer composite Bézier curve and its control points:

>> Graphics[{BezierCurve[pts], Blue, Line[pts], Red, Point[pts]}]

Notice how the curve from the first to third point is not changed by any points outside the interval. The
same is true for points three to five, and so on.

282

26.3.3. BezierFunction

WMA link

BezierFunction[{pt1, pt2, ...}]
returns a Bézier function for the curve defined by points pti. The embedding dimension
for the curve represented by BezierFunction[{pt_1,pt_2,...}] is given by the
length of the lists pti.

>> f = BezierFunction[{{0, 0}, {1, 1}, {2, 0}, {3, 2}}];

=

>> f[.5]
{1.5, 0.625}

=

Plotting the Bézier Function accoss a Bézier curve:

>> Module[{p={{0, 0},{1, 1},{2, -1},{4, 0}}}, Graphics[{BezierCurve[p],
Red, Point[Table[BezierFunction[p][x], {x, 0, 1, 0.1}]]}]]

26.4. Three-Dimensional Graphics

Functions for working with 3D graphics.

26.4.1. Cone

Cone (WMA)

Cone[]
is a cone of radius 1 and height 2 oriented in the upward z direction.

Cone[{{x1, y1, z1}, {x2, y2, z2}}, r]
is a cone of radius r starting at (x1, y1, z1) and ending at (x2, y2, z2).

Cone[{{x1, y1, z1}, {x2, y2, z2}, ... }, r]
is a collection cones of radius r.

283

https://reference.wolfram.com/language/ref/BezierFunction.html
https://en.wikipedia.org/wiki/Cone
https://reference.wolfram.com/language/ref/Cone.html

>> Graphics3D[Cone[]]

>> Graphics3D[Cone[{{0, 0, 0}, {1, 1, 1}}, 1]]

>> Graphics3D[{Yellow, Cone[{{-1, 0, 0}, {1, 0, 0}, {0, 0, Sqrt[3]}, {1,
1, Sqrt[3]}}, 1]}]

284

26.4.2. Cuboid

Cuboid (WMA)

Cuboid also known as interval, rectangle, square, cube, rectangular parallelepiped, tesseract, orthotope,
and box.

Cuboid[pmin]
is a unit cube/square with its lower corner at point pmin.

Cuboid[pmin, pmax]
is a 2d square with with lower corner pmin and upper corner pmax.

Cuboid[{pmin, pmax}]
is a cuboid with lower corner pmin and upper corner pmax.

Cuboid[{p1min, p1max, ...}]
is a collection of cuboids.

Cuboid[] is equivalent to Cuboid[{0,0,0}].

>> Graphics3D[Cuboid[{0, 0, 1}]]

285

https://en.wikipedia.org/wiki/Cuboid
https://reference.wolfram.com/language/ref/Cuboid.html

>> Graphics3D[{Red, Cuboid[{{0, 0, 0}, {1, 1, 0.5}}], Blue, Cuboid
[{{0.25, 0.25, 0.5}, {0.75, 0.75, 1}}]}]

>> Graphics[Cuboid[{0, 0}]]

26.4.3. Cylinder

Cylinder (WMA)

Cylinder[{{x1, y1, z1}, {x2, y2, z2}}]
represents a cylinder of radius 1.

Cylinder[{{x1, y1, z1}, {x2, y2, z2}}, r]
represents a cylinder of radius r starting at (x1, y1, z1) and ending at (x2, y2, z2).

Cylinder[{{x1, y1, z1}, {x2, y2, z2}, ... }, r]
represents is a collection cylinders of radius r.

286

https://en.wikipedia.org/wiki/Cylinder
https://reference.wolfram.com/language/ref/Cylinder.html

>> Graphics3D[Cylinder[{{0, 0, 0}, {1, 1, 1}}, 1]]

>> Graphics3D[{Yellow, Cylinder[{{-1, 0, 0}, {1, 0, 0}, {0, 0, Sqrt[3]},
{1, 1, Sqrt[3]}}, 1]}]

26.4.4. Graphics3D

WMA link

Graphics3D[primitives, options]
represents a three-dimensional graphic.

See Drawing Option and Option Values 26.1 for a list of Plot options.

287

https://reference.wolfram.com/language/ref/Graphics3D.html

>> Graphics3D[Polygon[{{0,0,0}, {0,1,1}, {1,0,0}}]]

The Background option allows to set the color of the background:

>> Graphics3D[Sphere[], Background->RGBColor[.6, .7, 1.]]

In TeXForm, Graphics3D creates Asymptote figures:

288

>> Graphics3D[Sphere[]] // TeXForm

\begin{asy}
import three;
import solids;
import tube;
size(6.6667cm, 6.6667cm);
currentprojection=perspective(2.6,-4.8,4.0);
currentlight=light(rgb(0.5,0.5,0.5), specular=red, (2,0,2), (2,2,2), (0,2,2));
// Sphere3DBox
draw(surface(sphere((0, 0, 0), 1)), rgb(1,1,1)+opacity(1));
draw(((-1,-1,-1)–(1,-1,-1)), rgb(0.4, 0.4, 0.4)+linewidth(1));
draw(((-1,1,-1)–(1,1,-1)), rgb(0.4, 0.4, 0.4)+linewidth(1));
draw(((-1,-1,1)–(1,-1,1)), rgb(0.4, 0.4, 0.4)+linewidth(1));
draw(((-1,1,1)–(1,1,1)), rgb(0.4, 0.4, 0.4)+linewidth(1));
draw(((-1,-1,-1)–(-1,1,-1)), rgb(0.4, 0.4, 0.4)+linewidth(1));
draw(((1,-1,-1)–(1,1,-1)), rgb(0.4, 0.4, 0.4)+linewidth(1));
draw(((-1,-1,1)–(-1,1,1)), rgb(0.4, 0.4, 0.4)+linewidth(1));
draw(((1,-1,1)–(1,1,1)), rgb(0.4, 0.4, 0.4)+linewidth(1));
draw(((-1,-1,-1)–(-1,-1,1)), rgb(0.4, 0.4, 0.4)+linewidth(1));
draw(((1,-1,-1)–(1,-1,1)), rgb(0.4, 0.4, 0.4)+linewidth(1));
draw(((-1,1,-1)–(-1,1,1)), rgb(0.4, 0.4, 0.4)+linewidth(1));
draw(((1,1,-1)–(1,1,1)), rgb(0.4, 0.4, 0.4)+linewidth(1));
\end{asy}

26.4.5. Sphere

WMA link

Sphere[{x, y, z}]
is a sphere of radius 1 centered at the point {x, y, z}.

Sphere[{x, y, z}, r]
is a sphere of radius r centered at the point {x, y, z}.

Sphere[{{x1, y1, z1}, {x2, y2, z2}, ... }, r]
is a collection spheres of radius r centered at the points {x1, y2, z2}, {x2, y2, z2}, ...

289

https://reference.wolfram.com/language/ref/Sphere.html

>> Graphics3D[Sphere[{0, 0, 0}, 1]]

>> Graphics3D[{Yellow, Sphere[{{-1, 0, 0}, {1, 0, 0}, {0, 0, Sqrt[3.]}},
1]}]

26.4.6. Tube

WMA link

Tube[{p1, p2, ...}]
represents a tube passing through p1, p2, ... with radius 1.

Tube[{p1, p2, ...}, r]
represents a tube with radius r.

290

https://reference.wolfram.com/language/ref/Tube.html

>> Graphics3D[Tube[{{0,0,0}, {1,1,1}}]]

>> Graphics3D[Tube[{{0,0,0}, {1,1,1}, {0, 0, 1}}, 0.1]]

26.5. Uniform Polyhedra

Uniform polyhedra is the grouping of platonic solids, Archimedean solids,and regular star polyhedra.

26.5.1. Cube

Cube (WMA)

291

https://en.wikipedia.org/wiki/Cube
https://reference.wolfram.com/language/ref/Cube.html

Cube[]
represents a regular cube centered at the origin with unit edge length.

Cube[l]
represents a cube centered at the origin with edge length l.

Cube[{x, y, z}, ...]
represents a cube centered at {x y, z}.

>> Graphics3D[Cube[]]

26.5.2. Dodecahedron

Dodecahedron (WMA)

Dodecahedron[]
a regular dodecahedron centered at the origin with unit edge length.

Dodecahedron[l]
a regular dodecahedron centered at the origin with edge length l.

Dodecahedron[{x, y, z}, ...]
a regular dodecahedron centered at {x y, z}.

292

https://en.wikipedia.org/wiki/Dodecahedron
https://reference.wolfram.com/language/ref/Dodecahedron.html

>> Graphics3D[Dodecahedron[]]

26.5.3. Icosahedron

Icosahedron (WMA)

Icosahedron[]
a regular Icosahedron centered at the origin with unit edge length.

Icosahedron[l]
a regular icosahedron centered at the origin with edge length l.

Icosahedron[{x, y, z}, ...]
a regular icosahedron centered at {x y, z}.

>> Graphics3D[Icosahedron[]]

293

https://en.wikipedia.org/wiki/Icosahedron
:WMA:https://reference.wolfram.com/language/ref/Icosahedron.html

26.5.4. Octahedron

Octahedron (WMA)

Octahedron[]
a regular octahedron centered at the origin with unit edge length.

Octahedron[l]
a regular octahedron centered at the origin with edge length l.

Octahedron[{x, y, z}, ...]
a regular octahedron centered at {x y, z}.

>> Graphics3D[{Red, Octahedron[]}]

26.5.5. Tetrahedron

Tetrahedron (WMA)

Tetrahedron[]
a regular tetrahedron centered at the origin with unit edge length.

Tetrahedron[l]
a regular tetrahedron centered at the origin with edge length l.

Tetrahedron[{x, y, z}, ...]
a regular tetrahedron centered at {x y, z}.

294

https://en.wikipedia.org/wiki/Octahedron
:https://reference.wolfram.com/language/ref/Octahedron.html
https://en.wikipedia.org/wiki/Tetrahedron
https://reference.wolfram.com/language/ref/Tetrahedron.html

>> Graphics3D[Tetrahedron[{{1,0,0}, {1,0,1}, {1, 1, 1}}, 2], Axes->True]

26.5.6. UniformPolyhedron

Uniform polyhedron (WMA link)

UniformPolyhedron[“name”]
return a uniform polyhedron with the given name.
Names are “tetrahedron”, “octahedron”, “dodecahedron”, or “icosahedron”.

>> Graphics3D[UniformPolyhedron["octahedron"]]

295

https://en.wikipedia.org/wiki/Uniform_polyhedron
https://reference.wolfram.com/language/ref/UniformPolyhedron.html

>> Graphics3D[UniformPolyhedron["dodecahedron"]]

>> Graphics3D[{"Brown", UniformPolyhedron["tetrahedron"]}]

296

27. Image Manipulation

For the full compliment of functions, you need to have scikit-image installed.

Contents

27.1. Basic Image Processing 297
27.1.1. Blur 297
27.1.2. ImageAdjust 299
27.1.3. ImagePartition 299
27.1.4. Sharpen 300
27.1.5. Threshold 301

27.2. Geometric Operations 302
27.2.1. ImageReflect 302
27.2.2. ImageResize 303
27.2.3. ImageRotate 305

27.3. Image Colors 306
27.3.1. Binarize 306
27.3.2. ColorQuantize 308
27.3.3. ColorSeparate 309
27.3.4. Colorize 309
27.3.5. ImageColorSpace 309

27.4. Image Compositions 310
27.4.1. ImageAdd 310
27.4.2. ImageMultiply 311
27.4.3. ImageSubtract 311
27.4.4. WordCloud 312

27.5. Image Filters 313
27.5.1. GaussianFilter 313
27.5.2. ImageConvolve 314
27.5.3. MaxFilter 315
27.5.4. MedianFilter 316

27.5.5. MinFilter 317
27.6. Image Properties 318

27.6.1. ImageAspectRatio 318
27.6.2. ImageChannels 318
27.6.3. ImageData 319
27.6.4. ImageDimensions 319
27.6.5. ImageType 320

27.7. Image testing 320
27.7.1. BinaryImageQ 320
27.7.2. ImageQ 320

27.8. Miscellaneous image-related
functions 321

27.8.1. EdgeDetect 321
27.8.2. RandomImage 322
27.8.3. TextRecognize 323

27.9. Morphological Image Processing . . 323
27.9.1. Closing 323
27.9.2. Dilation 324
27.9.3. Erosion 325
27.9.4. MorphologicalComponents . 325
27.9.5. Opening 325

27.10. Operations on Image Structure . . . 326
27.10.1. ImageTake 326

27.11. Pixel Operations 327
27.11.1. PixelValue 327
27.11.2. PixelValuePositions 327

27.1. Basic Image Processing

27.1.1. Blur

WMA link

297

https://scikit-image.org/
https://reference.wolfram.com/language/ref/Blur.html

Blur[image]
gives a blurred version of image.

Blur[image, r]
blurs image with a kernel of size r.

>> hedy = Import["ExampleData/hedy.tif"];

>> Blur[hedy]

>> Blur[hedy, 5]

298

27.1.2. ImageAdjust

WMA link

ImageAdjust[image]
adjusts the levels in image.

ImageAdjust[image, c]
adjusts the contrast in image by c.

ImageAdjust[image, {c, b}]
adjusts the contrast c, and brightness b in image.

ImageAdjust[image, {c, b, g}]
adjusts the contrast c, brightness b, and gamma g in image.

>> hedy = Import["ExampleData/hedy.tif"];

>> ImageAdjust[hedy]

27.1.3. ImagePartition

WMA link

ImagePartition[image, s]
Partitions an image into an array of s x s pixel subimages.

ImagePartition[image, {w, h}]
Partitions an image into an array of w x h pixel subimages.

>> hedy = Import["ExampleData/hedy.tif"];

299

https://reference.wolfram.com/language/ref/ImageAdjust.html
https://reference.wolfram.com/language/ref/ImagePartition.html

>> ImageDimensions[hedy]
{646, 800}

>> ImagePartition[hedy, 256]

>> ImagePartition[hedy, {512, 128}]

27.1.4. Sharpen

WMA link

Sharpen[image]
gives a sharpened version of image.

Sharpen[image, r]
sharpens image with a kernel of size r.

>> hedy = Import["ExampleData/hedy.tif"];

>> Sharpen[hedy]

300

https://reference.wolfram.com/language/ref/Sharpen.html

>> Sharpen[hedy, 5]

27.1.5. Threshold

WMA link

Threshold[image]
gives a value suitable for binarizing image.

The option “Method” may be “Cluster” (use Otsu’s threshold), “Median”, or “Mean”.

>> img = Import["ExampleData/hedy.tif"];

>> Threshold[img]
0.408203

301

https://reference.wolfram.com/language/ref/Threshold.html

>> Binarize[img, %]

>> Threshold[img, Method -> "Mean"]
0.22086

>> Threshold[img, Method -> "Median"]
0.0593961

27.2. Geometric Operations

27.2.1. ImageReflect

WMA link

ImageReflect[image]
Flips image top to bottom.

ImageReflect[image, side]
Flips image so that side is interchanged with its opposite.

ImageReflect[image, side1 -> side2]
Flips image so that side1 is interchanged with side2.

>> ein = Import["ExampleData/Einstein.jpg"];

302

https://reference.wolfram.com/language/ref/ImageReflect.html

>> ImageReflect[ein]

>> ImageReflect[ein, Left]

>> ImageReflect[ein, Left -> Top]

27.2.2. ImageResize

WMA link

ImageResize[image, width]
ImageResize[image, {width, height}]

303

https://reference.wolfram.com/language/ref/ImageResize.html

The Resampling option can be used to specify how to resample the image. Options are:

• Automatic

• Bicubic

• Bilinear

• Box

• Hamming

• Lanczos

• Nearest

See Pillow Filters for a description of these.

>> alice = Import["ExampleData/MadTeaParty.gif"]

>> shape = ImageDimensions[alice]
{640, 487}

>> ImageResize[alice, shape / 2]

The default sampling method is “Bicubic” which has pretty good upscaling and downscaling quality.
However “Box” is the fastest:

>> ImageResize[alice, shape / 2, Resampling -> "Box"]

304

https://pillow.readthedocs.io/en/stable/handbook/concepts.html#filters

27.2.3. ImageRotate

WMA link

ImageRotate[image]
Rotates image 90 degrees counterclockwise.

ImageRotate[image, theta]
Rotates image by a given angle theta

>> ein = Import["ExampleData/Einstein.jpg"];

>> ImageRotate[ein]

>> ImageRotate[ein, 45 Degree]

305

https://reference.wolfram.com/language/ref/ImageRotate.html

>> ImageRotate[ein, Pi / 4]

27.3. Image Colors

27.3.1. Binarize

WMA link

Binarize[image]
gives a binarized version of image, in which each pixel is either 0 or 1.

Binarize[image, t]
map values x > t to 1, and values x <= t to 0.

Binarize[image, {t1, t2}]
map t1 < x < t2 to 1, and all other values to 0.

>> hedy = Import["ExampleData/hedy.tif"];

306

https://reference.wolfram.com/language/ref/Binarize.html

>> Binarize[hedy]

>> Binarize[hedy, 0.7]

307

>> Binarize[hedy, {0.2, 0.6}]

27.3.2. ColorQuantize

WMA link

ColorQuantize[image, n]
gives a version of image using only n colors.

>> img = Import["ExampleData/hedy.tif"];

>> ColorQuantize[img, 6]

308

https://reference.wolfram.com/language/ref/ColorQuantize.html

27.3.3. ColorSeparate

WMA link

ColorSeparate[image]
Gives each channel of image as a separate grayscale image.

>> img = Import["ExampleData/hedy.tif"];

>> ColorSeparate[img]

27.3.4. Colorize

WMA link

Colorize[values]
returns an image where each number in the rectangular matrix values is a pixel and each
occurrence of the same number is displayed in the same unique color, which is different
from the colors of all non-identical numbers.

Colorize[image]
gives a colorized version of image.

>> Colorize[{{1.3, 2.1, 1.5}, {1.3, 1.3, 2.1}, {1.3, 2.1, 1.5}}]

>> Colorize[{{1, 2}, {2, 2}, {2, 3}}, ColorFunction -> (Blend[{White,
Blue}, #]&)]

27.3.5. ImageColorSpace

WMA link

ImageColorSpace[image]
gives image’s color space, e.g. “RGB” or “CMYK”.

>> img = Import["ExampleData/MadTeaParty.gif"];

>> ImageColorSpace[img]
Grayscale

309

https://reference.wolfram.com/language/ref/ColorSeparate.html
https://reference.wolfram.com/language/ref/Colorize.html
https://reference.wolfram.com/language/ref/ImageColorSpace.html

>> img = Import["ExampleData/sunflowers.jpg"];

>> ImageColorSpace[img]
RGB

27.4. Image Compositions

27.4.1. ImageAdd

WMA link

ImageAdd[image, expr1, expr2, ...]
adds all expri to image where each expri must be an image or a real number.

>> i = Image[{{0, 0.5, 0.2, 0.1, 0.9}, {1.0, 0.1, 0.3, 0.8, 0.6}}];

>> ImageAdd[i, 0.5]

>> ImageAdd[i, i]

>> ein = Import["ExampleData/Einstein.jpg"];

>> noise = RandomImage[{-0.1, 0.1}, ImageDimensions[ein]];

>> ImageAdd[noise, ein]

>> hedy = Import["ExampleData/hedy.tif"];

310

https://reference.wolfram.com/language/ref/ImageAdd.html

>> noise = RandomImage[{-0.2, 0.2}, ImageDimensions[hedy], ColorSpace ->
"RGB"];

>> ImageAdd[noise, hedy]

27.4.2. ImageMultiply

WMA link

ImageMultiply[image, expr1, expr2, ...]
multiplies all expri with image where each expri must be an image or a real number.

>> i = Image[{{0, 0.5, 0.2, 0.1, 0.9}, {1.0, 0.1, 0.3, 0.8, 0.6}}];

>> ImageMultiply[i, 0.2]

>> ImageMultiply[i, i]

27.4.3. ImageSubtract

WMA link

ImageSubtract[image, expr1, expr2, ...]
subtracts all expri from image where each expri must be an image or a real number.

311

https://reference.wolfram.com/language/ref/ImageMultiply.html
https://reference.wolfram.com/language/ref/ImageSubtract.html

>> i = Image[{{0, 0.5, 0.2, 0.1, 0.9}, {1.0, 0.1, 0.3, 0.8, 0.6}}];

>> ImageSubtract[i, 0.2]

>> ImageSubtract[i, i]

27.4.4. WordCloud

WMA link

WordCloud[{word1, word2, ...}]
Gives a word cloud with the given list of words.

WordCloud[{weight1 -> word1, weight2 -> word2, ...}]
Gives a word cloud with the words weighted using the given weights.

WordCloud[{weight1, weight2, ...} -> {word1, word2, ...}]
Also gives a word cloud with the words weighted using the given weights.

WordCloud[{{word1, weight1}, {word2, weight2}, ...}]
Gives a word cloud with the words weighted using the given weights.

>> WordCloud[StringSplit[Import["ExampleData/EinsteinSzilLetter.txt",
CharacterEncoding->"UTF8"]]]

312

https://reference.wolfram.com/language/ref/WordCloud.html

>> WordCloud[Range[50] -> ToString /@ Range[50]]

27.5. Image Filters

27.5.1. GaussianFilter

WMA link

GaussianFilter[image, r]
blurs image using a Gaussian blur filter of radius r.

>> hedy = Import["ExampleData/hedy.tif"];

>> GaussianFilter[hedy, 2.5]

313

https://reference.wolfram.com/language/ref/GaussianFilter.html

27.5.2. ImageConvolve

WMA link

ImageConvolve[image, kernel]
Computes the convolution of image using kernel.

>> hedy = Import["ExampleData/hedy.tif"];

>> ImageConvolve[hedy, DiamondMatrix[5] / 61]

>> ImageConvolve[hedy, DiskMatrix[5] / 97]

314

https://reference.wolfram.com/language/ref/ImageConvolve.html

>> ImageConvolve[hedy, BoxMatrix[5] / 121]

27.5.3. MaxFilter

WMA link

MaxFilter[image, r]
gives image with a maximum filter of radius r applied on it. This always picks the largest
value in the filter’s area.

>> hedy = Import["ExampleData/hedy.tif"];

315

https://reference.wolfram.com/language/ref/MaxFilter.html

>> MaxFilter[hedy, 5]

27.5.4. MedianFilter

WMA link

MedianFilter[image, r]
gives image with a median filter of radius r applied on it. This always picks the median
value in the filter’s area.

>> hedy = Import["ExampleData/hedy.tif"];

316

https://reference.wolfram.com/language/ref/MedianFilter.html

>> MedianFilter[hedy, 5]

27.5.5. MinFilter

WMA link

MinFilter[image, r]
gives image with aminimumfilter of radius r applied on it. This always picks the smallest
value in the filter’s area.

>> hedy = Import["ExampleData/hedy.tif"];

317

https://reference.wolfram.com/language/ref/MinFilter.html

>> MinFilter[hedy, 5]

27.6. Image Properties

27.6.1. ImageAspectRatio

WMA link

ImageAspectRatio[image]
gives the aspect ratio of image.

>> img = Import["ExampleData/hedy.tif"];

>> ImageAspectRatio[img]
400
323

>> ImageAspectRatio[Image[{{0, 1}, {1, 0}, {1, 1}}]]
3
2

27.6.2. ImageChannels

WMA link

ImageChannels[image]
gives the number of channels in image.

318

https://reference.wolfram.com/language/ref/ImageAspectRatio.html
https://reference.wolfram.com/language/ref/ImageChannels.html

>> ImageChannels[Image[{{0, 1}, {1, 0}}]]
1

>> img = Import["ExampleData/hedy.tif"];

>> ImageChannels[img]
3

27.6.3. ImageData

WMA link

ImageData[image]
gives a list of all color values of image as a matrix.

ImageData[image, stype]
gives a list of color values in type stype.

>> img = Image[{{0.2, 0.4}, {0.9, 0.6}, {0.5, 0.8}}];

>> ImageData[img]
{{0.2, 0.4} , {0.9, 0.6} , {0.5, 0.8}}

>> ImageData[img, "Byte"]
{{51, 102} , {229, 153} , {127, 204}}

>> ImageData[Image[{{0, 1}, {1, 0}, {1, 1}}], "Bit"]
{{0, 1} , {1, 0} , {1, 1}}

27.6.4. ImageDimensions

WMA link

ImageDimensions[image]
Returns the dimensions {width, height} of image in pixels.

>> hedy = Import["ExampleData/hedy.tif"];

>> ImageDimensions[hedy]
{646, 800}

>> ImageDimensions[RandomImage[1, {50, 70}]]
{50, 70}

319

https://reference.wolfram.com/language/ref/ImageData.html
https://reference.wolfram.com/language/ref/ImageDimensions.html

27.6.5. ImageType

WMA link

ImageType[image]
gives the interval storage type of image, e.g. “Real”, “Bit32”, or “Bit”.

>> img = Import["ExampleData/hedy.tif"];

>> ImageType[img]
Byte

>> ImageType[Image[{{0, 1}, {1, 0}}]]
Real

>> ImageType[Binarize[img]]
Bit

27.7. Image testing

27.7.1. BinaryImageQ

WMA link

BinaryImageQ[image]
returns True if the pixels of image are binary bit values, and False otherwise.

>> img = Import["ExampleData/hedy.tif"];

>> BinaryImageQ[img]
False

>> BinaryImageQ[Binarize[img]]
True

27.7.2. ImageQ

WMA link

ImageQ[Image[pixels]]
returns True if pixels has dimensions fromwhich an Image can be constructed, and False
otherwise.

>> ImageQ[Image[{{0, 1}, {1, 0}}]]
True

320

https://reference.wolfram.com/language/ref/ImageType.html
https://reference.wolfram.com/language/ref/BinaryImageQ.html
https://reference.wolfram.com/language/ref/ImageQ.html

>> ImageQ[Image[{{{0, 0, 0}, {0, 1, 0}}, {{0, 1, 0}, {0, 1, 1}}}]]
True

>> ImageQ[Image[{{{0, 0, 0}, {0, 1}}, {{0, 1, 0}, {0, 1, 1}}}]]
False

>> ImageQ[Image[{1, 0, 1}]]
False

>> ImageQ["abc"]
False

27.8. Miscellaneous image-related functions

27.8.1. EdgeDetect

WMA link

EdgeDetect[image]
returns an image showing the edges in image.

>> hedy = Import["ExampleData/hedy.tif"];

>> EdgeDetect[hedy]

321

https://reference.wolfram.com/language/ref/EdgeDetect.html

>> EdgeDetect[hedy, 5]

>> EdgeDetect[hedy, 4, 0.5]

27.8.2. RandomImage

WMA link

322

https://reference.wolfram.com/language/ref/RandomImage.html

RandomImage[max]
creates an image of random pixels with values 0 to max.

RandomImage[{min, max}]
creates an image of random pixels with values min to max.

RandomImage[..., size]
creates an image of the given size.

>> RandomImage[1, {100, 100}]

27.8.3. TextRecognize

WMA link

TextRecognize[image]
Recognizes text in image and returns it as a String.

>> textimage = Import["ExampleData/TextRecognize.png"]

>> TextRecognize[textimage]
TextRecognize[image]

Recognizes text in image and returns it as a String.

27.9. Morphological Image Processing

27.9.1. Closing

WMA link

Closing[image, ker]
Gives the morphological closing of image with respect to structuring element ker.

>> ein = Import["ExampleData/Einstein.jpg"];

323

https://reference.wolfram.com/language/ref/TextRecognize.html
https://reference.wolfram.com/language/ref/Closing.html

>> Closing[ein, 2.5]

27.9.2. Dilation

WMA link

Dilation[image, ker]
Gives the morphological dilation of image with respect to structuring element ker.

>> ein = Import["ExampleData/Einstein.jpg"];

>> Dilation[ein, 2.5]

324

https://reference.wolfram.com/language/ref/Dilation.html

27.9.3. Erosion

WMA link

Erosion[image, ker]
Gives the morphological erosion of image with respect to structuring element ker.

>> ein = Import["ExampleData/Einstein.jpg"];

>> Erosion[ein, 2.5]

27.9.4. MorphologicalComponents

WMA link

MorphologicalComponents[image]
Builds a 2-D array in which each pixel of image is replaced by an integer index represent-
ing the connected foreground image component in which the pixel lies.

MorphologicalComponents[image, threshold]
consider any pixel with a value above threshold as the foreground.

27.9.5. Opening

WMA link

Opening[image, ker]
Gives the morphological opening of image with respect to structuring element ker.

325

https://reference.wolfram.com/language/ref/Erosion.html
https://reference.wolfram.com/language/ref/MorphologicalComponents.html
https://reference.wolfram.com/language/ref/Opening.html

>> ein = Import["ExampleData/Einstein.jpg"];

>> Opening[ein, 2.5]

27.10. Operations on Image Structure

27.10.1. ImageTake

Extract Image parts WMA link

ImageTake[image, n]
gives the first n rows of image.

ImageTake[image, -n]
gives the last n rows of image.

ImageTake[image, {r1, r2}]
gives rows r1, ..., r2 of image.

ImageTake[image, {r1, r2}, {c1, c2}]
gives a cropped version of image.

Crop to the include only the upper half (244 rows) of an image:

>> alice = Import["ExampleData/MadTeaParty.gif"]; ImageTake[alice, 244]

Now crop to the include the lower half of that image:

326

https://reference.wolfram.com/language/ref/ImageTake.html

>> ImageTake[alice, -244]

Just the text around the hat:

>> ImageTake[alice, {40, 150}, {500, 600}]

27.11. Pixel Operations

27.11.1. PixelValue

WMA link

PixelValue[image, {x, y}]
gives the value of the pixel at position {x, y} in image.

>> hedy = Import["ExampleData/hedy.tif"];

>> PixelValue[hedy, {1, 1}]
{0.439216, 0.356863, 0.337255}

27.11.2. PixelValuePositions

WMA link

PixelValuePositions[image, val]
gives the positions of all pixels in image that have value val.

>> PixelValuePositions[Image[{{0, 1}, {1, 0}, {1, 1}}], 1]
{{1, 1} , {1, 2} , {2, 1} , {2, 3}}

>> PixelValuePositions[Image[{{0.2, 0.4}, {0.9, 0.6}, {0.3, 0.8}}], 0.5,
0.15]

{{2, 2} , {2, 3}}

>> hedy = Import["ExampleData/hedy.tif"];

327

https://reference.wolfram.com/language/ref/PixelValue.html
https://reference.wolfram.com/language/ref/PixelValuePositions.html

>> PixelValuePositions[hedy, 1, 0][[1]]
{101, 491, 1}

>> PixelValue[hedy, {180, 192}]
{0.00784314, 0.00784314, 0.0156863}

328

28. Input and Output

Contents

28.1. $Echo 329
28.2. Print 329

28.1. $Echo

WMA link

$Echo
gives a list of files and pipes to which all input is echoed.

28.2. Print

WMA link

Print[expr, ...]
prints each expr in string form.

>> Print["Hello world!"]
Hello world!

>> Print["The answer is ", 7 * 6, "."]
The answer is 42.

329

https://reference.wolfram.com/language/ref/Echo_.html
https://reference.wolfram.com/language/ref/Print.html

29. Input/Output, Files, and Filesystem

Contents

29.1. File and Stream Operations 331
29.1.1. Character 331
29.1.2. Close 331
29.1.3. EndOfFile 332
29.1.4. Expression 332
29.1.5. FilePrint 332
29.1.6. Find 332
29.1.7. Get (<<) 333
29.1.8. $InputFileName 333
29.1.9. InputStream 334
29.1.10. $Input 334
29.1.11. Number 334
29.1.12. OpenAppend 335
29.1.13. OpenRead 335
29.1.14. OpenWrite 335
29.1.15. OutputStream 336
29.1.16. Put (>>) 336
29.1.17. PutAppend (>>>) 337
29.1.18. Read 338
29.1.19. ReadList 340
29.1.20. Record 341
29.1.21. SetStreamPosition 341
29.1.22. Skip 342
29.1.23. StreamPosition 342
29.1.24. Streams 343
29.1.25. StringToStream 344
29.1.26. Word 344
29.1.27. Write 344
29.1.28. WriteString 345

29.2. Filesystem Operations 345
29.2.1. AbsoluteFileName 345
29.2.2. CopyDirectory 346
29.2.3. CopyFile 346
29.2.4. CreateFile 346
29.2.5. CreateTemporary 346
29.2.6. DeleteFile 347

29.2.7. Directory 347
29.2.8. DirectoryStack 347
29.2.9. ExpandFileName 347
29.2.10. File 348
29.2.11. FileBaseName 348
29.2.12. FileByteCount 348
29.2.13. FileExistsQ 348
29.2.14. FileExtension 349
29.2.15. FileInformation 349
29.2.16. FileNameTake 349
29.2.17. FileNames 350
29.2.18. FindFile 350
29.2.19. Needs 351
29.2.20. $OperatingSystem 351
29.2.21. $PathnameSeparator 351
29.2.22. RenameFile 351
29.2.23. ResetDirectory 352
29.2.24. SetDirectory 352
29.2.25. ToFileName 352
29.2.26. URLSave 353

29.3. Importing and Exporting 353
29.3.1. System‘Convert‘B64Dump‘B64Decode 353
29.3.2. System‘Convert‘B64Dump‘B64Encode 353
29.3.3. System‘ConvertersDump‘$ExtensionMappings 354
29.3.4. System‘ConvertersDump‘$FormatMappings 354
29.3.5. Export 354
29.3.6. $ExportFormats 355
29.3.7. ExportString 355
29.3.8. FileFormat 356
29.3.9. Import 356
29.3.10. $ImportFormats 357
29.3.11. ImportString 357
29.3.12. ImportExport‘RegisterExport 358
29.3.13. ImportExport‘RegisterImport 358
29.3.14. URLFetch 360

330

29.1. File and Stream Operations

29.1.1. Character

WMA link

Character
is a data type for Read.

29.1.2. Close

WMA link

Close[obj]
Closes a stream or socket.

obj can be an InputStream, or an OutputStream object, or a String. When obj is a string file
path, one of the channels associated with it is closed.

>> Close[StringToStream["123abc"]]
String

>> file=Close[OpenWrite[]]
/tmp/tmp47f92_kb

Closing a file doesn’t delete it from the filesystem.

>> DeleteFile[file];

If two streams are open with the same file, then a Close by file path closes only one of the streams:

>> stream1 = OpenRead["ExampleData/numbers.txt"]
InputStream

[
ExampleData/numbers.txt, 15

]
>> stream2 = OpenRead["ExampleData/numbers.txt"]

InputStream
[
ExampleData/numbers.txt, 16

]
>> Close["ExampleData/numbers.txt"]

ExampleData/numbers.txt

Usually, the most-recent stream is closed, while the earlier-opened stream still persists:

>> Read[stream1]
8205.79

However, one of the streams is closed:

331

https://reference.wolfram.com/language/ref/Character.html
https://reference.wolfram.com/language/ref/Close.html

>> Read[stream2]
InputStream[ExampleData/numbers.txt, 16] is not open.
$Failed

>> Close["ExampleData/numbers.txt"]
ExampleData/numbers.txt

>> Read[stream1]
InputStream[ExampleData/numbers.txt, 15] is not open.
$Failed

29.1.3. EndOfFile

WMA link

EndOfFile
is returned by Read when the end of an input stream is reached.

29.1.4. Expression

WMA link

Expression
is a data type for Read.

For information about underlying data structure Expression (a kind of M-expression) that is central in
evaluation, see: AST, M-Expression, General List same thing.

29.1.5. FilePrint

WMA link

FilePrint[f ile]
prints the raw contents of f ile.

29.1.6. Find

WMA link

Find[stream, text]
find the first line in stream that contains text.

332

https://reference.wolfram.com/language/ref/EndOfFile.html
https://reference.wolfram.com/language/ref/Expression.html
https://mathics-development-guide.readthedocs.io/en/latest/extending/code-overview/ast.html
https://reference.wolfram.com/language/ref/FilePrint.html
https://reference.wolfram.com/language/ref/Find.html

>> stream = OpenRead["ExampleData/EinsteinSzilLetter.txt",
CharacterEncoding->"UTF8"];

>> Find[stream, "uranium"]
in manuscript, leads me to expect that the element uranium may be turned into

>> Find[stream, "uranium"]
become possible to set up a nuclear chain reaction in a large mass of uranium,

>> stream = OpenRead["ExampleData/EinsteinSzilLetter.txt",
CharacterEncoding->"UTF8"];

>> Find[stream, {"energy", "power"}]
a new and important source of energy in the immediate future. Certain aspects

>> Find[stream, {"energy", "power"}]
by which vast amounts of power and large quantities of new radium-like

29.1.7. Get (<<)

WMA link

<<$name$
reads a file and evaluates each expression, returning only the last one.

Get[name, Trace->True]
Runs Get tracing each line before it is evaluated.

Settings`$TraceGet can be also used to trace lines on all Get[] calls.

>> filename = $TemporaryDirectory <> "/example_file";

>> Put[x + y, filename]

>> Get[filename]
x + y

>> filename = $TemporaryDirectory <> "/example_file";

>> Put[x + y, 2x^2 + 4z!, Cos[x] + I Sin[x], filename]

>> Get[filename]
Cos [x] + ISin [x]

>> DeleteFile[filename]

29.1.8. $InputFileName

WMA link

333

https://reference.wolfram.com/language/ref/Get.html
https://reference.wolfram.com/language/ref/$InputFileName.html

$InputFileName
is the name of the file from which input is currently being read.

While in interactive mode, $InputFileName is “”.

>> $InputFileName
/src/external-vcs/github/Mathics3/mathics-core/mathics

29.1.9. InputStream

WMA link

InputStream[name, n]
represents an input stream for functions such as Read or Find.

StringToStream opens an input stream:

>> stream = StringToStream["Mathics is cool!"]
InputStream

[
String, 17

]
>> Close[stream]

String

29.1.10. $Input

WMA link

$Input
is the name of the stream from which input is currently being read.

>> $Input

29.1.11. Number

WMA link

Number
is a data type for Read.

334

https://reference.wolfram.com/language/ref/InputStream.html
https://reference.wolfram.com/language/ref/$Input.html
https://reference.wolfram.com/language/ref/Number.html

29.1.12. OpenAppend

WMA link

OpenAppend[``file']'
opens a file and returns an OutputStream to which writes are appended.

>> OpenAppend[]
OutputStream

[
/tmp/tmpvc8ff3yk, 17

]
>> DeleteFile[Close[%]];

29.1.13. OpenRead

WMA link

OpenRead[``file']'
opens a file and returns an InputStream.

>> OpenRead["ExampleData/EinsteinSzilLetter.txt", CharacterEncoding->"
UTF8"]

InputStream
[
ExampleData/EinsteinSzilLetter.txt, 17

]
The stream must be closed after using it to release the resource:

>> Close[%];

29.1.14. OpenWrite

WMA link

OpenWrite[``file']'
opens a file and returns an OutputStream.

>> OpenWrite[]
OutputStream

[
/tmp/tmp6dm032sc, 17

]
>> DeleteFile[Close[%]];

335

https://reference.wolfram.com/language/ref/OpenAppend.html
https://reference.wolfram.com/language/ref/OpenRead.html
https://reference.wolfram.com/language/ref/OpenWrite.html

29.1.15. OutputStream

WMA link

OutputStream[name, n]
represents an output stream.

By default, the list of Streams normally OutputStream entries for stderr and stdout

>> Streams[]{
InputStream [stdin, 0] , OutputStream [stdout, 1] , OutputStream [
stderr, 2] , InputStream

[
String, 3

]
, InputStream

[
ExampleData/numbers.txt, 4

]
, InputStream

[
ExampleData/numbers.txt, 5

]
, InputStream

[
ExampleData/numbers.txt, 6

]
, InputStream

[
ExampleData/strings.txt, 7

]
, InputStream

[
ExampleData/strings.txt, 8

]
, InputStream

[
ExampleData/strings.txt, 9

]
, InputStream

[
ExampleData/strings.txt, 10

]
, InputStream

[
ExampleData/strings.txt, 11

]
, InputStream

[
ExampleData/sentences.txt, 12

]
, InputStream

[
String, 13

]
, InputStream

[
String, 14

]
, InputStream

[
ExampleData/EinsteinSzilLetter.txt, 15

]
, InputStream

[
ExampleData/EinsteinSzilLetter.txt, 16

]}

29.1.16. Put (>>)

WMA link

$expr$ >> $filename$
write expr to a file.

Put[expr1, expr2, ..., “ f ilename”]
write a sequence of expressions to a file.

>> Put[40!, fortyfactorial]
fortyfactorial is not string, InputStream[], or OutputStream[]
815915283247897734345611269596115894272000000000»fortyfactorial

>> filename = $TemporaryDirectory <> "/fortyfactorial";

>> Put[40!, filename]

>> FilePrint[filename]
815915283247897734345611269596115894272000000000

>> Get[filename]
815915283247897734345611269596115894272000000000

336

https://reference.wolfram.com/language/ref/OutputStream.html
https://reference.wolfram.com/language/ref/Put.html

>> DeleteFile[filename]

>> filename = $TemporaryDirectory <> "/fiftyfactorial";

>> Put[10!, 20!, 30!, filename]

>> FilePrint[filename]
3628800

2432902008176640000

265252859812191058636308480000000

>> DeleteFile[filename]

=

>> filename = $TemporaryDirectory <> "/example_file";

>> Put[x + y, 2x^2 + 4z!, Cos[x] + I Sin[x], filename]

>> FilePrint[filename]
x + y

2*x^2 + 4*z!

Cos[x] + I*Sin[x]

>> DeleteFile[filename]

29.1.17. PutAppend (>>>)

WMA link

$expr$ >>> $filename$
append expr to a file.

PutAppend[expr1, expr2, ..., “ f ilename”]
write a sequence of expressions to a file.

>> Put[50!, "factorials"]

>> FilePrint["factorials"]
30414093201713378043612608166064768844377641568960512000000000000

>> PutAppend[10!, 20!, 30!, "factorials"]

>> FilePrint["factorials"]
30414093201713378043612608166064768844377641568960512000000000000

3628800

2432902008176640000

265252859812191058636308480000000

>> 60! >>> "factorials"

337

https://reference.wolfram.com/language/ref/PutAppend.html

>> FilePrint["factorials"]
30414093201713378043612608166064768844377641568960512000000000000

3628800

2432902008176640000

265252859812191058636308480000000

8320987112741390144276341183223364380754172606361245952449277696409600000000000000

>> "string" >>> factorials

>> FilePrint["factorials"]
30414093201713378043612608166064768844377641568960512000000000000

3628800

2432902008176640000

265252859812191058636308480000000

8320987112741390144276341183223364380754172606361245952449277696409600000000000000

"string"

>> DeleteFile["factorials"];

29.1.18. Read

WMA link

Read[stream]
reads the input stream and returns one expression.

Read[stream, type]
reads the input stream and returns an object of the given type.

Read[stream, type]
reads the input stream and returns an object of the given type.

Read[$stream$, Hold[Expression]]
reads the input stream for an Expression and puts it inside Hold.

type is one of:

• Byte

• Character

• Expression

• HoldExpression

• Number

• Real

• Record

• String

• Word

>> stream = StringToStream["abc123"];

338

https://reference.wolfram.com/language/ref/Read.html

>> Read[stream, String]
abc123

>> Read[stream, String]
EndOfFile

>> stream = StringToStream["abc 123"];

>> Read[stream, Word]
abc

>> Read[stream, Word]
123

>> Read[stream, Word]
EndOfFile

>> stream = StringToStream["123, 4"];

>> Read[stream, Number]
123

>> Read[stream, Number]
4

>> Read[stream, Number]
EndOfFile

>> stream = StringToStream["2+2\n2+3"];

Read with a Hold[Expression] returns the expression it reads unevaluated so it can be later inspected
and evaluated:

>> Read[stream, Hold[Expression]]
Hold [2 + 2]

>> Read[stream, Expression]
5

Reading a comment, a non-expression, will return Hold[Null]

>> stream = StringToStream["(* ::Package:: *)"];

>> Read[stream, Hold[Expression]]
Hold [Null]

>> stream = StringToStream["123 abc"];

>> Read[stream, {Number, Word}]
{123, abc}

>> Read[stream, {Number, Word}]
EndOfFile

Multiple lines:

339

>> stream = StringToStream["\"Tengo una\nvaca lechera.\""]; Read[stream]
Tengo una
vaca lechera.

29.1.19. ReadList

WMA link

ReadList[“ f ile”]
Reads all the expressions until the end of file.

ReadList[“ f ile”, type]
Reads objects of a specified type until the end of file.

ReadList[“ f ile”, {type1, type2, ...}]
Reads a sequence of specified types until the end of file.

To read all the numbers in a file and return a list of them:

>> ReadList["ExampleData/numbers.txt", Number]
{11.1, 22.2, 33.3, 44.4, 55.5, 66.6}

(Use ’FilePrint[]’ 29.1.5 to get the raw data for the examples above and below.)

This does the same, but groups the numbers in to a pairs:

>> ReadList["ExampleData/numbers.txt", {Number, Number}]
{{11.1, 22.2} , {33.3, 44.4} , {55.5, 66.6}}

Now let us read and put blocks of 3 numbers in its own list:

>> ReadList["ExampleData/numbers.txt", Table[Number, {3}]]
{{11.1, 22.2, 33.3} , {44.4, 55.5, 66.6}}

Like ’Read[]’ 29.1.18, ReadList handles types of objects other than numbers. We can read a list of char-
acters in a file putting each character as an item in a list:

>> ReadList["ExampleData/strings.txt", Character]
{H, e, r, e, , i, s, , t, e, x, t, .,

, A, n, d, , m, o, r, e, , t, e, x, t, .,
}

And now, here are the integer codes corresponding to each of the bytes in the file:

>> ReadList["ExampleData/strings.txt", Byte]
{72, 101, 114, 101, 32, 105, 115, 32, 116, 101, 120, 116, 46, 10, 65, 110, 100, 32, 109, 111, 114, 101, 32, 116, 101, 120, 116, 46, 10}

But the data can also be read by “words”:

340

https://reference.wolfram.com/language/ref/ReadList.html

>> ReadList["ExampleData/strings.txt", Word]
{Here, is, text., And, more, text.}

The above uses the default value which is space of some sort., However you can set your own value:

>> ReadList["ExampleData/strings.txt", Word, WordSeparators -> {"e",
"."}]

{H, r, is t, xt, And mor, t, xt}

See WordSeparators for more information.

Reading by records uses the separators found in

>> ReadList["ExampleData/strings.txt", Record]
{Here is text., And more text.}

See RecordSeparators works analogously for records as WordSeparators does for words.

To allow both periods and newlines as record separators:

>> ReadList["ExampleData/sentences.txt", Record, RecordSeparators ->
{".", "\n"}]

{Here is text, And more, And a second line}

See also Reading Textual Data.

29.1.20. Record

WMA link

Record
is a data type for Read.

29.1.21. SetStreamPosition

WMA link

SetStreamPosition[stream, n]
sets the current position in a stream.

>> stream = StringToStream["Mathics is cool!"]
InputStream

[
String, 33

]
>> SetStreamPosition[stream, 8]

8

341

https://reference.wolfram.com/language/ref/WordSeprators.html
https://reference.wolfram.com/language/ref/RecordSeprators.html
https://reference.wolfram.com/language/tutorial/FilesStreamsAndExternalOperations.html#3333
https://reference.wolfram.com/language/ref/Record.html
https://reference.wolfram.com/language/ref/SetStreamPosition.html

>> Read[stream, Word]
is

>> SetStreamPosition[stream, Infinity]
16

29.1.22. Skip

WMA link

Skip[stream, type]
skips ahead in an input steream by one object of the specified type.

Skip[stream, type, n]
skips ahead in an input steream by n objects of the specified type.

>> stream = StringToStream["a b c d"];

>> Read[stream, Word]
a

>> Skip[stream, Word]

>> Read[stream, Word]
c

>> stream = StringToStream["a b c d"];

>> Read[stream, Word]
a

>> Skip[stream, Word, 2]

>> Read[stream, Word]
d

>> Skip[stream, Word]
EndOfFile

29.1.23. StreamPosition

WMA link

StreamPosition[stream]
returns the current position in a stream as an integer.

>> stream = StringToStream["Mathics is cool!"]
InputStream

[
String, 36

]

342

https://reference.wolfram.com/language/ref/Skip.html
https://reference.wolfram.com/language/ref/StreamPosition.html

>> Read[stream, Word]
Mathics

>> StreamPosition[stream]
7

29.1.24. Streams

WMA link

Streams[]
returns a list of all open streams.

>> Streams[]{
InputStream [stdin, 0] , OutputStream [stdout, 1] , OutputStream [
stderr, 2] , InputStream

[
String, 3

]
, InputStream

[
ExampleData/numbers.txt, 4

]
, InputStream

[
ExampleData/numbers.txt, 5

]
, InputStream

[
ExampleData/numbers.txt, 6

]
, InputStream

[
ExampleData/strings.txt, 7

]
, InputStream

[
ExampleData/strings.txt, 8

]
, InputStream

[
ExampleData/strings.txt, 9

]
, InputStream

[
ExampleData/strings.txt, 10

]
, InputStream

[
ExampleData/strings.txt, 11

]
, InputStream

[
ExampleData/sentences.txt, 12

]
, InputStream

[
String, 13

]
, InputStream

[
String, 14

]
, InputStream

[
ExampleData/EinsteinSzilLetter.txt, 15

]
, InputStream

[
ExampleData/EinsteinSzilLetter.txt, 16

]
, InputStream

[
String, 17

]
, InputStream

[
String, 18

]
, InputStream

[
String, 19

]
, InputStream

[
String, 20

]
, InputStream

[
String, 21

]
, InputStream

[
String, 22

]
, InputStream

[
String, 23

]
, InputStream

[
ExampleData/numbers.txt, 24

]
, InputStream

[
ExampleData/numbers.txt, 25

]
, InputStream

[
ExampleData/numbers.txt, 26

]
, InputStream

[
ExampleData/strings.txt, 27

]
, InputStream

[
ExampleData/strings.txt, 28

]
, InputStream

[
ExampleData/strings.txt, 29

]
, InputStream

[
ExampleData/strings.txt, 30

]
, InputStream

[
ExampleData/strings.txt, 31

]
, InputStream

[
ExampleData/sentences.txt, 32

]
, InputStream

[
String, 33

]
, InputStream

[
String, 34

]
, InputStream

[
String, 35

]
, InputStream

[
String, 36

]}
>> Streams["stdout"]

{OutputStream [stdout, 1]}

343

https://reference.wolfram.com/language/ref/Streams.html

29.1.25. StringToStream

WMA link

StringToStream[string]
converts a string to an open input stream.

>> strm = StringToStream["abc 123"]
InputStream

[
String, 37

]
The stream must be closed after using it, to release the resource:

>> Close[strm];

29.1.26. Word

WMA link

Word
is a data type for Read.

29.1.27. Write

WMA link

Write[channel, expr1, expr2, ...]
writes the expressions to the output channel followed by a newline.

>> stream = OpenWrite[]
OutputStream

[
/tmp/tmp7ljotkx4, 37

]
>> Write[stream, 10 x + 15 y ^ 2]

>> Write[stream, 3 Sin[z]]

The stream must be closed in order to use the file again:

>> Close[stream];

>> stream = OpenRead[%];

>> ReadList[stream]{
10x + 15y2, 3Sin [z]

}

344

https://reference.wolfram.com/language/ref/StringToStream.html
https://reference.wolfram.com/language/ref/Word.html
https://reference.wolfram.com/language/ref/Write.html

>> DeleteFile[Close[stream]];

29.1.28. WriteString

WMA link

WriteString[stream, str1, str2, ...]
writes the strings to the output stream.

>> stream = OpenWrite[];

>> WriteString[stream, "This is a test 1"]

>> WriteString[stream, "This is also a test 2"]

>> pathname = Close[stream];

>> FilePrint[%]
This is a test 1This is also a test 2

>> DeleteFile[pathname];

>> stream = OpenWrite[];

>> WriteString[stream, "This is a test 1", "This is also a test 2"]

>> pathname = Close[stream]
/tmp/tmpbtcurwwy

>> FilePrint[%]
This is a test 1This is also a test 2

>> DeleteFile[pathname];

If stream is the string “stdout” or “stderr”, writes to the system standard output/ standard error channel:

>> WriteString["stdout", "Hola"]

29.2. Filesystem Operations

29.2.1. AbsoluteFileName

WMA link

AbsoluteFileName[“name”]
returns the absolute version of the given filename.

345

https://reference.wolfram.com/language/ref/WriteString.html
https://reference.wolfram.com/language/ref/AbsoluteFileName.html

>> AbsoluteFileName["ExampleData/sunflowers.jpg"]
/src/external-vcs/github/Mathics3/mathics-core/mathics/data/ExampleData/sunflowers.jpg

29.2.2. CopyDirectory

WMA link

CopyDirectory[“dir1”, “dir2”]
copies directory dir1 to dir2.

29.2.3. CopyFile

WMA link

CopyFile[“ f ile1”, “ f ile2”]
copies f ile1 to f ile2.

>> CopyFile["ExampleData/sunflowers.jpg", "MathicsSunflowers.jpg"]
MathicsSunflowers.jpg

>> DeleteFile["MathicsSunflowers.jpg"]

29.2.4. CreateFile

WMA link

CreateFile[``filename']'
Creates a file named “filename” temporary file, but do not open it.

CreateFile[]
Creates a temporary file, but do not open it.

29.2.5. CreateTemporary

WMA link

CreateTemporary[]
Creates a temporary file, but do not open it.

346

https://reference.wolfram.com/language/ref/CopyDirectory.html
https://reference.wolfram.com/language/ref/CopyFile.html
https://reference.wolfram.com/language/ref/CreateFile.html
https://reference.wolfram.com/language/ref/CreateTemporary.html

29.2.6. DeleteFile

WMA link

Delete[“ f ile”]
deletes f ile.

Delete[{“ f ile1”, “ f ile2”, ...}]
deletes a list of files.

>> CopyFile["ExampleData/sunflowers.jpg", "MathicsSunflowers.jpg"];

>> DeleteFile["MathicsSunflowers.jpg"]

>> CopyFile["ExampleData/sunflowers.jpg", "MathicsSunflowers1.jpg"];

>> CopyFile["ExampleData/sunflowers.jpg", "MathicsSunflowers2.jpg"];

>> DeleteFile[{"MathicsSunflowers1.jpg", "MathicsSunflowers2.jpg"}]

29.2.7. Directory

WMA link

Directory[]
returns the current working directory.

>> Directory[]
/home/rocky

29.2.8. DirectoryStack

WMA link

DirectoryStack[]
returns the directory stack.

>> DirectoryStack[]
{/src/external-vcs/github/Mathics3/mathics-core/mathics, /home/rocky}

29.2.9. ExpandFileName

WMA link

347

https://reference.wolfram.com/language/ref/DeleteFile.html
https://reference.wolfram.com/language/ref/Directory.html
https://reference.wolfram.com/language/ref/DirectoryStack.html
https://reference.wolfram.com/language/ref/ExpandFileName.html

ExpandFileName[“name”]
expands name to an absolute filename for your system.

>> ExpandFileName["ExampleData/sunflowers.jpg"]
/home/rocky/ExampleData/sunflowers.jpg

29.2.10. File

WMA link

File[“ f ile”]
is a symbolic representation of an element in the local file system.

29.2.11. FileBaseName

WMA link

FileBaseName[“ f ile”]
gives the base name for the specified file name.

>> FileBaseName["file.txt"]
file

>> FileBaseName["file.tar.gz"]
file.tar

29.2.12. FileByteCount

WMA link

FileByteCount[f ile]
returns the number of bytes in f ile.

>> FileByteCount["ExampleData/sunflowers.jpg"]
142286

29.2.13. FileExistsQ

WMA link

348

https://reference.wolfram.com/language/ref/File.html
https://reference.wolfram.com/language/ref/FileBaseName.html
https://reference.wolfram.com/language/ref/FileByteCount.html
https://reference.wolfram.com/language/ref/FileExistsQ.html

FileExistsQ[“ f ile”]
returns True if f ile exists and False otherwise.

>> FileExistsQ["ExampleData/sunflowers.jpg"]
True

>> FileExistsQ["ExampleData/sunflowers.png"]
False

29.2.14. FileExtension

WMA link

FileExtension[“ f ile”]
gives the extension for the specified file name.

>> FileExtension["file.txt"]
txt

>> FileExtension["file.tar.gz"]
gz

29.2.15. FileInformation

WMA link

FileInformation[“ f ile”]
returns information about f ile.

This function is totally undocumented in MMA!

>> FileInformation["ExampleData/sunflowers.jpg"]
{File− > /home/rocky/ExampleData/sunflowers.jpg, FileType
− > File, ByteCount− > 142286, Date− > 3882725439}

29.2.16. FileNameTake

WMA link

349

https://reference.wolfram.com/language/ref/FileExtension.html
https://reference.wolfram.com/language/ref/FileInformation.html
https://reference.wolfram.com/language/ref/FileNameTake.html

FileNameTake[“ f ile”]
returns the last path element in the file name name.

FileNameTake[“ f ile”, n]
returns the first n path elements in the file name name.

FileNameTake[“ f ile”, −n]
returns the last n path elements in the file name name.

29.2.17. FileNames

WMA link

FileNames[]
Returns a list with the filenames in the current working folder.

FileNames[f orm]
Returns a list with the filenames in the current working folder that matches with f orm.

FileNames[{ f orm1, f orm2, ...}]
Returns a list with the filenames in the current working folder that matches with one of
f orm1, f orm2,

FileNames[{ f orm1, f orm2, ...},{dir1, dir2, ...}]
Looks into the directories dir1, dir2,

FileNames[{ f orm1, f orm2, ...},{dir1, dir2, ...}]
Looks into the directories dir1, dir2,

FileNames[{ f orms, dirs, n]
Look for files up to the level n.

>> SetDirectory[$InstallationDirectory <> "/autoload"];

>> FileNames["*.m", "formats"]//Length
0

>> FileNames["*.m", "formats", 3]//Length
14

>> FileNames["*.m", "formats", Infinity]//Length
14

29.2.18. FindFile

WMA link

FindFile[name]
searches $Path for the given filename.

>> FindFile["ExampleData/sunflowers.jpg"]
/src/external-vcs/github/Mathics3/mathics-core/mathics/data/ExampleData/sunflowers.jpg

350

https://reference.wolfram.com/language/ref/FileNames.html
https://reference.wolfram.com/language/ref/FileFind.html

>> FindFile["VectorAnalysis`"]
/src/external-vcs/github/Mathics3/mathics-core/mathics/Packages/VectorAnalysis/Kernel/init.m

>> FindFile["VectorAnalysis`VectorAnalysis`"]
/src/external-vcs/github/Mathics3/mathics-core/mathics/Packages/VectorAnalysis/VectorAnalysis.m

29.2.19. Needs

WMA link

Needs["context`"]
loads the specified context if not already in $Packages.

>> Needs["VectorAnalysis`"]

29.2.20. $OperatingSystem

WMA link

$OperatingSystem
gives the type of operating system running Mathics.

>> $OperatingSystem
Unix

29.2.21. $PathnameSeparator

WMA link

$PathnameSeparator
returns a string for the separator in paths.

>> $PathnameSeparator
/

29.2.22. RenameFile

WMA link

351

https://reference.wolfram.com/language/ref/Needs.html
https://reference.wolfram.com/language/ref/OperatingSystem.html
https://reference.wolfram.com/language/ref/$PathnameSeparator.html
https://reference.wolfram.com/language/ref/RenameFile.html

RenameFile[“ f ile1”, “ f ile2”]
renames f ile1 to f ile2.

>> CopyFile["ExampleData/sunflowers.jpg", "MathicsSunflowers.jpg"]
MathicsSunflowers.jpg

>> RenameFile["MathicsSunflowers.jpg", "MathicsSunnyFlowers.jpg"]
MathicsSunnyFlowers.jpg

>> DeleteFile["MathicsSunnyFlowers.jpg"]

29.2.23. ResetDirectory

WMA link

ResetDirectory[]
pops a directory from the directory stack and returns it.

>> ResetDirectory[]
/src/external-vcs/github/Mathics3/mathics-core/mathics/autoload

29.2.24. SetDirectory

WMA link

SetDirectory[dir]
sets the current working directory to dir.

>> SetDirectory[]
/home/rocky

29.2.25. ToFileName

WMA link

ToFileName[{“dir1”, “dir2”, ...}]
joins the diri together into one path.

ToFileName has been superseded by FileNameJoin.

352

https://reference.wolfram.com/language/ref/ResetDirectory.html
https://reference.wolfram.com/language/ref/SetDirectory.html
https://reference.wolfram.com/language/ref/ToFileName.html

>> ToFileName[{"dir1", "dir2"}, "file"]
dir1/dir2/file

>> ToFileName["dir1", "file"]
dir1/file

>> ToFileName[{"dir1", "dir2", "dir3"}]
dir1/dir2/dir3

29.2.26. URLSave

WMA link

URLSave[``url']'
Save “url” in a temporary file.

URLSave[“url”, f ilename]
Save “url” in f ilename.

29.3. Importing and Exporting

Many kinds data formats can be read into
emphMathics3. Variable $ExportFormats 29.3.6 contains a list of file formats that are supported by Ex-
port 29.3.5, while $ImportFormats 29.3.10 does the corresponding thing for Import 29.3.9.

29.3.1. System‘Convert‘B64Dump‘B64Decode

WMA link

System`Convert`B64Dump`B64Decode[string]
Decode string in Base64 coding to an expression.

>> System`Convert`B64Dump`B64Decode["R!="]
String "R!=" is not a valid b64 encoded string.
$Failed

29.3.2. System‘Convert‘B64Dump‘B64Encode

WMA link

System`Convert`B64Dump`B64Encode[expr]
Encodes expr in Base64 coding

353

https://reference.wolfram.com/language/ref/URLSave.html
https://reference.wolfram.com/language/ref/B64Decode.html
https://reference.wolfram.com/language/ref/B64Encode.html

>> System`Convert`B64Dump`B64Encode["Hello world"]
SGVsbG8gd29ybGQ=

>> System`Convert`B64Dump`B64Decode[%]
Hello world

>> System`Convert`B64Dump`B64Encode[Integrate[f[x],{x,0,2}]]
SW50ZWdyYXRlW2ZbeF0sIHt4LCAwLCAyfV0=

>> System`Convert`B64Dump`B64Decode[%]
Integrate[f[x], {x, 0, 2}]

29.3.3. System‘ConvertersDump‘$ExtensionMappings

System`ConvertersDump`$ExtensionMappings
Returns a list of associations between file extensions and file types.

The format associated to the extension ”*.jpg”

>> "*.jpg"/. System`ConvertersDump`$ExtensionMappings
JPEG

29.3.4. System‘ConvertersDump‘$FormatMappings

System`ConverterDump$FormatMappings
Returns a list of associations between file extensions and file types.

The list of MIME types associated to the extension JPEG:

>> Select[System`ConvertersDump`$FormatMappings,(#1[[2]]=="JPEG")&][[All
, 1]]

{APPLICATION/JPG, APPLICATION/X-JPG, IMAGE/JPEG, IMAGE/JPG, IMAGE/PJPEG, JPEG, JPG}

29.3.5. Export

WMA link

354

https://reference.wolfram.com/language/ref/Export.html

Export[” f ile.ext”, expr]
exports expr to a file, using the extension ext to determine the format.

Export[“ f ile”, expr, “ f ormat”]
exports expr to a file in the specified format.

Export[“ f ile”, exprs, elems]
exports exprs to a file as elements specified by elems.

29.3.6. $ExportFormats

WMA link

$ExportFormats
returns a list of file formats supported by Export.

>> $ExportFormats
{BMP, Base64, CSV, ExampleFormat1, ExampleFormat2, GIF, JPEG, JPEG2000, PBM, PCX, PGM, PNG, PPM, SVG, TIFF, Text, asy}

29.3.7. ExportString

WMA link

ExportString[expr, f orm]
exports expr to a string, in the format f orm.

Export[“ f ile”, exprs, elems]
exports exprs to a string as elements specified by elems.

>> ExportString[{{1,2,3,4},{3},{2},{4}}, "CSV"]
1,2,3,4
3,
2,
4,

>> ExportString[{1,2,3,4}, "CSV"]
1,
2,
3,
4,

>> ExportString[Integrate[f[x],{x,0,2}], "SVG"]//Head
String

355

https://reference.wolfram.com/language/ref/$ExportFormats.html
https://reference.wolfram.com/language/ref/ExportString.html

29.3.8. FileFormat

WMA link

FileFormat[“name”]
attempts to determine what format Import should use to import specified file.

>> FileFormat["ExampleData/sunflowers.jpg"]
JPEG

>> FileFormat["ExampleData/EinsteinSzilLetter.txt"]
Text

>> FileFormat["ExampleData/hedy.tif"]
TIFF

29.3.9. Import

WMA link

Import[“ f ile”]
imports data from a file.

Import[“ f ile”, “ f mt”]
imports file assuming the specified file format.

Import[“ f ile”, elements]
imports the specified elements from a file.

Import[“ f ile”, {“ f mt”, elements}]
imports the specified elements from a file assuming the specified file format.

Import[”http://url”, ...] and Import[”ftp://url”, ...]
imports from a URL.

>> Import["ExampleData/ExampleData.txt", "Elements"]
{Data, Lines, Plaintext, String, Words}

>> Import["ExampleData/ExampleData.txt", "Lines"]
{Example File Format, Created by Angus, 0.629452
0.586355, 0.711009 0.687453, 0.246540 0.433973, 0.926871
0.887255, 0.825141 0.940900, 0.847035 0.127464, 0.054348
0.296494, 0.838545 0.247025, 0.838697 0.436220, 0.309496 0.833591}

356

https://reference.wolfram.com/language/ref/FileFormat.html
https://reference.wolfram.com/language/ref/Import.html

>> Import["ExampleData/colors.json"]
{colorsArray− > {{colorName− > black, rgbValue− > (0, 0,
0), hexValue− > #000000} , {colorName− > red, rgbValue− > (255, 0,
0), hexValue− > #FF0000} , {colorName− > green, rgbValue− > (0, 255,
0), hexValue− > #00FF00} , {colorName− > blue, rgbValue− > (0, 0,
255), hexValue− > #0000FF} , {colorName− > yellow, rgbValue− > (255, 255,
0), hexValue− > #FFFF00} , {colorName− > cyan, rgbValue− > (0, 255,
255), hexValue− > #00FFFF} , {colorName− > magenta, rgbValue− > (255, 0,
255), hexValue− > #FF00FF} , {colorName− > white, rgbValue− > (255,
255, 255), hexValue− > #FFFFFF}}}

29.3.10. $ImportFormats

WMA link

$ImportFormats
returns a list of file formats supported by Import.

>> $ImportFormats
{BMP, Base64, CSV, ExampleFormat1, ExampleFormat2, GIF, HTML, ICO, JPEG, JPEG2000, JSON, PBM, PCX, PGM, PNG, PPM, Package, TGA, TIFF, Text, XML}

29.3.11. ImportString

WMA link

ImportString[“data”, “ f ormat”]
imports data in the specified format from a string.

ImportString[“ f ile”, elements]
imports the specified elements from a string.

ImportString[“data”]
attempts to determine the format of the string from its content.

>> str = "Hello!\n This is a testing text\n";

>> ImportString[str, "Elements"]
{Data, Lines, Plaintext, String, Words}

>> ImportString[str, "Lines"]
{Hello!, This is a testing text}

357

https://reference.wolfram.com/language/ref/$ImportFormats.html
https://reference.wolfram.com/language/ref/ImportString.html

29.3.12. ImportExport‘RegisterExport

RegisterExport[“ f ormat”, f unc]
register $func$ as the default function used when exporting from a file of type ``
$format$''.

Simple text exporter

>> ExampleExporter1[filename_, data_, opts___] := Module[{strm =
OpenWrite[filename], char = data}, WriteString[strm, char]; Close[
strm]]

>> ImportExport`RegisterExport["ExampleFormat1", ExampleExporter1]

>> Export["sample.txt", "Encode this string!", "ExampleFormat1"];

>> FilePrint["sample.txt"]
Encode this string!

>> DeleteFile["sample.txt"]

Very basic encrypted text exporter:

>> ExampleExporter2[filename_, data_, opts___] := Module[{strm =
OpenWrite[filename], char}, (* TODO: Check data *)char =
FromCharacterCode[Mod[ToCharacterCode[data] - 84, 26] + 97];
WriteString[strm, char]; Close[strm]]

>> ImportExport`RegisterExport["ExampleFormat2", ExampleExporter2]

>> Export["sample.txt", "encodethisstring", "ExampleFormat2"];

>> FilePrint["sample.txt"]
rapbqrguvffgevat

>> DeleteFile["sample.txt"]

29.3.13. ImportExport‘RegisterImport

RegisterImport[“ f ormat”, de f aultFunction]
register $defaultFunction$ as the default function used when importing from a file of
type ``$format$''.

RegisterImport[``$format$', {``elem1'' :> conditionalFunction1, ``elem2'' :>
conditionalFunction2, ..., de f aultFunction}]'

registers multiple elements (elem1, ...) and their corresponding converter functions
(conditionalFunction1, ...) in addition to the de f aultFunction.

RegisterImport[``$format$', {``conditionalFunctions, de f aultFunction, ''elem3" :>
postFunction3, ``elem4'' :> postFunction4, ...}]'

also registers additional elements (elem3, ...) whose converters (postFunction3, ...) act on
output from the low-level functions.

358

First, define the default function used to import the data.

>> ExampleFormat1Import[filename_String] := Module[{stream, head, data},
stream = OpenRead[filename]; head = ReadList[stream, String, 2];

data = Partition[ReadList[stream, Number], 2]; Close[stream]; {"
Header" -> head, "Data" -> data}]

RegisterImport is then used to register the above function to a new data format.

>> ImportExport`RegisterImport["ExampleFormat1", ExampleFormat1Import]

>> FilePrint["ExampleData/ExampleData.txt"]
Example File Format

Created by Angus

0.629452 0.586355

0.711009 0.687453

0.246540 0.433973

0.926871 0.887255

0.825141 0.940900

0.847035 0.127464

0.054348 0.296494

0.838545 0.247025

0.838697 0.436220

0.309496 0.833591

>> Import["ExampleData/ExampleData.txt", {"ExampleFormat1", "Elements"}]
{Data, Header}

>> Import["ExampleData/ExampleData.txt", {"ExampleFormat1", "Header"}]
{Example File Format, Created by Angus}

Conditional Importer:

>> ExampleFormat2DefaultImport[filename_String] := Module[{stream, head
}, stream = OpenRead[filename]; head = ReadList[stream, String, 2];
Close[stream]; {"Header" -> head}]

>> ExampleFormat2DataImport[filename_String] := Module[{stream, data},
stream = OpenRead[filename]; Skip[stream, String, 2]; data =
Partition[ReadList[stream, Number], 2]; Close[stream]; {"Data" ->
data}]

>> ImportExport`RegisterImport["ExampleFormat2", {"Data" :>
ExampleFormat2DataImport, ExampleFormat2DefaultImport}]

>> Import["ExampleData/ExampleData.txt", {"ExampleFormat2", "Elements"}]
{Data, Header}

>> Import["ExampleData/ExampleData.txt", {"ExampleFormat2", "Header"}]
{Example File Format, Created by Angus}

359

>> Import["ExampleData/ExampleData.txt", {"ExampleFormat2", "Data"}] //
Grid

0.629452 0.586355
0.711009 0.687453
0.24654 0.433973
0.926871 0.887255
0.825141 0.9409
0.847035 0.127464
0.054348 0.296494
0.838545 0.247025
0.838697 0.43622
0.309496 0.833591

29.3.14. URLFetch

WMA link

URLFetch[URL]
Returns the content of URL as a string.

360

https://reference.wolfram.com/language/ref/URLFetch.html

30. Integer Functions

Integer Functions can work on integers of any size.

Contents

30.1. Combinatorial Functions 361
30.1.1. BellB 361
30.1.2. Binomial 362
30.1.3. CatalanNumber 362
30.1.4. DiceDissimilarity 362
30.1.5. EulerE 363
30.1.6. JaccardDissimilarity 363
30.1.7. LucasL 364
30.1.8. MatchingDissimilarity 364
30.1.9. Multinomial 364
30.1.10. PolygonalNumber 365
30.1.11. RogersTanimotoDissimilarity 366
30.1.12. RussellRaoDissimilarity . . . 366
30.1.13. SokalSneathDissimilarity . . . 366
30.1.14. Subsets 367
30.1.15. YuleDissimilarity 368

30.2. Division-Related Functions 368
30.2.1. CompositeQ 368

30.2.2. Divisible 368
30.2.3. GCD 369
30.2.4. LCM 369
30.2.5. Mod 370
30.2.6. ModularInverse 370
30.2.7. PowerMod 370
30.2.8. Quotient 371
30.2.9. QuotientRemainder 371

30.3. Miscelanea of Integer Functions . . . 372
30.3.1. BernoulliB 372

30.4. Recurrence and Sum Functions . . . 372
30.4.1. Fibonacci 372
30.4.2. HarmonicNumber 373
30.4.3. LinearRecurrence 373
30.4.4. StirlingS1 374
30.4.5. StirlingS2 374

30.1. Combinatorial Functions

Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an
end in obtaining results, and certain properties of finite structures.

It is closely related to many other areas of Mathematics and has many applications ranging from logic
to statistical physics, from evolutionary biology to computer science, etc.

30.1.1. BellB

Bell number (SymPy, WMA)

BellB[n]
Bell number Bn.

BellB[n, x]
Bell polynomial Bn(x).

361

https://en.wikipedia.org/wiki/Combinatorics
https://en.wikipedia.org/wiki/Bell_number
https://docs.sympy.org/latest/modules/functions/combinatorial.html#sympy.functions.combinatorial.numbers.bell
https://reference.wolfram.com/language/ref/BellB.html

>> BellB[10]
115975

>> BellB[5, x]
x + 15x2 + 25x3 + 10x4 + x5

30.1.2. Binomial

Binomial Coefficient (SymPy, WMA)

Binomial[n, k]
gives the binomial coefficient n choose k.

>> Binomial[5, 3]
10

Binomial supports inexact numbers:

>> Binomial[10.5,3.2]
165.286

Some special cases:

>> Binomial[10, -2]
0

>> Binomial[-10.5, -3.5]
0.

30.1.3. CatalanNumber

Catalan Number (SymPy, WMA)

CatalanNumber[n]
gives the n-th Catalan number.

A list of the first five Catalan numbers:

>> Table[CatalanNumber[n], {n, 1, 5}]
{1, 2, 5, 14, 42}

30.1.4. DiceDissimilarity

Sørensen–Dice coefficient (Sympy, DiceDissimilarity)

362

https://en.wikipedia.org/wiki/Binomial_coefficient
https://docs.sympy.org/latest/modules/functions/combinatorial.html#binomial
https://reference.wolfram.com/language/ref/Binomial.html
https://en.wikipedia.org/wiki/Catalan_number
https://docs.sympy.org/latest/modules/functions/combinatorial.html#sympy.functions.combinatorial.numbers.catalan
https://reference.wolfram.com/language/ref/CatalanNumber.html
https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient
https://docs.scipy.org/doc/scipy/search.html
https://reference.wolfram.com/language/ref/DiceDissimilarity.html

DiceDissimilarity[u, v]
returns the Dice dissimilarity between the two Boolean 1-D lists u and v. This is defined
as (ct f + c f t) / (2 * ctt + c f t + ct f). n is len(u) and cij is the number of occurrences of u[k] = i
and v[k] = j for k < n.

>> DiceDissimilarity[{1, 0, 1, 1, 0, 1, 1}, {0, 1, 1, 0, 0, 0, 1}]
1
2

30.1.5. EulerE

Euler numbers (SymPy, WMA)

EulerE[n]
Euler number En.

EulerE[n, x]
Euler polynomial En(x).

Odd-index Euler numbers are zero:

>> Table[EulerE[k], {k, 1, 9, 2}]
{0, 0, 0, 0, 0}

Even-index Euler numbers alternate in sign:

>> Table[EulerE[k], {k, 0, 8, 2}]
{1,−1, 5,−61, 1385}

>> EulerE[5, z]

−1
2

+
5z2

2
− 5z4

2
+ z5

30.1.6. JaccardDissimilarity

Jaccard index (SciPy, WMA)

JaccardDissimilarity[u, v]
returns the Jaccard-Needham dissimilarity between the two Boolean 1-D lists u and v,
which is defined as (ct f + c f t)/(ctt + c f t + ct f), where n is len(u) and cij is the number of
occurrences of u[k] = i and v[k] = j for k < n.

>> JaccardDissimilarity[{1, 0, 1, 1, 0, 1, 1}, {0, 1, 1, 0, 0, 0, 1}]
2
3

363

https://en.wikipedia.org/wiki/Euler_numbers
https://docs.sympy.org/latest/modules/functions/combinatorial.html#sympy.functions.combinatorial.numbers.euler
https://reference.wolfram.com/language/ref/EulerE.html
https://en.wikipedia.org/wiki/Jaccard_index
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.jaccard.html
https://reference.wolfram.com/language/ref/JaccardDissimilarity.html

30.1.7. LucasL

Lucas Number (SymPy, WMA)

LucasL[n]
gives the nth Lucas number.

LucasL[n, x]
gives the nth Lucas polynomial L(x).

A list of the first five Lucas numbers:

>> Table[LucasL[n], {n, 1, 5}]
{1, 3, 4, 7, 11}

>> Series[LucasL[1/2, x], {x, 0, 5}]

1 +
1
4

x +
1

32
x2 +

(
− 1

128

)
x3 +

(
− 5

2048

)
x4 +

7
8192

x5 + O [x]6

>> Plot[LucasL[1/2, x], {x, -5, 5}]

−4 −2 2 4

0.5

1.0

1.5

2.0

30.1.8. MatchingDissimilarity

WMA link

MatchingDissimilarity[u, v]
returns the Matching dissimilarity between the two Boolean 1-D lists u and v, which is
defined as (ct f + c f t)/n, where n is len(u) and cij is the number of occurrences of u[k] = i
and v[k] = j for k < n.

>> MatchingDissimilarity[{1, 0, 1, 1, 0, 1, 1}, {0, 1, 1, 0, 0, 0, 1}]
4
7

30.1.9. Multinomial

Multinomial distribution (WMA)

364

https://en.wikipedia.org/wiki/Lucas_number
https://docs.sympy.org/latest/modules/functions/combinatorial.html#sympy.functions.combinatorial.numbers.lucas
https://reference.wolfram.com/language/ref/LucasL.html
https://reference.wolfram.com/language/ref/MatchingDissimilarity.html
https://en.wikipedia.org/wiki/Multinomial_distribution
https://reference.wolfram.com/language/ref/Multinomial.html

Multinomial[n1, n2, ...]
gives the multinomial coefficient (n1 + n2 + ...)! /(n1! n2! ...).

>> Multinomial[2, 3, 4, 5]
2522520

>> Multinomial[]
1

Multinomial is expressed in terms of Binomial:

>> Multinomial[a, b, c]
Binomial [a, a]Binomial [a + b, b]Binomial [a + b + c, c]

Multinomial[n-k, k] is equivalent to Binomial[n, k]:

>> Multinomial[2, 3]
10

See also ’Binomial’ 30.1.2.

30.1.10. PolygonalNumber

Polygonal number (WMA)

PolygonalNumber[n]
gives the n-th triangular number.

PolygonalNumber[r, n]
gives the n-th r-gonal number.

>> Table[PolygonalNumber[n], {n, 10}]
{1, 3, 6, 10, 15, 21, 28, 36, 45, 55}

The sum of two consecutive Polygonal numbers is the square of the larger number:

>> Table[PolygonalNumber[n-1] + PolygonalNumber[n], {n, 10}]
{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

PolygonalNumber[r, n] can be interpreted as the number of points arranged in the form of n-1 polygons
of r sides.

List the tenth r-gonal number of regular polygons from 3 to 8:

>> Table[PolygonalNumber[r, 10], {r, 3, 8}]
{55, 100, 145, 190, 235, 280}

365

https://en.wikipedia.org/wiki/Polygonal_number
https://reference.wolfram.com/language/ref/PolygonalNumber.html

See also Binomial 30.1.2, and RegularPolygon 17.21.

30.1.11. RogersTanimotoDissimilarity

Rogers Tanimoto coefficient (WMA)

RogersTanimotoDissimilarity[u, v]
returns the Rogers-Tanimoto dissimilarity between the two Boolean 1-D lists u and v,
which is defined as R/(ctt + c f f + R) where n is len(u), cij is the number of occurrences of
u[k] = i, v[k] = j for k < n, and R = 2(ct f + c f t).

>> RogersTanimotoDissimilarity[{1, 0, 1, 1, 0, 1, 1}, {0, 1, 1, 0, 0, 0,
1}]
8

11

30.1.12. RussellRaoDissimilarity

Russel-Rao coefficient (WMA)

RussellRaoDissimilarity[u, v]
returns the Russell-Rao dissimilarity between the two Boolean 1-D lists u and v, which is
defined as (n− ctt)/ctt where n is len(u), cij is the number of occurrences of u[k] = i and
v[k] = j for k < n.

>> RussellRaoDissimilarity[{1, 0, 1, 1, 0, 1, 1}, {0, 1, 1, 0, 0, 0, 1}]
5
7

30.1.13. SokalSneathDissimilarity

Snokal-Sneath coefficient (WMA)

SokalSneathDissimilarity[u, v]
returns the Sokal-Sneath dissimilarity between the two Boolean 1-D lists u and v, which
is defined as R/(ctt + R) where n is len(u), cij is the number of occurrences of u[k] = i,
v[k] = j for k < n, and R = 2(ct f + c f t).

>> SokalSneathDissimilarity[{1, 0, 1, 1, 0, 1, 1}, {0, 1, 1, 0, 0, 0,
1}]
4
5

366

https://en.wikipedia.org/wiki/Qualitative_variation#Rogers%E2%80%93Tanimoto_coefficient
https://reference.wolfram.com/language/ref/RogersTanimotoDissimilarity.html
https://en.wikipedia.org/wiki/Qualitative_variation#Russel%E2%80%93Rao_coefficient
https://reference.wolfram.com/language/ref/RusselRaoDissimilarity.html
https://en.wikipedia.org/wiki/Qualitative_variation#Sokal%E2%80%93Sneath_coefficient
https://reference.wolfram.com/language/ref/SokalSneathDissimilarity.html

30.1.14. Subsets

Subset (WMA link)

Subsets[list]
finds a list of all possible subsets of list.

Subsets[list, n]
finds a list of all possible subsets containing at most n elements.

Subsets[list, {n}]
finds a list of all possible subsets containing exactly n elements.

Subsets[list, {min, max}]
finds a list of all possible subsets containing between min and max elements.

Subsets[list, spec, n]
finds a list of the first n possible subsets.

Subsets[list, spec, {n}]
finds the n-th possible subset.

All possible subsets (power set):

>> Subsets[{a, b, c}]
{{} , {a} , {b} , {c} , {a, b} , {a, c} , {b, c} , {a, b, c}}

All possible subsets containing up to 2 elements:

>> Subsets[{a, b, c, d}, 2]
{{} , {a} , {b} , {c} , {d} , {a, b} , {a, c} , {a, d} , {b, c} , {b, d} , {c, d}}

Subsets containing exactly 2 elements:

>> Subsets[{a, b, c, d}, {2}]
{{a, b} , {a, c} , {a, d} , {b, c} , {b, d} , {c, d}}

The first 5 subsets containing 3 elements:

>> Subsets[{a, b, c, d, e}, {3}, 5]
{{a, b, c} , {a, b, d} , {a, b, e} , {a, c, d} , {a, c, e}}

All subsets with even length:

>> Subsets[{a, b, c, d}, {0, 4, 2}]
{{} , {a, b} , {a, c} , {a, d} , {b, c} , {b, d} , {c, d} , {a, b, c, d}}

The 25th subset:

>> Subsets[Range[5], All, {25}]
{{2, 4, 5}}

The odd-numbered subsets of {a,b,c,d} in reverse order:

367

https://en.wikipedia.org/wiki/Subset
https://reference.wolfram.com/language/ref/Subsets.html

>> Subsets[{a, b, c, d}, All, {15, 1, -2}]
{{b, c, d} , {a, b, d} , {c, d} , {b, c} , {a, c} , {d} , {b} , {}}

30.1.15. YuleDissimilarity

WMA link

YuleDissimilarity[u, v]
returns the Yule dissimilarity between the two Boolean 1-D lists u and v, which is defined
as R/(cttc f f + R/2) where n is len(u), cij is the number of occurrences of u[k] = i, v[k] = j
for k < n, and R = 2ct f c f t.

>> YuleDissimilarity[{1, 0, 1, 1, 0, 1, 1}, {0, 1, 1, 0, 0, 0, 1}]
6
5

30.2. Division-Related Functions

30.2.1. CompositeQ

WMA link

CompositeQ[n]
returns True if n is a composite number

• A composite number is a positive number that is the product of two integers other than 1.

• For negative integer n, CompositeQ[n] is effectively equivalent to CompositeQ[-n].

>> Table[CompositeQ[n], {n, 0, 10}]
{False, False, False, False, True, False, True, False, True, True, True}

30.2.2. Divisible

WMA link

Divisible[n, m]
returns True if n is divisible by m, and False otherwise.

 n is divisible by m if n is the product of m by an integer. Divisible[n,m] is effectively
equivalent to Mod[n,m]==0.

368

https://reference.wolfram.com/language/ref/YuleDissimilarity.html
https://reference.wolfram.com/language/ref/CompositeQ.html
https://reference.wolfram.com/language/ref/Divisible.html

Test whether the number 10 is divisible by 2

>> Divisible[10, 2]
True

But the other way around is False: 2 is not divisible by 10:

>> Divisible[2, 10]
False

30.2.3. GCD

WMA link

GCD[n1, n2, ...]
computes the greatest common divisor of the given integers.

>> GCD[20, 30]
10

>> GCD[10, y]
GCD

[
10, y

]
GCD is Listable:

>> GCD[4, {10, 11, 12, 13, 14}]
{2, 1, 4, 1, 2}

GCD does not work for rational numbers and Gaussian integers yet.

30.2.4. LCM

WMA link

LCM[n1, n2, ...]
computes the least common multiple of the given integers.

>> LCM[15, 20]
60

>> LCM[20, 30, 40, 50]
600

369

https://reference.wolfram.com/language/ref/GCD.html
https://reference.wolfram.com/language/ref/LCM.html

30.2.5. Mod

WMA link

Mod[x, m]
returns x modulo m.

>> Mod[14, 6]
2

>> Mod[-3, 4]
1

>> Mod[-3, -4]
−3

>> Mod[5, 0]
The argument 0 should be nonzero.
Mod [5, 0]

30.2.6. ModularInverse

Modular multiplicative inverse (SymPy, WMA)

ModularInverse[k, n]
returns the modular inverse k∧(-1) mod n.

ModularInverse[k,n] gives the smallest positive integer r where the remainder of the division of
r x k by n is equal to 1.

>> ModularInverse[2, 3]
2

The following is be True for all values n, k which have a modular inverse:

>> k = 2; n = 3; Mod[ModularInverse[k, n] * k, n] == 1
True

Some modular inverses just do not exists. For example when k is a multiple of n:

>> ModularInverse[k, k]
ModularInverse [2, 2]

30.2.7. PowerMod

Modular exponentiation. See https://en.wikipedia.org/wiki/Modular_exponentiation.

370

https://reference.wolfram.com/language/ref/Mod.html
https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
https://docs.sympy.org/latest/modules/core.html#sympy.core.numbers.mod_inverse
https://reference.wolfram.com/language/ref/ModularInverse.html
https://en.wikipedia.org/wiki/Modular_exponentiation

PowerMod[x, y, m]
computes x∧y modulo m.

>> PowerMod[2, 10000000, 3]
1

>> PowerMod[3, -2, 10]
9

>> PowerMod[0, -1, 2]
0 is not invertible modulo 2.
PowerMod [0,−1, 2]

>> PowerMod[5, 2, 0]
The argument 0 should be nonzero.
PowerMod [5, 2, 0]

PowerMod does not support rational coefficients (roots) yet.

30.2.8. Quotient

WMA link

Quotient[m, n]
computes the integer quotient of m and n.

>> Quotient[23, 7]
3

30.2.9. QuotientRemainder

WMA link

QuotientRemainder[m, n]
computes a list of the quotient and remainder from division of m by n.

>> QuotientRemainder[23, 7]
{3, 2}

371

https://reference.wolfram.com/language/ref/Quotient.html
https://reference.wolfram.com/language/ref/QuotientRemainder.html

30.3. Miscelanea of Integer Functions

30.3.1. BernoulliB

WMA link

BernoulliB[n]
represents the Bernoulli number Bn.

BernouilliB[n, x]
represents the Bernoulli polynomial Bn(x).

>> BernoulliB[42]
1520097643918070802691

1806

First five Bernoulli numbers:

>> Table[BernoulliB[k], {k, 0, 5}]{
1,

1
2

,
1
6

, 0,− 1
30

, 0
}

First five Bernoulli polynomials:

>> Table[BernoulliB[k, z], {k, 0, 3}]{
1,−1

2
+ z,

1
6
− z + z2,

z
2
− 3z2

2
+ z3

}

30.4. Recurrence and Sum Functions

A recurrence relation is an equation that recursively defines a sequence or multidimensional array of
values, once one or more initial terms are given; each further term of the sequence or array is defined as
a function of the preceding terms.

30.4.1. Fibonacci

Fibonacci Sequence, (:WMAlink:https://reference.wolfram.com/language/ref/Fibonacci.html)

Fibonacci[n]
computes the n-th Fibonacci number.

Fibonacci[n, x]
computes the Fibonacci polynomial Fn(x).

>> Fibonacci[0]
0

372

https://reference.wolfram.com/language/ref/BernoulliB.html
https://en.wikipedia.org/wiki/Fibonacci_sequence
(:WMAlink:https://reference.wolfram.com/language/ref/Fibonacci.html

>> Fibonacci[1]
1

>> Fibonacci[10]
55

>> Fibonacci[200]
280571172992510140037611932413038677189525

>> Fibonacci[7, x]
1 + 6x2 + 5x4 + x6

See also LinearRecurrence 30.4.3.

30.4.2. HarmonicNumber

Harmonic Number (WMA link)

HarmonicNumber[n]
returns the n-th harmonic number.

>> Table[HarmonicNumber[n], {n, 8}]{
1,

3
2

,
11
6

,
25
12

,
137
60

,
49
20

,
363
140

,
761
280

}
>> HarmonicNumber[3.8]

2.03806

30.4.3. LinearRecurrence

Linear recurrence with constant coefficients, WMA link

LinearRecurrence[ker, init, n]
computes n terms of the linear recurrence with kernel ker and initial values init.

LinearRecurrence[ker, init, {n}]
computes the n-th term.

LinearRecurrence[ker, init, {nmin, nmax}]
computes n terms of the linear recurrence with kernel ker and initial values init.

Generate first 10 items of the Fibonacci Sequence, F[0]=1, F[1]=1:

>> LinearRecurrence[{1, 1}, {1, 1}, 10]
{1, 1, 2, 3, 5, 8, 13, 21, 34, 55}

Extract the 3rd to 5th elements:

373

https://en.wikipedia.org/wiki/Harmonic_number
https://reference.wolfram.com/language/ref/HarmonicNumber.html
https://en.wikipedia.org/wiki/Linear_recurrence_with_constant_coefficients
https://reference.wolfram.com/language/ref/LinearRecurrence.html

>> LinearRecurrence[{1, 1}, {1, 1}, {3, 5}]
{2, 3, 5}

Now just the 6th element:

>> LinearRecurrence[{1, 1}, {1, 1}, {6}]
8

See also Fibonacci 30.4.1.

30.4.4. StirlingS1

Stirling numbers of first kind (WMA link)

StirlingS1[n, m]
gives the Stirling number of the first kind.

Integer mathematical function, suitable for both symbolic and numerical manipulation. gives the num-
ber of permutations of n elements that contain exactly m cycles.

>> StirlingS1[50, 1]
− 608 281 864 034 267 560 872 252 163 321 295 376 887 552 831 379 210 240 000 000 000

30.4.5. StirlingS2

Stirling numbers of second kind (WMA link)

StirlingS2[n, m]
gives the Stirling number of the second kind. Returns the number of ways of partitioning
a set of n elements into m non empty subsets.

>> Table[StirlingS2[10, m], {m, 10}]
{1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1}

374

https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind
https://reference.wolfram.com/language/ref/StirlingS1.html
https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
https://reference.wolfram.com/language/ref/StirlingS2.html

31. Integer and Number-Theoretical Functions

Contents

31.1. Algebraic Transformations 376
31.1.1. Apart 377
31.1.2. Cancel 377
31.1.3. Coefficient 378
31.1.4. CoefficientArrays 379
31.1.5. CoefficientList 379
31.1.6. Collect 380
31.1.7. Denominator 381
31.1.8. Expand 381
31.1.9. ExpandAll 382
31.1.10. ExpandDenominator 383
31.1.11. Exponent 383
31.1.12. Factor 384
31.1.13. FactorTermsList 385
31.1.14. FullSimplify 385
31.1.15. MinimalPolynomial 386
31.1.16. Numerator 386
31.1.17. PolynomialQ 387
31.1.18. PowerExpand 388
31.1.19. Simplify 388
31.1.20. Together 389
31.1.21. Variables 390

31.2. Calculus 390
31.2.1. Complexes 390
31.2.2. D 390
31.2.3. Derivative (') 392
31.2.4. DiscreteLimit 393
31.2.5. FindMaximum 394
31.2.6. FindMinimum 394
31.2.7. FindRoot 395
31.2.8. Integers 396
31.2.9. Integrate 397
31.2.10. Limit 398
31.2.11. NIntegrate 399
31.2.12. O 399
31.2.13. Reals 400
31.2.14. Root 400
31.2.15. RootSum 400
31.2.16. Series 401
31.2.17. SeriesCoefficient 402

31.2.18. SeriesData 403
31.2.19. Solve 404

31.3. Differential Equations 406
31.3.1. C 406
31.3.2. DSolve 406

31.4. Exponential Functions 407
31.4.1. Exp 407
31.4.2. Log 408
31.4.3. Log10 408
31.4.4. Log2 409
31.4.5. LogisticSigmoid 409

31.5. Hyperbolic Functions 409
31.5.1. ArcCosh 410
31.5.2. ArcCoth 410
31.5.3. ArcCsch 410
31.5.4. ArcSech 411
31.5.5. ArcSinh 411
31.5.6. ArcTanh 411
31.5.7. ComplexExpand 412
31.5.8. Cosh 413
31.5.9. Coth 413
31.5.10. Gudermannian 413
31.5.11. InverseGudermannian 414
31.5.12. Sech 415
31.5.13. Sinh 415
31.5.14. Tanh 415

31.6. Integer Functions 416
31.6.1. BitLength 416
31.6.2. Ceiling 416
31.6.3. DigitCount 416
31.6.4. Floor 417
31.6.5. FromDigits 418
31.6.6. IntegerDigits 419
31.6.7. IntegerReverse 419
31.6.8. IntegerString 420

31.7. Linear algebra 421
31.7.1. DesignMatrix 421
31.7.2. Det 421
31.7.3. Eigensystem 421
31.7.4. Eigenvalues 422
31.7.5. Eigenvectors 422
31.7.6. FittedModel 423
31.7.7. Inverse 423

375

31.7.8. LeastSquares 423
31.7.9. LinearModelFit 424
31.7.10. LinearSolve 424
31.7.11. MatrixExp 425
31.7.12. MatrixPower 425
31.7.13. MatrixRank 426
31.7.14. NullSpace 426
31.7.15. PseudoInverse 426
31.7.16. QRDecomposition 427
31.7.17. RowReduce 427
31.7.18. SingularValueDecomposition 428
31.7.19. Tr 428

31.8. Mathematical Constants 428
31.8.1. Catalan 428
31.8.2. ComplexInfinity 429
31.8.3. Degree 429
31.8.4. E 430
31.8.5. EulerGamma 430
31.8.6. Glaisher 430
31.8.7. GoldenRatio 431
31.8.8. Indeterminate 431
31.8.9. Infinity 431
31.8.10. Khinchin 432
31.8.11. $MaxMachineNumber 432
31.8.12. $MinMachineNumber 433
31.8.13. Overflow 433
31.8.14. Pi 433
31.8.15. Undefined 434
31.8.16. Underflow 434

31.9. Number theoretic functions 435
31.9.1. ContinuedFraction 435
31.9.2. DivisorSigma 435
31.9.3. DivisorSum 436
31.9.4. Divisors 436
31.9.5. EulerPhi 437
31.9.6. FactorInteger 438
31.9.7. FractionalPart 438
31.9.8. FromContinuedFraction . . . 438
31.9.9. IntegerPart 439
31.9.10. IntegerPartitions 439

31.9.11. JacobiSymbol 440
31.9.12. KroneckerSymbol 440
31.9.13. MantissaExponent 441
31.9.14. MersennePrimeExponent . . 441
31.9.15. MoebiusMu 441
31.9.16. NextPrime 442
31.9.17. PartitionsP 442
31.9.18. PowersRepresentations 443
31.9.19. Prime 443
31.9.20. PrimePi 444
31.9.21. PrimePowerQ 444
31.9.22. RandomPrime 445
31.9.23. SquaresR 445

31.10. Random number generation 446
31.10.1. Random 446
31.10.2. RandomChoice 446
31.10.3. RandomComplex 447
31.10.4. RandomInteger 448
31.10.5. RandomReal 449
31.10.6. RandomSample 449
31.10.7. $RandomState 451
31.10.8. SeedRandom 451

31.11. Trigonometric Functions 452
31.11.1. AnglePath 452
31.11.2. ArcCos 453
31.11.3. ArcCot 454
31.11.4. ArcCsc 454
31.11.5. ArcSec 454
31.11.6. ArcSin 455
31.11.7. ArcTan 455
31.11.8. Cos 455
31.11.9. Cot 456
31.11.10. Csc 456
31.11.11. Haversine 456
31.11.12. InverseHaversine 457
31.11.13. Sec 457
31.11.14. Sin 457
31.11.15. Tan 458

31.1. Algebraic Transformations

There are a number of built-in functions that perform:

• Structural Operations on Polynomials

• Finding the Structure of a Polynomial

376

• Structural Operations on Rational Expressions

• Polynomials over Algebraic Number Fields

• Simplification with or without Assumptions

31.1.1. Apart

WMA link

Apart[expr]
writes expr as a sum of individual fractions.

Apart[expr, var]
treats var as the main variable.

>> Apart[1 / (x^2 + 5x + 6)]
1

2 + x
− 1

3 + x

When several variables are involved, the results can be different depending on the main variable:

>> Apart[1 / (x^2 - y^2), x]

− 1
2y
(

x + y
) +

1
2y
(
x − y

)
>> Apart[1 / (x^2 - y^2), y]

1
2x
(

x + y
) +

1
2x
(
x − y

)
Apart is Listable:

>> Apart[{1 / (x^2 + 5x + 6)}]{
1

2 + x
− 1

3 + x

}

But it does not touch other expressions:

>> Sin[1 / (x ^ 2 - y ^ 2)] // Apart

Sin
[

1
x2 − y2

]

31.1.2. Cancel

WMA link

377

https://reference.wolfram.com/language/ref/Apart.html
https://reference.wolfram.com/language/ref/Cancel.html

Cancel[expr]
cancels out common factors in numerators and denominators.

>> Cancel[x / x ^ 2]
1
x

Cancel threads over sums:

>> Cancel[x / x ^ 2 + y / y ^ 2]
1
x

+
1
y

>> Cancel[f[x] / x + x * f[x] / x ^ 2]
2 f [x]

x

31.1.3. Coefficient

WMA link

Coefficient[expr, form]
returns the coefficient of f orm in the polynomial expr.

Coefficient[expr, form, n]
return the coefficient of f orm∧n in expr.

>> Coefficient[(x + y)^4, (x^2)* (y^2)]
6

>> Coefficient[a x^2 + b y^3 + c x + d y + 5, x]
c

>> Coefficient[(x + 3 y)^5, x]

405y4

>> Coefficient[(x + 3 y)^5, x * y^4]
405

>> Coefficient[(x + 2)/(y - 3)+ (x + 3)/(y - 2), x]
1

−3 + y
+

1
−2 + y

>> Coefficient[x*Cos[x + 3] + 6*y, x]
Cos [3 + x]

>> Coefficient[(x + 1)^3, x, 2]
3

>> Coefficient[a x^2 + b y^3 + c x + d y + 5, y, 3]
b

378

https://reference.wolfram.com/language/ref/Coefficient.html

Find the free term in a polynomial:

>> Coefficient[(x + 2)^3 + (x + 3)^2, x, 0]
17

>> Coefficient[(x + 2)^3 + (x + 3)^2, y, 0]

(2 + x)3 + (3 + x)2

>> Coefficient[a x^2 + b y^3 + c x + d y + 5, x, 0]

5 + by3 + dy

31.1.4. CoefficientArrays

WMA link

CoefficientArrays[polys, vars]
returns a list of arrays of coefficients of the variables vars in the polynomial poly.

>> CoefficientArrays[1 + x^3, x]
{1, {0} , {{0}} , {{{1}}}}

>> CoefficientArrays[1 + x y+ x^3, {x, y}]
{1, {0, 0} , {{0, 1} , {0, 0}} , {{{1, 0} , {0, 0}} , {{0, 0} , {0, 0}}}}

>> CoefficientArrays[{1 + x^2, x y}, {x, y}]
{{1, 0} , {{0, 0} , {0, 0}} , {{{1, 0} , {0, 0}} , {{0, 1} , {0, 0}}}}

>> CoefficientArrays[(x+y+Sin[z])^3, {x,y}]{
Sin [z]3 ,

{
3Sin [z]2 , 3Sin [z]2

}
, {{3Sin [z] , 6Sin [

z]} , {0, 3Sin [z]}} , {{{1, 3} , {0, 3}} , {{0, 0} , {0, 1}}}
}

>> CoefficientArrays[(x + y + Sin[z])^3, {x, z}]
(x + y + Sin[z]) ^ 3 is not a polynomial in {x, z}

CoefficientArrays
[(

x + y + Sin [z]
)3 , {x, z}

]

31.1.5. CoefficientList

WMA link

CoefficientList[poly, var]
returns a list of coefficients of powers of var in poly, starting with power 0.

CoefficientList[poly, {var1, var2, ...}]
returns an array of coefficients of the vari.

379

https://reference.wolfram.com/language/ref/CoefficientArrays.html
https://reference.wolfram.com/language/ref/CoefficientList.html

>> CoefficientList[(x + 3)^5, x]
{243, 405, 270, 90, 15, 1}

>> CoefficientList[(x + y)^4, x]{
y4, 4y3, 6y2, 4y, 1

}
>> CoefficientList[a x^2 + b y^3 + c x + d y + 5, x]{

5 + by3 + dy, c, a
}

>> CoefficientList[(x + 2)/(y - 3)+ x/(y - 2), x]{
2

−3 + y
,

1
−3 + y

+
1

−2 + y

}
>> CoefficientList[(x + y)^3, z]{(

x + y
)3
}

>> CoefficientList[a x^2 + b y^3 + c x + d y + 5, {x, y}]
{{5, d, 0, b} , {c, 0, 0, 0} , {a, 0, 0, 0}}

>> CoefficientList[(x - 2 y + 3 z)^3, {x, y, z}]
{{{0, 0, 0, 27} , {0, 0,−54, 0} , {0, 36, 0, 0} , {−8, 0, 0, 0}} , {{0, 0, 27, 0} , {0,−36, 0, 0} , {12, 0, 0, 0} , {0, 0, 0, 0}} , {{0, 9, 0, 0} , {−6, 0, 0, 0} , {0, 0, 0, 0} , {0, 0, 0, 0}} , {{1, 0, 0, 0} , {0, 0, 0, 0} , {0, 0, 0, 0} , {0, 0, 0, 0}}}

>> CoefficientList[Series[Log[1-x], {x, 0, 9}], x]{
0,−1,−1

2
,−1

3
,−1

4
,−1

5
,−1

6
,−1

7
,−1

8
,−1

9

}
>> CoefficientList[Series[2x, {x, 0, 9}], x]

{0, 2}

31.1.6. Collect

WMA link

Collect[expr, x]
Expands expr and collect together terms having the same power of x.

Collect[expr, {x1, x2, ...}]
Expands expr and collect together terms having the same powers of x1, x2,

Collect[expr, {x1, x2, ...}, f ilter]
After collect the terms, applies f ilter to each coefficient.

>> Collect[(x+y)^3, y]

x3 + 3x2y + 3xy2 + y3

>> Collect[2 Sin[x z] (x+2 y^2 + Sin[y] x), y]

2xSin [xz] + 2xSin [xz] Sin
[
y
]

+ 4y2Sin [xz]

380

https://reference.wolfram.com/language/ref/Collect.html

>> Collect[3 x y+2 Sin[x z] (x+2 y^2 + x)+ (x+y)^3, y]

4xSin [xz] + x3 + y
(

3x + 3x2
)

+ y2 (3x + 4Sin [xz]) + y3

>> Collect[3 x y+2 Sin[x z] (x+2 y^2 + x)+ (x+y)^3, {x,y}]

4xSin [xz] + x3 + 3xy + 3x2y + 4y2Sin [xz] + 3xy2 + y3

>> Collect[3 x y+2 Sin[x z] (x+2 y^2 + x)+ (x+y)^3, {x,y}, h]

xh [4Sin [xz]] + x3h [1] + xyh [3] + x2yh [3] + y2h [4Sin [xz]] + xy2h [3] + y3h [1]

31.1.7. Denominator

WMA link

Denominator[expr]
gives the denominator in expr.

>> Denominator[a / b]
b

>> Denominator[2 / 3]
3

>> Denominator[a + b]
1

31.1.8. Expand

WMA link

Expand[expr]
expands out positive integer powers and products of sums in expr, as well as trigonomet-
ric identities.

Expand[expr, target]
just expands those parts involving target.

>> Expand[(x + y)^ 3]

x3 + 3x2y + 3xy2 + y3

>> Expand[(a + b)(a + c + d)]

a2 + ab + ac + ad + bc + bd

>> Expand[(a + b)(a + c + d)(e + f)+ e a a]

2a2e + a2 f + abe + ab f + ace + ac f + ade + ad f + bce + bc f + bde + bd f

>> Expand[(a + b)^ 2 * (c + d)]

a2c + a2d + 2abc + 2abd + b2c + b2d

381

https://reference.wolfram.com/language/ref/Denominator.html
https://reference.wolfram.com/language/ref/Expand.html

>> Expand[(x + y)^ 2 + x y]

x2 + 3xy + y2

>> Expand[((a + b)(c + d))^ 2 + b (1 + a)]

a2c2 + 2a2cd + a2d2 + b + ab + 2abc2 + 4abcd + 2abd2 + b2c2 + 2b2cd + b2d2

Expand expands items in lists and rules:

>> Expand[{4 (x + y), 2 (x + y)-> 4 (x + y)}]
{4x + 4y, 2x + 2y− > 4x + 4y}

Expand expands trigonometric identities

>> Expand[Sin[x + y], Trig -> True]
Cos [x] Sin

[
y
]

+ Cos
[
y
]
Sin [x]

>> Expand[Tanh[x + y], Trig -> True]
Cosh [x] Sinh

[
y
]

Cosh [x]Cosh
[
y
]

+ Sinh [x] Sinh
[
y
] +

Cosh
[
y
]
Sinh [x]

Cosh [x]Cosh
[
y
]

+ Sinh [x] Sinh
[
y
]

Expand does not change any other expression.

>> Expand[Sin[x (1 + y)]]
Sin
[
x
(
1 + y

)]
Using the second argument, the expression only expands those subexpressions containing pat:

>> Expand[(x+a)^2+(y+a)^2+(x+y)(x+a), y]

a2 + 2ay + x (a + x) + y (a + x) + y2 + (a + x)2

Expand also works in Galois fields

>> Expand[(1 + a)^12, Modulus -> 3]

1 + a3 + a9 + a12

>> Expand[(1 + a)^12, Modulus -> 4]

1 + 2a2 + 3a4 + 3a8 + 2a10 + a12

31.1.9. ExpandAll

WMA link

ExpandAll[expr]
expands out negative integer powers and products of sums in expr.

ExpandAll[expr, target]
just expands those parts involving target.

382

https://reference.wolfram.com/language/ref/ExpandAll.html

>> ExpandAll[(a + b)^ 2 / (c + d)^2]

a2

c2 + 2cd + d2 +
2ab

c2 + 2cd + d2 +
b2

c2 + 2cd + d2

ExpandAll descends into sub expressions

>> ExpandAll[(a + Sin[x (1 + y)])^2]

2aSin
[
x + xy

]
+ a2 + Sin

[
x + xy

]2
>> ExpandAll[Sin[(x+y)^2]]

Sin
[

x2 + 2xy + y2
]

>> ExpandAll[Sin[(x+y)^2], Trig->True]

Cos
[

x2
]
Cos

[
2xy

]
Sin
[
y2
]

+ Cos
[

x2
]
Cos

[
y2
]
Sin
[

2xy
]

+ Cos
[
2xy

]
Cos

[
y2
]
Sin
[

x2
]
− Sin

[
x2
]
Sin
[
2xy

]
Sin
[
y2
]

ExpandAll also expands heads

>> ExpandAll[((1 + x)(1 + y))[x]](
1 + x + y + xy

)
[x]

ExpandAll can also work in finite fields

>> ExpandAll[(1 + a)^ 6 / (x + y)^3, Modulus -> 3]

1 + 2a3 + a6

x3 + y3

31.1.10. ExpandDenominator

WMA link

ExpandDenominator[expr]
expands out negative integer powers and products of sums in expr.

>> ExpandDenominator[(a + b)^ 2 / ((c + d)^2 (e + f))]

(a + b)2

c2e + c2 f + 2cde + 2cd f + d2e + d2 f

31.1.11. Exponent

WMA link

383

https://reference.wolfram.com/language/ref/ExpandDenominator.html
https://reference.wolfram.com/language/ref/Exponent.html

Exponent[expr, form]
returns the maximum power with which f orm appears in the expanded form of expr.

Exponent[expr, form, h]
applies h to the set of exponents with which f orm appears in expr.

>> Exponent[5 x^2 - 3 x + 7, x]
2

>> Exponent[(x^3 + 1)^2 + 1, x]
6

>> Exponent[x^(n + 1)+ Sqrt[x] + 1, x]

Max
[

1
2

, 1 + n
]

>> Exponent[x / y, y]
−1

>> Exponent[(x^2 + 1)^3 - 1, x, Min]
2

>> Exponent[0, x]
−∞

>> Exponent[1, x]
0

31.1.12. Factor

WMA link

Factor[expr]
factors the polynomial expression expr.

>> Factor[x ^ 2 + 2 x + 1]
(1 + x)2

>> Factor[1 / (x^2+2x+1)+ 1 / (x^4+2x^2+1)]
2 + 2x + 3x2 + x4

(1 + x)2 (1 + x2
)2

Factor can also be used with equations:

>> Factor[x a == x b + x c]
ax==x (b + c)

And lists:

384

https://reference.wolfram.com/language/ref/Factor.html

>> Factor[{x + x^2, 2 x + 2 y + 2}]{
x (1 + x) , 2

(
1 + x + y

)}
It also works with more complex expressions:

>> Factor[x ^ 3 + 3 x ^ 2 y + 3 x y ^ 2 + y ^ 3](
x + y

)3

You can use Factor to find when a polynomial is zero:

>> x^2 - x == 0 // Factor
x (−1 + x)==0

31.1.13. FactorTermsList

WMA link

FactorTermsList[poly]
returns a list of 2 elements. The first element is the numerical factor in poly. The second
one is the remaining of the polynomial with numerical factor removed.

FactorTermsList[poly, {x1, x2, ...}]
returns a list of factors in poly. The first element is the numerical factor in poly. The next
ones are factors that are independent of variables listswhich are created by removing each
variable xi from right to left. The last one is the remaining of polynomial after dividing
poly to all previous factors.

>> FactorTermsList[2 x^2 - 2]{
2,−1 + x2

}
>> FactorTermsList[x^2 - 2 x + 1]{

1, 1− 2x + x2
}

>> f = 3 (-1 + 2 x)(-1 + y)(1 - a)
3 (−1 + 2x)

(
−1 + y

)
(1− a)

>> FactorTermsList[f]
{−3,−1 + a − 2ax − ay + 2x + y − 2xy + 2axy}

>> FactorTermsList[f, x]
{−3, 1− a − y + ay,−1 + 2x}

31.1.14. FullSimplify

WMA link

385

https://reference.wolfram.com/language/ref/FactorTermsList.html
https://reference.wolfram.com/language/ref/FullSimplify.html

FullSimplify[expr]
simplifies expr using an extended set of simplification rules.

FullSimplify[expr, assump]
simplifies expr assuming assump instead of Assumptions.

TODO: implement the extension. By now, this does the same than Simplify...

>> FullSimplify[2*Sin[x]^2 + 2*Cos[x]^2]
2

31.1.15. MinimalPolynomial

WMA link

MinimalPolynomial[s, x]
gives the minimal polynomial in x for which the algebraic number s is a root.

>> MinimalPolynomial[7, x]
−7 + x

>> MinimalPolynomial[Sqrt[2] + Sqrt[3], x]

1− 10x2 + x4

>> MinimalPolynomial[Sqrt[1 + Sqrt[3]], x]

−2− 2x2 + x4

>> MinimalPolynomial[Sqrt[I + Sqrt[6]], x]

49− 10x4 + x8

31.1.16. Numerator

WMA link

Numerator[expr]
gives the numerator in expr.

>> Numerator[a / b]
a

>> Numerator[2 / 3]
2

>> Numerator[a + b]
a + b

386

https://reference.wolfram.com/language/ref/MinimalPolynomial.html
https://reference.wolfram.com/language/ref/Numerator.html

31.1.17. PolynomialQ

Polynomial (SymPy, WMA)

PolynomialQ[expr]
returns True if expr is a polynomial and returns False otherwise.

PolynomialQ[expr, var]
returns True if expr is a polynomial in var, and returns False otherwise.

PolynomialQ[expr, {var1, ...}]
tests whether expr is a polynomial in the vari.

PolynomialQ with no explicit variable mentioned:

>> PolynomialQ[x^2]
True

A number is a degenerate kind of polynomial:

>> PolynomialQ[2]
True

The following is not a polynomial because y is raised to the power -1:

>> PolynomialQ[x^2 + x/y]
False

PolynomialQ using an expression and a single variable:

>> PolynomialQ[x^3 - 2 x/y + 3xz, x]
True

In the above, there were no negative powers for x. In the below when we check with respect to y, we do
find y is raised to a negative power:

>> PolynomialQ[x^3 - 2 x/y^2 + 3xz, y]
False

>> PolynomialQ[f[a] + f[a]^2, f[a]]
True

PolynomialQ using an expression and a list of variables:

>> PolynomialQ[x^2 + axy^2 - bSin[c], {x, y}]
True

>> PolynomialQ[x^2 + axy^2 - bSin[c], {a, b, c}]
False

387

https://en.wikipedia.org/wiki/Polynomial:
https://docs.sympy.org/latest/modules/core.html#sympy.core.expr.Expr.is_polynomial
https://reference.wolfram.com/language/ref/PolynomialQ.html

31.1.18. PowerExpand

WMA link

PowerExpand[expr]
expands out powers of the form (xy)z and (xy)z in expr.

>> PowerExpand[(a ^ b)^ c]

abc

>> PowerExpand[(a * b)^ c]
acbc

PowerExpand is not correct without certain assumptions:

>> PowerExpand[(x ^ 2)^ (1/2)]
x

31.1.19. Simplify

SymPy, WMA

Simplify[expr]
simplifies expr.

Simplify[expr, assump]
simplifies expr assuming assump instead of $Assumptions.

>> Simplify[2*Sin[x]^2 + 2*Cos[x]^2]
2

>> Simplify[x]
x

>> Simplify[f[x]]
f [x]

Simplify over conditional expressions uses $Assumptions, or assump to evaluate the condition:

>> $Assumptions={a <= 0};

>> Simplify[ConditionalExpression[1, a > 0]]
Undefined

The assump option override $Assumption:

388

https://reference.wolfram.com/language/ref/PowerExpand.html
https://docs.sympy.org/latest/modules/simplify/simplify.html
https://reference.wolfram.com/language/ref/Simplify.html

>> Simplify[ConditionalExpression[1, a > 0] ConditionalExpression[1, b >
0], { b > 0 }]

ConditionalExpression [1, a > 0]

On the other hand, Assumptions option does not override $Assumptions, but add to them:

>> Simplify[ConditionalExpression[1, a > 0] ConditionalExpression[1, b >
0], Assumptions -> { b > 0 }]

ConditionalExpression [1, a > 0]

Passing both options overwrites $Assumptions with the union of assump the option

>> Simplify[ConditionalExpression[1, a > 0] ConditionalExpression[1, b >
0], {a>0},Assumptions -> { b > 0 }]

1

>> $Assumptions={};

The option ComplexityFunction allows to control the way in which the evaluator decides if one expres-
sion is simpler than another. For example, by default, Simplify tries to avoid expressions involving
numbers with many digits:

>> Simplify[20 Log[2]]
20Log [2]

This behaviour can be modified by setting LeafCount as the ComplexityFunction:

>> Simplify[20 Log[2], ComplexityFunction->LeafCount]
Log [1048576]

31.1.20. Together

WMA link

Together[expr]
writes sums of fractions in expr together.

>> Together[a / c + b / c]
a + b

c

Together operates on lists:

>> Together[{x / (y+1)+ x / (y+1)^2}]{
x
(
2 + y

)(
1 + y

)2

}

389

https://reference.wolfram.com/language/ref/Together.html

But it does not touch other functions:

>> Together[f[a / c + b / c]]

f
[

a
c

+
b
c

]

31.1.21. Variables

WMA link

Variables[expr]
gives a list of the variables that appear in the polynomial expr.

>> Variables[a x^2 + b x + c]
{a, b, c, x}

>> Variables[{a + b x, c y^2 + x/2}]
{a, b, c, x, y}

>> Variables[x + Sin[y]]{
x, Sin

[
y
]}

31.2. Calculus

Originally called infinitesimal calculus or “the calculus of infinitesimals”, is the mathematical study of
continuous change, in the same way that geometry is the study of shape and algebra is the study of
generalizations of arithmetic operations.

31.2.1. Complexes

WMA link

Complexes
the domain of complex numbers, as in x in Complexes.

31.2.2. D

Derivative (WMA)

390

https://reference.wolfram.com/language/ref/Variables.html
https://reference.wolfram.com/language/ref/Complexes.html
https://en.wikipedia.org/wiki/Derivative
https://reference.wolfram.com/language/ref/D.html

D[f , x]
gives the partial derivative of f with respect to x.

D[f , x, y, ...]
differentiates successively with respect to x, y, etc.

D[f , {x, n}]
gives the multiple derivative of order n.

D[f , {{x1, x2, ...}}]
gives the vector derivative of f with respect to x1, x2, etc.

First-order derivative of a polynomial:

>> D[x^3 + x^2, x]
2x + 3x2

Second-order derivative:

>> D[x^3 + x^2, {x, 2}]
2 + 6x

Trigonometric derivatives:

>> D[Sin[Cos[x]], x]
−Cos [Cos [x]] Sin [x]

>> D[Sin[x], {x, 2}]
−Sin [x]

>> D[Cos[t], {t, 2}]
−Cos [t]

Unknown variables are treated as constant:

>> D[y, x]
0

>> D[x, x]
1

>> D[x + y, x]
1

Derivatives of unknown functions are represented using Derivative:

>> D[f[x], x]
f ′ [x]

>> D[f[x, x], x]

f (0,1) [x, x] + f (1,0) [x, x]

>> D[f[x, x], x] // InputForm
Derivative [0, 1]

[
f
]

[x, x] + Derivative [1, 0]
[

f
]

[x, x]

391

Chain rule:

>> D[f[2x+1, 2y, x+y], x]

2 f (1,0,0) [1 + 2x, 2y, x + y
]

+ f (0,0,1) [1 + 2x, 2y, x + y
]

>> D[f[x^2, x, 2y], {x,2}, y] // Expand

8x f (1,1,1)
[

x2, x, 2y
]

+ 8x2 f (2,0,1)
[

x2, x, 2y
]

+ 2 f (0,2,1)
[

x2, x, 2y
]

+ 4 f (1,0,1)
[

x2, x, 2y
]

Compute the gradient vector of a function:

>> D[x ^ 3 * Cos[y], {{x, y}}]{
3x2Cos

[
y
]

,−x3Sin
[
y
]}

Hesse matrix:

>> D[Sin[x] * Cos[y], {{x,y}, 2}]{{
−Cos

[
y
]
Sin [x] ,−Cos [x] Sin

[
y
]}

,
{
−Cos [x] Sin

[
y
]

,−Cos
[
y
]
Sin [x]

}}

31.2.3. Derivative (')

WMA link

f'[x,...]
represents the derivative of f with respect to the first argument x.

f''[x,...]
represents the 2nd derivative of f with respect to x.

Derivative[n][f]
represents the nth derivative of the function f .

Derivative[n1, n2, ...][f]
represents a multivariate derivative.

>> Derivative[1][Sin]
Cos [#1] &

>> Derivative[3][Sin]
−Cos [#1] &

>> Derivative[2][# ^ 3&]
6#1&

Derivative can be entered using ':

>> Sin'[x]
Cos [x]

>> (# ^ 4&)''
12#12&

392

https://reference.wolfram.com/language/ref/Derivative.html

>> f'[x] // InputForm
Derivative [1]

[
f
]

[x]

>> Derivative[1][#2 Sin[#1]+Cos[#2]&]
Cos [#1] #2&

>> Derivative[1,2][#2^3 Sin[#1]+Cos[#2]&]
6Cos [#1] #2&

Deriving with respect to an unknown parameter yields 0:

>> Derivative[1,2,1][#2^3 Sin[#1]+Cos[#2]&]
0&

The 0th derivative of any expression is the expression itself:

>> Derivative[0,0,0][a+b+c]
a + b + c

You can calculate the derivative of custom functions:

>> f[x_] := x ^ 2

>> f'[x]
2x

Unknown derivatives:

>> Derivative[2, 1][h]

h(2,1)

>> Derivative[2, 0, 1, 0][h[g]]

h
[
g
](2,0,1,0)

31.2.4. DiscreteLimit

WMA link

DiscreteLimit[f , k->Infinity]
gives the limit of the sequence f as k tends to infinity.

>> DiscreteLimit[n/(n + 1), n -> Infinity]
1

>> DiscreteLimit[f[n], n -> Infinity]
f [∞]

393

https://reference.wolfram.com/language/ref/DiscreteLimit.html

31.2.5. FindMaximum

WMA link

FindMaximum[f , {x, x0}]
searches for a numerical maximum of f , starting from x=x_0.

FindMaximum by default uses Newtonś method, so the function of interest should have a first derivative.

>> FindMaximum[-(x-3)^2+2., {x, 1}]
Encountered a gradient that is effectively zero. The result returned
may not be a maximum; it may be a minimum or a saddle point.
{2., {x− > 3.}}

>> FindMaximum[-10*^-30 *(x-3)^2+2., {x, 1}]
Encountered a gradient that is effectively zero. The result returned
may not be a maximum; it may be a minimum or a saddle point.
{2., {x− > 3.}}

>> FindMaximum[Sin[x], {x, 1}]
{1., {x− > 1.5708}}

>> phi[x_?NumberQ]:=NIntegrate[u, {u, 0., x}, Method->"Internal"];

>> Quiet[FindMaximum[-phi[x] + x, {x, 1.2}, Method->"Newton"]]
{0.5, {x− > 1.00001}}

>> Clear[phi];

For a not so well behaving function, the result can be less accurate:

>> FindMaximum[-Exp[-1/x^2]+1., {x,1.2}, MaxIterations->10]
The maximum number of iterations was exceeded. The result might be
inaccurate.

FindMaximum
[
− Exp

[
− 1

x2

]
+ 1., {x, 1.2} , MaxIterations− > 10

]

31.2.6. FindMinimum

WMA link

FindMinimum[f , {x, x0}]
searches for a numerical minimum of f , starting from x=x_0.

FindMinimum by default uses Newtonś method, so the function of interest should have a first derivative.

394

https://reference.wolfram.com/language/ref/FindMaximum.html
https://reference.wolfram.com/language/ref/FindMinimum.html

>> FindMinimum[(x-3)^2+2., {x, 1}]
Encountered a gradient that is effectively zero. The result returned
may not be a minimum; it may be a maximum or a saddle point.
{2., {x− > 3.}}

>> FindMinimum[10*^-30 *(x-3)^2+2., {x, 1}]
Encountered a gradient that is effectively zero. The result returned
may not be a minimum; it may be a maximum or a saddle point.
{2., {x− > 3.}}

>> FindMinimum[Sin[x], {x, 1}]
{−1., {x− > − 1.5708}}

>> phi[x_?NumberQ]:=NIntegrate[u,{u,0,x}, Method->"Internal"];

>> Quiet[FindMinimum[phi[x]-x,{x, 1.2}, Method->"Newton"]]
{ − 0.5, {x− > 1.00001}}

>> Clear[phi];

For a not so well behaving function, the result can be less accurate:

>> FindMinimum[Exp[-1/x^2]+1., {x,1.2}, MaxIterations->10]
The maximum number of iterations was exceeded. The result might be
inaccurate.

FindMinimum
[
Exp

[
− 1

x2

]
+ 1., {x, 1.2} , MaxIterations− > 10

]

31.2.7. FindRoot

WMA link

FindRoot[f , {x, x0}]
searches for a numerical root of f , starting from x=x_0.

FindRoot[lhs == rhs, {x, x0}]
tries to solve the equation lhs == rhs.

FindRoot by default uses Newtonś method, so the function of interest should have a first derivative.

>> FindRoot[Cos[x], {x, 1}]
{x− > 1.5708}

>> FindRoot[Sin[x] + Exp[x],{x, 0}]
{x− > − 0.588533}

>> FindRoot[Sin[x] + Exp[x] == Pi,{x, 0}]
{x− > 0.866815}

FindRoot has attribute HoldAll and effectively uses Block to localize x. However, in the result x will
eventually still be replaced by its value.

395

https://reference.wolfram.com/language/ref/FindRoot.html

>> x = "I am the result!";

>> FindRoot[Tan[x] + Sin[x] == Pi, {x, 1}]
{I am the result!− > 1.14911}

>> Clear[x]

FindRoot stops after 100 iterations:

>> FindRoot[x^2 + x + 1, {x, 1}]
The maximum number of iterations was exceeded. The result might be
inaccurate.
{x− > −1.}

Find complex roots:

>> FindRoot[x ^ 2 + x + 1, {x, -I}]
{x− > − 0.5− 0.866025I}

The function has to return numerical values:

>> FindRoot[f[x] == 0, {x, 0}]
The function value is not a number at x = 0..
FindRoot

[
f [x]− 0, {x, 0}

]
The derivative must not be 0:

>> FindRoot[Sin[x] == x, {x, 0}]
Encountered a singular derivative at the point x = 0..

FindRoot
[
Sin [x]− x, {x, 0}

]
>> FindRoot[x^2 - 2, {x, 1,3}, Method->"Secant"]

{x− > 1.41421}

31.2.8. Integers

WMA link

Integers
the domain of integer numbers, as in x in Integers.

Limit a solution to integer numbers:

>> Solve[-4 - 4 x + x^4 + x^5 == 0, x, Integers]
{{x− > −1}}

>> Solve[x^4 == 4, x, Integers]
{}

396

https://reference.wolfram.com/language/ref/Integers.html

31.2.9. Integrate

Integral (SymPy, WMA)

Integrate[f , x]
integrates f with respect to x. The result does not contain the additive integration con-
stant.

Integrate[f , {x, a, b}]
computes the definite integral of f with respect to x from a to b.

Integrate a polynomial:

>> Integrate[6 x ^ 2 + 3 x ^ 2 - 4 x + 10, x]

x
(

10− 2x + 3x2
)

Integrate trigonometric functions:

>> Integrate[Sin[x] ^ 5, x]

Cos [x]

(
−1− Cos [x]4

5
+

2Cos [x]2

3

)

Definite integrals:

>> Integrate[x ^ 2 + x, {x, 1, 3}]
38
3

>> Integrate[Sin[x], {x, 0, Pi/2}]
1

Some other integrals:

>> Integrate[1 / (1 - 4 x + x^2), x]
√

3
(
Log

[
− 2−

√
3 + x

]
− Log

[
− 2 +

√
3 + x

])
6

>> Integrate[4 Sin[x] Cos[x], x]

2Sin [x]2

>> Integrate[-Infinity, {x, 0, Infinity}]
−∞

Integrating something ill-defined returns the expression untouched:

>> Integrate[1, {x, Infinity, 0}]∫ 0

∞
1 dx

397

https://en.wikipedia.org/wiki/Integral
https://docs.sympy.org/latest/modules/integrals/integrals.html
https://reference.wolfram.com/language/ref/Integrate.html

Here how is an example of converting integral equation to TeX:

>> Integrate[f[x], {x, a, b}] // TeXForm
\int_a∧b f\left[x\right] \, dx

Sometimes there is a loss of precision during integration. You can check the precision of your result with
the following sequence of commands.

>> Integrate[Abs[Sin[phi]], {phi, 0, 2Pi}] // N
4.

>> % // Precision
MachinePrecision

>> Integrate[ArcSin[x / 3], x]

xArcSin
[x

3

]
+
√

9− x2

>> Integrate[f'[x], {x, a, b}]
f [b]− f [a]

and,

>> D[Integrate[f[u, x],{u, a[x], b[x]}], x]∫ b[x]

a[x]
f (0,1) [u, x] du + f [b [x] , x] b′ [x]− f [a [x] , x] a′ [x]

>> N[Integrate[Sin[Exp[-x^2 /2]],{x,1,2}]]
0.330804

31.2.10. Limit

WMA link

Limit[expr, x->x0]
gives the limit of expr as x approaches x0.

Limit[expr, x->x0, Direction->1]
approaches x0 from smaller values.

Limit[expr, x->x0, Direction->-1]
approaches x0 from larger values.

>> Limit[x, x->2]
2

>> Limit[Sin[x] / x, x->0]
1

>> Limit[1/x, x->0, Direction->-1]
∞

398

https://reference.wolfram.com/language/ref/Limit.html

>> Limit[1/x, x->0, Direction->1]
−∞

31.2.11. NIntegrate

WMA link

NIntegrate[expr, interval]
returns a numeric approximation to the definite integral of expr with limits interval and
with a precision of prec digits.

NIntegrate[expr, interval1, interval2, ...]
returns a numeric approximation to the multiple integral of expr with limits interval1,
interval2 and with a precision of prec digits.

>> NIntegrate[Exp[-x],{x,0,Infinity},Tolerance->1*^-6, Method->"Internal
"]
1.

>> NIntegrate[Exp[x],{x,-Infinity, 0},Tolerance->1*^-6, Method->"
Internal"]
1.

>> NIntegrate[Exp[-x^2/2.],{x,-Infinity, Infinity},Tolerance->1*^-6,
Method->"Internal"]
2.50664

31.2.12. O

WMA link

O[x]^n
Represents a term of order xn.
O[x]∧n is generated to represent omitted higher order terms in power series.

>> Series[1/(1-x),{x,0,2}]
1 + x + x2 + O [x]3

When called alone, a ‘SeriesData‘ expression is built:

>> O[x] // FullForm
SeriesData

[
x, 0, {} , 1, 1, 1

]

399

https://reference.wolfram.com/language/ref/NIntegrate.html
https://reference.wolfram.com/language/ref/O.html

31.2.13. Reals

WMA link

Reals
is the domain real numbers, as in x in Reals.

Limit a solution to real numbers:

>> Solve[x^3 == 1, x, Reals]
{{x− > 1}}

31.2.14. Root

WMA link

Root[f , i]
represents the i-th complex root of the polynomial f .

>> Root[#1 ^ 2 - 1&, 1]
−1

>> Root[#1 ^ 2 - 1&, 2]
1

Roots that can’t be represented by radicals:

>> Root[#1 ^ 5 + 2 #1 + 1&, 2]

Root
[
1 + #15 + 2#1&, 2

]

31.2.15. RootSum

WMA link

RootSum[f , f orm]
sums f orm[x] for all roots of the polynomial f [x].

Integrating a rational function of any order:

400

https://reference.wolfram.com/language/ref/Reals.html
https://reference.wolfram.com/language/ref/Root.html
https://reference.wolfram.com/language/ref/RootSum.html

>> Integrate[1/(x^5 + 11 x + 1), {x, 1, 3}]

RootSum
[
− 1− 212 960#13 − 9 680#12 − 165

#1 + 41232181#15&,
(
Log

[
3749971− 3 512 322 106 304

#14 + 453522741#1 + 16326568676#12 + 79825502416#13
]
− 4Log [

5]
)
#1&

]
− RootSum

[
− 1− 212 960#13 − 9 680#12 −~

~ 165#1 + 41232181#15&,
(
Log

[
3748721− 3 512 322 106 304

#14 + 453522741#1 + 16326568676#12 + 79825502416#13
]
− 4Log [5]

)
#1&

]
>> N[%, 50]

0.051278805184286949884270940103072421286139857550894

Simplification of RootSum expression

>> RootSum[#^5 - 11 # + 1 &, (#^2 - 1)/(#^3 - 2 # + c)&]
538− 88c + 396c2 + 5c3 − 5c4

97− 529c − 53c2 + 88c3 + c5

>> RootSum[#^5 - 3 # - 7 &, Sin] //N//Chop
0.292188

Use Normal to expand RootSum:

>> RootSum[1+#+#^2+#^3+#^4 &, Log[x + #] &]

RootSum
[
1 + #12 + #13 + #14 + #1&, Log [x + #1] &

]
>> %//Normal

Log

− 1
4
−
√

5
4
− I

√
5
8
−
√

5
8

+ x

+Log

− 1
4
−
√

5
4

+ I

√
5
8
−
√

5
8

+ x

+Log


− 1

4
− I

√
5
8

+

√
5

8
+

√
5

4
+ x

 + Log

 − 1
4

+ I

√
5
8

+

√
5

8
+

√
5

4
+ x



31.2.16. Series

WMA link

Series[f , {x, x0, n}]
Represents the series expansion around x=x_0 up to order n.

For elementary expressions, Series returns the explicit power series as a SeriesData expression:

>> series = Series[Exp[x^2], {x,0,2}]

1 + x2 + O [x]3

401

https://reference.wolfram.com/language/ref/Series.html

The expression created is a SeriesData object:

>> series // FullForm
SeriesData

[
x, 0, {1, 0, 1} , 0, 3, 1

]
Replacing x with does a value produces another SeriesData object:

>> series /. x->4
1 + 42 + O [4]3

Normal transforms a SeriesData expression into a polynomial:

>> series // Normal
1 + x2

>> (series // Normal)/. x-> 4
17

>> Clear[series];

We can also expand over multiple variables:

>> Series[Exp[x-y], {x, 0, 2}, {y, 0, 2}](
1− y +

1
2

y2 + O
[
y
]3) +

(
1− y +

1
2

y2 + O
[

y
]3) x +

(
1
2

+
(
−1

2

)
y +

1
4

y2 + O
[
y
]3) x2 + O [x]3

See also ’SeriesCoefficient’ 31.2.17 and ’SeriesData’ 31.2.18.

31.2.17. SeriesCoefficient

WMA link

SeriesCoefficient[series, n]
Find the nth coefficient in the given series.

SeriesCoefficient[f , {x, x0, n}]
Find the (x-x0)∧n in the expansion of f about the point x=x0.

First we list 5 terms of a series:

>> Series[Exp[Sin[x]], {x, 0, 5}]

1 + x +
1
2

x2 +
(
−1

8

)
x4 +

(
− 1

15

)
x5 + O [x]6

Now get the x∧4 coefficient:

402

https://reference.wolfram.com/language/ref/SeriesCoefficient.html

>> SeriesCoefficient[%, 4]

−1
8

Do the same thing, but without calling Series first:

>> SeriesCoefficient[Exp[Sin[x]], {x, 0, 4}]

−1
8

>> SeriesCoefficient[2x, {x, 0, 2}]
0

>> SeriesCoefficient[SeriesData[x, c, Table[i^2, {i, 10}], 7, 17, 3],
14/3]
64

>> SeriesCoefficient[SeriesData[x, c, Table[i^2, {i, 10}], 7, 17, 3],
6/3]
0

>> SeriesCoefficient[SeriesData[x, c, Table[i^2, {i, 10}], 7, 17, 3],
17/3]

Indeterminate

See also ’Series’ 31.2.16 and ’SeriesData’ 31.2.18.

31.2.18. SeriesData

WMA link

SeriesData[x, x0, {a0, a1, ...}, nmin, nmax, den]
produces a power series in the variable x about point x0. The ai are the coefficients of the
power series. The powers of (x-x0) that appear are nmin/den, (nmin+1)/den, ..., nmax/den.

SeriesData is the Head of expressions generated by Series:

>> series = Series[Cosh[x],{x,0,2}]

1 +
1
2

x2 + O [x]3

>> Head[series]
SeriesData

>> series // FullForm
SeriesData

[
x, 0, {1, 0, Rational [1, 2]} , 0, 3, 1

]
You can apply certain mathematical operations to SeriesData objects to get new SeriesData objects
truncated to the appropriate order.

403

https://reference.wolfram.com/language/ref/SeriesData.html

>> series + Series[Sinh[x],{x,0,3}]

1 + x +
1
2

x2 + O [x]3

>> Series[f[x],{x,0,2}] * g[w]

f [0] g [w] + g [w] f ′ [0] x +
g [w] f ′′ [0]

2
x2 + O [x]3

The product of two series on the same neighborhood of the same variable are multiplied:

>> Series[Exp[-a x],{x,0,2}] * Series[Exp[-b x],{x,0,2}]

1 + (−a − b) x +
(

a2

2
+ ab +

b2

2

)
x2 + O [x]3

>> D[Series[Exp[-a x],{x,0,2}],a]

−x + ax2 + O [x]3

See also ’Series’ 31.2.16 and ’SeriesCoefficient’ 31.2.17.

31.2.19. Solve

Equation solving (SymPy, WMA)

Solve[equation, vars]
attempts to solve equation for the variables vars.

Solve[equation, vars, domain]
restricts variables to domain, which can be Complexes or Reals or Integers.

>> Solve[x ^ 2 - 3 x == 4, x]
{{x− > −1} , {x− > 4}}

>> Solve[4 y - 8 == 0, y]
{{y− > 2}}

Apply the solution:

>> sol = Solve[2 x^2 - 10 x - 12 == 0, x]
{{x− > −1} , {x− > 6}}

>> x /. sol
{−1, 6}

Contradiction:

>> Solve[x + 1 == x, x]
{}

404

https://en.wikipedia.org/wiki/Equation_solving
https://docs.sympy.org/latest/modules/solvers/solvers.html#module-sympy.solvers
https://reference.wolfram.com/language/ref/Solve.html

Tautology:

>> Solve[x ^ 2 == x ^ 2, x]
{{}}

Rational equations:

>> Solve[x / (x ^ 2 + 1)== 1, x]{{
x− >

1
2
− I

2

√
3
}

,
{

x− >
1
2

+
I
2

√
3
}}

>> Solve[(x^2 + 3 x + 2)/(4 x - 2)== 0, x]
{{x− > −2} , {x− > −1}}

Transcendental equations:

>> Solve[Cos[x] == 0, x]{{
x− >

π

2

}
,
{

x− >
3π

2

}}

Solve can only solve equations with respect to symbols or functions:

>> Solve[f[x + y] == 3, f[x + y]]{{
f
[
x + y

]
− > 3

}}
>> Solve[a + b == 2, a + b]

a + b is not a valid variable.
Solve [a + b==2, a + b]

This happens when solving with respect to an assigned symbol:

>> x = 3;

>> Solve[x == 2, x]
3 is not a valid variable.
Solve [False, 3]

>> Clear[x]

>> Solve[a < b, a]
a < b is not a well-formed equation.
Solve [a < b, a]

Solve a system of equations:

>> eqs = {3 x ^ 2 - 3 y == 0, 3 y ^ 2 - 3 x == 0};

405

>> sol = Solve[eqs, {x, y}] // Simplify{
{x− > 0, y− > 0} , {x− > 1, y− > 1} ,

{
x− > −1

2
+

I
2

√
3, y

− > −1
2
− I

2

√
3
}

,
{

x− > −1
2
− I

2

√
3, y− > −1

2
+

I
2

√
3
}}

>> eqs /. sol // Simplify
{{True, True} , {True, True} , {True, True} , {True, True}}

Solve when given an underdetermined system:

>> Solve[x^2 == 1 && z^2 == -1, {x, y, z}]
Equations may not give solutions for all "solve" variables.
{{x−>−1, z−>−I} , {x−>−1, z−> I} , {x−> 1, z−>−I} , {x−> 1, z−> I}}

Examples using specifying the Domain in solutions:

>> Solve[x^2 == -1, x, Reals]
{}

>> Solve[x^2 == 1, x, Reals]
{{x− > −1} , {x− > 1}}

>> Solve[x^2 == -1, x, Complexes]
{{x− > −I} , {x− > I}}

>> Solve[4 - 4 * x^2 - x^4 + x^6 == 0, x, Integers]
{{x− > −1} , {x− > 1}}

31.3. Differential Equations

31.3.1. C

WMA link

C[n]
represents the n-th constant in a solution to a differential equation.

31.3.2. DSolve

WMA link

DSolve[eq, y[x], x]
solves a differential equation for the function y[x].

406

https://reference.wolfram.com/language/ref/C.html
https://reference.wolfram.com/language/ref/DSolve.html

>> DSolve[y''[x] == 0, y[x], x]
{{y [x]− > xC [2] + C [1]}}

>> DSolve[y''[x] == y[x], y[x], x]{{
y [x]− > C [1] E−x + C [2] Ex}}

>> DSolve[y''[x] == y[x], y, x]{{
y− > Function

[
{x} , C [1] E−x + C [2] Ex]}}

DSolve can also solve basic PDE

>> DSolve[D[f[x, y], x] / f[x, y] + 3 D[f[x, y], y] / f[x, y] == 2, f, {
x, y}]{{

f− > Function
[
{x, y} , E

x
5 + 3y

5 C [1]
[
3x − y

]]}}
>> DSolve[D[f[x, y], x] x + D[f[x, y], y] y == 2, f[x, y], {x, y}]{{

f
[
x, y
]
− > 2Log [x] + C [1]

[y
x

]}}
>> DSolve[D[y[x, t], t] + 2 D[y[x, t], x] == 0, y[x, t], {x, t}]

{{y [x, t]− > C [1] [x − 2t]}}

31.4. Exponential Functions

Numerical values and derivatives can be computed; however, most special exact values and simplifica-
tion rules are not implemented yet.

31.4.1. Exp

WMA link

Exp[z]
returns the exponential function of z.

>> Exp[1]
E

>> Exp[10.0]
22026.5

>> Exp[x] //FullForm
Power [E, x]

407

https://reference.wolfram.com/language/ref/Exp.html

>> Plot[Exp[x], {x, 0, 3}]

0.5 1.0 1.5 2.0 2.5 3.0

5

10

15

31.4.2. Log

WMA link

Log[z]
returns the natural logarithm of z.

>> Log[{0, 1, E, E * E, E ^ 3, E ^ x}]{
−∞, 0, 1, 2, 3, Log

[
Ex]}

>> Log[0.]
Indeterminate

>> Plot[Log[x], {x, 0, 5}]

1 2 3 4 5

−1.0

−0.5

0.5

1.0

1.5

31.4.3. Log10

WMA link

Log10[z]
returns the base-10 logarithm of z.

>> Log10[1000]
3

408

https://reference.wolfram.com/language/ref/Log.html
https://reference.wolfram.com/language/ref/Log10.html

>> Log10[{2., 5.}]
{0.30103, 0.69897}

>> Log10[E ^ 3]
3

Log [10]

31.4.4. Log2

WMA link

Log2[z]
returns the base-2 logarithm of z.

>> Log2[4 ^ 8]
16

>> Log2[5.6]
2.48543

>> Log2[E ^ 2]
2

Log [2]

31.4.5. LogisticSigmoid

WMA link

LogisticSigmoid[z]
returns the logistic sigmoid of z.

>> LogisticSigmoid[0.5]
0.622459

>> LogisticSigmoid[0.5 + 2.3 I]
1.06475 + 0.808177I

>> LogisticSigmoid[{-0.2, 0.1, 0.3}]
{0.450166, 0.524979, 0.574443}

31.5. Hyperbolic Functions

Hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hy-
perbola rather than the circle.

409

https://reference.wolfram.com/language/ref/Log2.html
https://reference.wolfram.com/language/ref/LogisticSigmoid.html
https://en.wikipedia.org/wiki/Hyperbolic_functions

Numerical values and derivatives can be computed; however, most special exact values and simplifica-
tion rules are not implemented yet.

31.5.1. ArcCosh

Inverse hyperbolic cosine (SymPy, mpmath, WMA)

ArcCosh[z]
returns the inverse hyperbolic cosine of z.

>> ArcCosh[0]
I
2

π

>> ArcCosh[0.]
0. + 1.5708I

>> ArcCosh[0.00000000000000000000000000000000000000]
1.5707963267948966192313216916397514421I

31.5.2. ArcCoth

Inverse hyperbolic cotangent (SymPy, mpmath, WMA)

ArcCoth[z]
returns the inverse hyperbolic cotangent of z.

>> ArcCoth[0]
I
2

π

>> ArcCoth[1]
∞

>> ArcCoth[0.0]
0. + 1.5708I

>> ArcCoth[0.5]
0.549306− 1.5708I

31.5.3. ArcCsch

Inverse hyperbolic cosecant (SymPy, mpmath, WMA)

410

https://en.wikipedia.org/wiki/Inverse_hyperbolic_functions#Inverse_hyperbolic_cosine
https://docs.sympy.org/latest/modules/functions/elementary.html#acosh
https://mpmath.org/doc/current/functions/hyperbolic.html#acosh
https://reference.wolfram.com/language/ref/ArcCosh.html
https://en.wikipedia.org/wiki/Inverse_hyperbolic_functions#Inverse_hyperbolic_cotangent
https://docs.sympy.org/latest/modules/functions/elementary.html#acoth
https://mpmath.org/doc/current/functions/hyperbolic.html#acoth
https://reference.wolfram.com/language/ref/ArcCoth.html
https://en.wikipedia.org/wiki/Inverse_hyperbolic_functions#Inverse_hyperbolic_cosecant
https://docs.sympy.org/latest/modules/functions/elementary.html#acsch
https://mpmath.org/doc/current/functions/hyperbolic.html#acsch
https://reference.wolfram.com/language/ref/ArcCsch.html

ArcCsch[z]
returns the inverse hyperbolic cosecant of z.

>> ArcCsch[0]
ComplexInfinity

>> ArcCsch[1.0]
0.881374

31.5.4. ArcSech

WMA link

ArcSech[z]
returns the inverse hyperbolic secant of z.

>> ArcSech[0]
∞

>> ArcSech[1]
0

>> ArcSech[0.5]
1.31696

31.5.5. ArcSinh

WMA link

ArcSinh[z]
returns the inverse hyperbolic sine of z.

>> ArcSinh[0]
0

>> ArcSinh[0.]
0.

>> ArcSinh[1.0]
0.881374

31.5.6. ArcTanh

WMA link

411

https://reference.wolfram.com/language/ref/ArcSech.html
https://reference.wolfram.com/language/ref/ArcSinh.html
https://reference.wolfram.com/language/ref/ArcTanh.html

ArcTanh[z]
returns the inverse hyperbolic tangent of z.

>> ArcTanh[0]
0

>> ArcTanh[1]
∞

>> ArcTanh[0]
0

>> ArcTanh[.5 + 2 I]
0.0964156 + 1.12656I

>> ArcTanh[2 + I]
ArcTanh [2 + I]

31.5.7. ComplexExpand

(SymPy, WMA)

ComplexExpand[expr]
expands expr assuming that all variables are real.

ComplexExpand[expr,{x1,x2, ...}]
expands expr assuming that variables matching any of the xi are complex.

Note: we get equivalent, but different results from WMA:

>> ComplexExpand[3^(I x)]

3−Im[x]Re
[
3IRe[x]

]
+ IIm

[
3IRe[x]

]
3−Im[x]

Assume that both x and y and are real:

>> ComplexExpand[Sin[x + I y]]
Cosh

[
y
]
Sin [x] + ICos [x] Sinh

[
y
]

Take x to be complex:

>> ComplexExpand[Sin[x], x]
Cosh [Im [x]] Sin [Re [x]] + ICos [Re [x]] Sinh [Im [x]]

Polynomials:

>> ComplexExpand[Re[z^5 - 2 z^3 - z + 1], z]

1 + Re [z]5 − 2Re [z]3 − Re [z]− 10Im [z]2 Re [z]3 + 5Im [z]4 Re [z] + 6Im [z]2 Re [z]

412

https://docs.sympy.org/latest/modules/core.html#sympy.core.expr.Expr.expand
https://reference.wolfram.com/language/ref/ComplexExpand.html

Trigonometric and hyperbolic functions

>> ComplexExpand[Cos[x + I y] + Tanh[z], {z}]
Cos [x]Cosh

[
y
]
− ISin [x] Sinh

[
y
]

+
Cosh [Re [z]] Sinh [Re [z]]

Cos [Im [z]]2 + Sinh [Re [z]]2 +
ICos [Im [z]] Sin [Im [z]]

Cos [Im [z]]2 + Sinh [Re [z]]2

Exponential and logarithmic functions:

>> ComplexExpand[Abs[2^z Log[2 z]], z]

Abs

IArg [Re [z] + IIm [z]] +
Log

[
4Im [z]2 + 4Re [z]2

]
2

 2Re[z]

Specify that variable z is taken to be complex:

>> ComplexExpand[Re[2 z^3 - z + 1], z]

1− Re [z] + 2Re [z]3 − 6Im [z]2 Re [z]

31.5.8. Cosh

WMA link

Cosh[z]
returns the hyperbolic cosine of z.

>> Cosh[0]
1

31.5.9. Coth

WMA link

Coth[z]
returns the hyperbolic cotangent of z.

>> Coth[0]
ComplexInfinity

31.5.10. Gudermannian

Gudermannian function (WMA, MathWorld)

413

https://reference.wolfram.com/language/ref/Cosh.html
https://reference.wolfram.com/language/ref/Coth.html
https://en.wikipedia.org/wiki/Gudermannian_function
https://reference.wolfram.com/language/ref/Gudermannian.html
https://mathworld.wolfram.com/Gudermannian.html

Gudermannian[z]
returns the Gudermannian function gd(z).

>> Gudermannian[4.2]
1.54081

Gudermannian[-z] == - Gudermannian[z]:

>> Gudermannian[-4.2] == -Gudermannian[4.2]
True

>> Plot[Gudermannian[x], {x, -10, 10}]

−10 −5 5 10

−1.5

−1.0

−0.5

0.5

1.0

1.5

31.5.11. InverseGudermannian

Inverse Gudermannian function (WMA, MathWorld)

InverseGudermannian[z]
returns the inverse Gudermannian function gd∧-1(z).

>> InverseGudermannian[.5]
0.522238

InverseGudermannian[-z] == -InversGudermannian[z]:

>> InverseGudermannian[-.5] == -InverseGudermannian[.5]
True

InverseGudermannian is 0 at multiples of 8 Pi: = 0

414

https://en.wikipedia.org/wiki/Gudermannian_function
https://reference.wolfram.com/language/ref/InverseGudermannian.html
https://mathworld.wolfram.com/InverseGudermannian.html

>> Plot[InverseGudermannian[x], {x, -2 Pi, 2 Pi}]

−6 −4 −2 2 4 6

−2

−1

1

2

31.5.12. Sech

WMA link

Sech[z]
returns the hyperbolic secant of z.

>> Sech[0]
1

31.5.13. Sinh

WMA link

Sinh[z]
returns the hyperbolic sine of z.

>> Sinh[0]
0

31.5.14. Tanh

WMA link

Tanh[z]
returns the hyperbolic tangent of z.

>> Tanh[0]
0

415

https://reference.wolfram.com/language/ref/Sech.html
https://reference.wolfram.com/language/ref/Sinh.html
https://reference.wolfram.com/language/ref/Tanh.html

31.6. Integer Functions

31.6.1. BitLength

WMA link

BitLength[x]
gives the number of bits needed to represent the integer x. x’s sign is ignored.

>> BitLength[1023]
10

>> BitLength[100]
7

>> BitLength[-5]
3

>> BitLength[0]
0

31.6.2. Ceiling

WMA link

Ceiling[x]
gives the smallest integer greater than or equal to x.

>> Ceiling[1.2]
2

>> Ceiling[3/2]
2

For complex x, take the ceiling of real an imaginary parts.

>> Ceiling[1.3 + 0.7 I]
2 + I

31.6.3. DigitCount

WMA link

416

https://reference.wolfram.com/language/ref/BitLength.html
https://reference.wolfram.com/language/ref/Ceiling.html
https://reference.wolfram.com/language/ref/DigitCount.html

DigitCount[n, b, d]
returns the number of times digit d occurs in the base b representation of n.

DigitCount[n, b]
returns a list indicating the number of times each digit occurs in the base b representation
of n.

DigitCount[n, b]
returns a list indicating the number of times each digit occurs in the decimal representa-
tion of n.

>> DigitCount[1022]
{1, 2, 0, 0, 0, 0, 0, 0, 0, 1}

>> DigitCount[Floor[Pi * 10^100]]
{8, 12, 12, 10, 8, 9, 8, 12, 14, 8}

>> DigitCount[1022, 2]
{9, 1}

>> DigitCount[1022, 2, 1]
9

31.6.4. Floor

WMA link

Floor[x]
gives the greatest integer less than or equal to x.

Floor[x, a]
gives the greatest multiple of a less than or equal to x.

>> Floor[10.4]
10

>> Floor[10/3]
3

>> Floor[10]
10

>> Floor[21, 2]
20

>> Floor[2.6, 0.5]
2.5

>> Floor[-10.4]
−11

For complex x, take the floor of real an imaginary parts.

417

https://reference.wolfram.com/language/ref/Floor.html

>> Floor[1.5 + 2.7 I]
1 + 2I

For negative a, the smallest multiple of a greater than or equal to x is returned.

>> Floor[10.4, -1]
11

>> Floor[-10.4, -1]
−10

31.6.5. FromDigits

WMA link

FromDigits[l]
returns the integer corresponding to the decimal representation given by l. l can be a list
of digits or a string.

FromDigits[l, b]
returns the integer corresponding to the base b representation given by l. l can be a list
of digits or a string.

>> FromDigits["123"]
123

>> FromDigits[{1, 2, 3}]
123

>> FromDigits[{1, 0, 1}, 1000]
1000001

FromDigits can handle symbolic input:

>> FromDigits[{a, b, c}, 5]
c + 5 (5a + b)

Note that FromDigits does not automatically detect if you are providing a non-decimal representation:

>> FromDigits["a0"]
100

>> FromDigits["a0", 16]
160

FromDigits on empty lists or strings returns 0:

>> FromDigits[{}]
0

418

https://reference.wolfram.com/language/ref/FromDigits.html

>> FromDigits[""]
0

31.6.6. IntegerDigits

WMA link

IntegerDigits[n]
returns the decimal representation of integer x as list of digits. x’s sign is ignored.

IntegerDigits[n, b]
returns the base b representation of integer x as list of digits. x’s sign is ignored.

IntegerDigits[n, b, length]
returns a list of length length. If the number is too short, the list gets padded with 0 on
the left. If the number is too long, the length least significant digits are returned.

>> IntegerDigits[76543]
{7, 6, 5, 4, 3}

The same thing specifying base 10 explicitly:

>> IntegerDigits[76543, 10]
{7, 6, 5, 4, 3}

The sign is discarded:

>> IntegerDigits[-76543]
{7, 6, 5, 4, 3}

Just the last 3 digits:

>> IntegerDigits[76543, 10, 3]
{5, 4, 3}

A geeky way to relate Christmas with Halloween is to note that Dec(imal) 25 is Oct(al) 31

>> IntegerDigits[25, 8]
{3, 1}

31.6.7. IntegerReverse

WMA link

419

https://reference.wolfram.com/language/ref/IntegerDigits.html
https://reference.wolfram.com/language/ref/IntegerReverse.html

IntegerReverse[n]
returns the integer that has the reverse decimal representation of x without sign.

IntegerReverse[n, b]
returns the integer that has the reverse base b representation of x without sign.

>> IntegerReverse[1234]
4321

>> IntegerReverse[1022, 2]
511

>> IntegerReverse[-123]
321

31.6.8. IntegerString

WMA link

IntegerString[n]
returns the decimal representation of integer x as string. x’s sign is ignored.

IntegerString[n, b]
returns the base b representation of integer x as string. x’s sign is ignored.

IntegerString[n, b, length]
returns a string of length length. If the number is too short, the string gets padded with
0 on the left. If the number is too long, the length least significant digits are returned.

For bases > 10, alphabetic characters a, b, ... are used to represent digits 11, 12, Note that base must
be an integer in the range from 2 to 36.

>> IntegerString[12345]
12345

>> IntegerString[-500]
500

>> IntegerString[12345, 10, 8]
00012345

>> IntegerString[12345, 10, 3]
345

>> IntegerString[11, 2]
1011

>> IntegerString[123, 8]
173

>> IntegerString[32767, 16]
7fff

420

https://reference.wolfram.com/language/ref/IntegerString.html

>> IntegerString[98765, 20]
c6i5

31.7. Linear algebra

31.7.1. DesignMatrix

WMA link

DesignMatrix[m, f , x]
returns the design matrix for a linear model f in the variables x.

>> DesignMatrix[{{2, 1}, {3, 4}, {5, 3}, {7, 6}}, x, x]
{{1, 2} , {1, 3} , {1, 5} , {1, 7}}

>> DesignMatrix[{{2, 1}, {3, 4}, {5, 3}, {7, 6}}, f[x], x]
{{1, f [2]} , {1, f [3]} , {1, f [5]} , {1, f [7]}}

31.7.2. Det

Matrix Determinant (WMA link)

Det[m]
computes the determinant of the matrix m.

>> Det[{{1, 1, 0}, {1, 0, 1}, {0, 1, 1}}]
−2

Symbolic determinant:

>> Det[{{a, b, c}, {d, e, f}, {g, h, i}}]
aei − a f h − bdi + b f g + cdh − ceg

31.7.3. Eigensystem

Matrix Eigenvalues (WMA)

Eigensystem[m]
returns the list {Eigenvalues[m], Eigenvectors[m]}.

421

https://reference.wolfram.com/language/ref/DesignMatrix.html
https://en.wikipedia.org/wiki/Determinant
https://reference.wolfram.com/language/ref/Det.html
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
https://reference.wolfram.com/language/ref/Eigensystem.html

>> Eigensystem[{{1, 1, 0}, {1, 0, 1}, {0, 1, 1}}]
{{2,−1, 1} , {{1, 1, 1} , {1,−2, 1} , {−1, 0, 1}}}

31.7.4. Eigenvalues

Matrix Eigenvalues (WMA link)

Eigenvalues[m]
computes the eigenvalues of the matrix m.

By default, Sympy’s routine is used. Sometimes this is slow and less good than the corre-
sponding mpmath routine.
Use option Method->“mpmath” if you want to use mpmath’s routine instead.

Numeric eigenvalues are sorted in order of decreasing absolute value:

>> Eigenvalues[{{1, 1, 0}, {1, 0, 1}, {0, 1, 1}}]
{2,−1, 1}

Symbolic eigenvalues:

>> Eigenvalues[{{Cos[theta],Sin[theta],0},{-Sin[theta],Cos[theta
],0},{0,0,1}}] // Sort{

1, Cos [theta] +
√

(−1 + Cos [theta]) (1 + Cos [theta]), Cos [

theta]−
√

(−1 + Cos [theta]) (1 + Cos [theta])
}

>> Eigenvalues[{{7, 1}, {-4, 3}}]
{5, 5}

31.7.5. Eigenvectors

Matrix Eigenvalues (WMA link)

Eigenvectors[m]
computes the eigenvectors of the matrix m.

>> Eigenvectors[{{1, 1, 0}, {1, 0, 1}, {0, 1, 1}}]
{{1, 1, 1} , {1,−2, 1} , {−1, 0, 1}}

>> Eigenvectors[{{1, 0, 0}, {0, 1, 0}, {0, 0, 0}}]
{{0, 1, 0} , {1, 0, 0} , {0, 0, 1}}

>> Eigenvectors[{{2, 0, 0}, {0, -1, 0}, {0, 0, 0}}]
{{1, 0, 0} , {0, 1, 0} , {0, 0, 1}}

422

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
https://reference.wolfram.com/language/ref/Eigenvalues.html
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
https://reference.wolfram.com/language/ref/Eigenvectors.html

>> Eigenvectors[{{0.1, 0.2}, {0.8, 0.5}}]
{{ − 0.355518, − 1.15048} , { − 0.62896, 0.777438}}

31.7.6. FittedModel

WMA link

FittedModel[...]
Result of a linear fit

31.7.7. Inverse

WMA link

Inverse[m]
computes the inverse of the matrix m.

>> Inverse[{{1, 2, 0}, {2, 3, 0}, {3, 4, 1}}]
{{−3, 2, 0} , {2,−1, 0} , {1,−2, 1}}

>> Inverse[{{1, 0}, {0, 0}}]
The matrix {{1, 0}, {0, 0}} is singular.

Inverse
[
{{1, 0} , {0, 0}}

]

31.7.8. LeastSquares

WMA link

LeastSquares[m, b]
computes the least squares solution to m x = b, finding an x that solves for b optimally.

>> LeastSquares[{{1, 2}, {2, 3}, {5, 6}}, {1, 5, 3}]{
−28

13
,

31
13

}
>> Simplify[LeastSquares[{{1, 2}, {2, 3}, {5, 6}}, {1, x, 3}]]{

12
13
− 8x

13
,− 4

13
+

7x
13

}
>> LeastSquares[{{1, 1, 1}, {1, 1, 2}}, {1, 3}]

Solving for underdetermined system not implemented.

LeastSquares
[
{{1, 1, 1} , {1, 1, 2}} , {1, 3}

]

423

https://reference.wolfram.com/language/ref/FittedModel.html
https://reference.wolfram.com/language/ref/Inverse.html
https://reference.wolfram.com/language/ref/LeastSquares.html

31.7.9. LinearModelFit

WMA link

LinearModelFit[m, f , x]
fits a linear model f in the variables x to the dataset m.

>> m = LinearModelFit[{{2, 1}, {3, 4}, {5, 3}, {7, 6}}, x, x];

>> m["BasisFunctions"]
{1, x}

>> m["BestFit"]
0.186441 + 0.779661x

>> m["BestFitParameters"]
{0.186441, 0.779661}

>> m["DesignMatrix"]
{{1, 2} , {1, 3} , {1, 5} , {1, 7}}

>> m["Function"]
0.186441 + 0.779661#1&

>> m["Response"]
{1, 4, 3, 6}

>> m["FitResiduals"]
{ − 0.745763, 1.47458, − 1.08475, 0.355932}

>> m = LinearModelFit[{{2, 2, 1}, {3, 2, 4}, {5, 6, 3}, {7, 9, 6}}, {Sin
[x], Cos[y]}, {x, y}];

>> m["BasisFunctions"]{
1, Sin [x] , Cos

[
y
]}

>> m["Function"]
3.33077− 5.65221Cos [#2] − 5.01042Sin [#1] &

>> m = LinearModelFit[{{{1, 4}, {1, 5}, {1, 7}}, {1, 2, 3}}];

>> m["BasisFunctions"]
{#1, #2}

>> m["FitResiduals"]
{ − 0.142857, 0.214286, − 0.0714286}

31.7.10. LinearSolve

WMA link

424

https://reference.wolfram.com/language/ref/LinearModelFit.html
https://reference.wolfram.com/language/ref/LinearSolve.html

LinearSolve[matrix, right]
solves the linear equation system $matrix$. x = $right$ and returns one corre-
sponding solution x.

>> LinearSolve[{{1, 1, 0}, {1, 0, 1}, {0, 1, 1}}, {1, 2, 3}]
{0, 1, 2}

Test the solution:

>> {{1, 1, 0}, {1, 0, 1}, {0, 1, 1}} . {0, 1, 2}
{1, 2, 3}

If there are several solutions, one arbitrary solution is returned:

>> LinearSolve[{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}, {1, 1, 1}]
{−1, 1, 0}

Infeasible systems are reported:

>> LinearSolve[{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}, {1, -2, 3}]
Linear equation encountered that has no solution.

LinearSolve
[
{{1, 2, 3} , {4, 5, 6} , {7, 8, 9}} , {1,−2, 3}

]

31.7.11. MatrixExp

WMA link

MatrixExp[m]
computes the exponential of the matrix m.

>> MatrixExp[{{0, 2}, {0, 1}}]
{{1,−2 + 2E} , {0, E}}

>> MatrixExp[{{1.5, 0.5}, {0.5, 2.0}}]
{{5.16266, 3.02952} , {3.02952, 8.19218}}

31.7.12. MatrixPower

WMA link

MatrixPower[m, n]
computes the nth power of a matrix m.

425

https://reference.wolfram.com/language/ref/MatrixExp.html
https://reference.wolfram.com/language/ref/MatrixPower.html

>> MatrixPower[{{1, 2}, {1, 1}}, 10]
{{3363, 4756} , {2378, 3363}}

>> MatrixPower[{{1, 2}, {2, 5}}, -3]
{{169,−70} , {−70, 29}}

31.7.13. MatrixRank

WMA link

MatrixRank[matrix]
returns the rank of matrix.

>> MatrixRank[{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}]
2

>> MatrixRank[{{1, 1, 0}, {1, 0, 1}, {0, 1, 1}}]
3

>> MatrixRank[{{a, b}, {3 a, 3 b}}]
1

31.7.14. NullSpace

Kernel (null space) (WMA link)

NullSpace[matrix]
returns a list of vectors that span the nullspace of matrix.

>> NullSpace[{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}]
{{1,−2, 1}}

>> A = {{1, 1, 0}, {1, 0, 1}, {0, 1, 1}};

>> NullSpace[A]
{}

>> MatrixRank[A]
3

31.7.15. PseudoInverse

WMA link

426

https://reference.wolfram.com/language/ref/MatrixRank.html
https://en.wikipedia.org/wiki/Kernel_(linear_algebra)
https://reference.wolfram.com/language/ref/NullSpace.html
https://reference.wolfram.com/language/ref/PseudoInverse.html

PseudoInverse[m]
computes the Moore-Penrose pseudoinverse of the matrix m. If m is invertible, the pseu-
doinverse equals the inverse.

>> PseudoInverse[{{1, 2}, {2, 3}, {3, 4}}]{{
−11

6
,−1

3
,

7
6

}
,
{

4
3

,
1
3

,−2
3

}}
>> PseudoInverse[{{1, 2, 0}, {2, 3, 0}, {3, 4, 1}}]

{{−3, 2, 0} , {2,−1, 0} , {1,−2, 1}}

>> PseudoInverse[{{1.0, 2.5}, {2.5, 1.0}}]
{{ − 0.190476, 0.47619} , {0.47619, − 0.190476}}

31.7.16. QRDecomposition

QR Decomposition (WMA link)

QRDecomposition[m]
computes the QR decomposition of the matrix m.

>> QRDecomposition[{{1, 2}, {3, 4}, {5, 6}}]{{{√
35

35
,

3
√

35
35

,

√
35
7

}
,

{
13
√

210
210

,
2
√

210
105

,−
√

210
42

}}
,

{{
√

35,
44
√

35
35

}
,

{
0,

2
√

210
35

}}}

31.7.17. RowReduce

WMA link

RowReduce[matrix]
returns the reduced row-echelon form of matrix.

>> RowReduce[{{1, 0, a}, {1, 1, b}}]
{{1, 0, a} , {0, 1,−a + b}}

>> RowReduce[{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}] // MatrixForm 1 0 −1
0 1 2
0 0 0



427

https://en.wikipedia.org/wiki/QR_decomposition
https://reference.wolfram.com/language/ref/QRDecomposition.html
https://reference.wolfram.com/language/ref/RowReduce.html

31.7.18. SingularValueDecomposition

Singular Value Decomposition (WMA link)

SingularValueDecomposition[m]
calculates the singular value decomposition for the matrix m.

SingularValueDecomposition returns u, s, w such that m=u s v, uu=1, vv=1, and s is diagonal.

>> SingularValueDecomposition[{{1.5, 2.0}, {2.5, 3.0}}]
{{{0.538954, 0.842335} , {0.842335, − 0.538954
}} , {{4.63555, 0.} , {0., 0.107862}} , {{0.628678, 0.777666} , {
− 0.777666, 0.628678}}}

31.7.19. Tr

Matrix trace (WMA link)

Tr[m]
computes the trace of the matrix m.

>> Tr[{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}]
15

Symbolic trace:

>> Tr[{{a, b, c}, {d, e, f}, {g, h, i}}]
a + e + i

31.8. Mathematical Constants

Numeric, Arithmetic, or Symbolic constants like Pi, E, or Infinity.

31.8.1. Catalan

Catalan’s constant (SymPy, WMA)

Catalan
is Catalan’s constant with numerical value � 0.915966.

>> Catalan // N
0.915966

428

https://en.wikipedia.org/wiki/Singular_value_decomposition
https://reference.wolfram.com/language/ref/SingularValueDecomposition.html
https://en.wikipedia.org/wiki/Trace_(linear_algebra)
https://reference.wolfram.com/language/ref/Tr.html
https://en.wikipedia.org/wiki/Catalan%27s_constant
https://docs.sympy.org/latest/modules/core.html#sympy.core.numbers.Catalan
https://reference.wolfram.com/language/ref/Catalan.html

>> N[Catalan, 20]
0.91596559417721901505

31.8.2. ComplexInfinity

Complex Infinity is an infinite number in the complex plane whose complex argument is unknown or
undefined. (SymPy, MathWorld, WMA)

ComplexInfinity
represents an infinite complex quantity of undetermined direction.

ComplexInfinity can appear as the result of a computation such as dividing by zero:

>> 1 / 0
Infinite expression 1 / 0 encountered.
ComplexInfinity

But it can be used as an explicit value in an expression:

>> 1 / ComplexInfinity
0

>> ComplexInfinity * Infinity
ComplexInfinity

ComplexInfinity though is a special case of DirectedInfinity:

>> FullForm[ComplexInfinity]
DirectedInfinity []

See also ’DirectedInfinity’ 37.8.

31.8.3. Degree

Degree (angle) (WMA)

Degree
is the number of radians in one degree. It has a numerical value of π / 180.

>> Cos[60 Degree]
1
2

Degree has the value of Pi / 180

429

https://en.wikipedia.org/wiki/Infinity#Complex_analysis
https://docs.sympy.org/latest/modules/core.html#sympy.core.numbers.ComplexInfinity
https://mathworld.wolfram.com/ComplexInfinity.html
https://reference.wolfram.com/language/ref/ComplexInfinity.html
https://en.wikipedia.org/wiki/Degree_(angle)
https://reference.wolfram.com/language/ref/Degree.html

>> Degree == Pi / 180
True

>> N[\[Degree]] == N[Degree]
True

31.8.4. E

Euler’s number (SymPy, WMA)

E
is the constant � with numerical value � 2.71828.

>> N[E]
2.71828

>> N[E, 50]
2.7182818284590452353602874713526624977572470937000

31.8.5. EulerGamma

Euler’s constant (SymPy, WMA)

EulerGamma
is Euler’s constant γ with numerical value � 0.577216.

>> EulerGamma // N
0.577216

>> N[EulerGamma, 40]
0.5772156649015328606065120900824024310422

31.8.6. Glaisher

Glaisher–Kinkelin constant (mpmath, WMA)

Glaisher
is Glaisher’s constant, with numerical value � 1.28243.

>> N[Glaisher]
1.28243

>> N[Glaisher, 50]
1.2824271291006226368753425688697917277676889273250

430

https://en.wikipedia.org/wiki/E_(mathematical_constant)
https://docs.sympy.org/latest/modules/core.html#exp1
https://reference.wolfram.com/language/ref/E.html
https://en.wikipedia.org/wiki/Euler%27s_constant
https://docs.sympy.org/latest/modules/core.html#sympy.core.numbers.EulerGamma
https://reference.wolfram.com/language/ref/EulerGamma.html
https://en.wikipedia.org/wiki/Glaisher%E2%80%93Kinkelin_constant
https://mpmath.org/doc/current/functions/constants.html#glaisher-s-constant-glaisher
https://reference.wolfram.com/language/ref/Glaisher.html

1.2824271291006219541941391071304678916931152343750

31.8.7. GoldenRatio

Golden ratio (mpmath, WMA)

GoldenRatio
is the golden ratio, ϕ = (1+Sqrt[5])/2.

>> GoldenRatio // N
1.61803

>> N[GoldenRatio, 40]
1.618033988749894848204586834365638117720

31.8.8. Indeterminate

Indeterminate form (SymPy, WMA)

Indeterminate
represents an indeterminate result.

>> 0^0
Indeterminate expression 0 ^ 0 encountered.
Indeterminate

>> Tan[Indeterminate]
Indeterminate

31.8.9. Infinity

Infinity (SymPy, WMA)

Infinity
a symbol that represents an infinite real quantity.

Infinity sometimes appears as the result of a calculation:

>> Precision[1]
∞

But Infinity it often used as a value in expressions:

431

https://en.wikipedia.org/wiki/Golden_ratio
https://mpmath.org/doc/current/functions/constants.html#golden-ratio-phi
https://reference.wolfram.com/language/ref/GoldenRatio.html
https://en.wikipedia.org/wiki/Indeterminate_form
https://docs.sympy.org/latest/modules/core.html#sympy.core.numbers.NaN
https://reference.wolfram.com/language/ref/Indeterminate.html
https://en.wikipedia.org/wiki/Infinity
https://docs.sympy.org/latest/modules/core.html#sympy.core.numbers.Infinity
https://reference.wolfram.com/language/ref/Infinity.html

>> 1 / Infinity
0

>> Infinity + 100
∞

Infinity often appears in sum and limit calculations:

>> Sum[1/x^2, {x, 1, Infinity}]

π2

6

>> Limit[1/x, x->0]
−∞

However, Infinity a shorthand for DirectedInfinity[1]:

>> FullForm[Infinity]
DirectedInfinity [1]

See also ’DirectedInfinity’ 37.8.

31.8.10. Khinchin

Khinchin’s constant (mpmath, WMA)

Khinchin
is Khinchin’s constant, with numerical value � 2.68545.

>> N[Khinchin]
2.68545

>> N[Khinchin, 50]
2.6854520010653064453097148354817956938203822939945

= 2.6854520010653075701156922150403261184692382812500

31.8.11. $MaxMachineNumber

Largest normalizable machine number (WMA)

$MaxMachineNumber
Represents the largest positive number that can be represented as a normalized machine
number in the system.

The product of $MaxMachineNumber and $MinMachineNumber is a constant:

432

https://en.wikipedia.org/wiki/Khinchin%27s_constant
https://mpmath.org/doc/current/functions/constants.html#mpmath.mp.khinchin
https://reference.wolfram.com/language/ref/Khinchin.html
https://reference.wolfram.com/language/ref/$MaxMachineNumber.html

>> $MaxMachineNumber * $MinMachineNumber
4.

31.8.12. $MinMachineNumber

Smallest normalizable machine number (WMA)

$MinMachineNumber
Represents the smallest positive number that can be represented as a normalizedmachine
number in the system.

MachinePrecision minus the Log base 10 of this number is the Accuracy of 0‘:

>> MachinePrecision -Log[10., $MinMachineNumber]==Accuracy[0`]
True

31.8.13. Overflow

Numeric Overflow (WMA)

See also Integer Overflow.

Overflow[]
represents a number too large to be represented by Mathics.

>> Exp[10.*^20]
Overflow occurred in computation.
Overflow []

>> Table[Exp[10.^k],{k, 3}]
Overflow occurred in computation.{

22026.5, 2.68812*∧43, Overflow []
}

>> 1 / Underflow[]
Overflow []

31.8.14. Pi

Pi, π (SymPy, WMA)

Pi
is the constant π.

433

https://reference.wolfram.com/language/ref/$MinMachineNumber.html
https://reference.wolfram.com/language/ref/Overflow.html
https://en.wikipedia.org/wiki/Integer_overflow
https://en.wikipedia.org/wiki/Pi
https://docs.sympy.org/latest/modules/core.html#sympy.core.numbers.Pi
https://reference.wolfram.com/language/ref/Pi.html

>> Pi
π

>> N[Pi]
3.14159

Pi to a numeric precision of 20 digits:

>> N[Pi, 20]
3.1415926535897932385

Note that the above is not the same thing as the number of digits after the decimal point. This may differ
from similar concepts from other mathematical libraries, including those which Mathics uses!

Use numpy to compute Pi to 20 digits:

>> N[Pi, 20, Method->"numpy"]
3.1415926535897930000

“sympy” is the default method.

>> Attributes[Pi]
{Constant, Protected, ReadProtected}

31.8.15. Undefined

Undefined symbol/value (WMA)

Undefined
a symbol that represents a quantity with no defined value.

>> ConditionalExpression[a, False]
Undefined

>> Attributes[Undefined]
{Protected}

31.8.16. Underflow

Arithmetic underflow (WMA)

Overflow[]
represents a number too small to be represented by Mathics.

>> 1 / Overflow[]
Underflow []

434

https://reference.wolfram.com/language/ref/Undefined.html
https://en.wikipedia.org/wiki/Arithmetic_underflow
https://reference.wolfram.com/language/ref/Underflow.html

>> 5 * Underflow[]
5Underflow []

>> % // N
0.

Underflow[] is kept symbolic in operations against integer numbers, but taken as 0. in numeric evalua-
tions:

>> 1 - Underflow[]
1− Underflow []

>> % // N
1.

31.9. Number theoretic functions

31.9.1. ContinuedFraction

Continued fraction (SymPy, WMA)

ContinuedFraction[x, n]
generate the first n terms in the continued fraction representation of x.

ContinuedFraction[x]
the complete continued fraction representation for a rational or quadratic irrational num-
ber.

>> ContinuedFraction[Pi, 10]
{3, 7, 15, 1, 292, 1, 1, 1, 2, 1}

>> ContinuedFraction[(1 + 2 Sqrt[3])/5]
{0, 1, {8, 3, 34, 3}}

>> ContinuedFraction[Sqrt[70]]
{8, {2, 1, 2, 1, 2, 16}}

31.9.2. DivisorSigma

Divisor function (SymPy, WMA)

DivisorSigma[k, n]
returns σk(n)

For reference, let us first get the integer divisors of 20:

435

https://en.wikipedia.org/wiki/Continued_fraction
https://docs.sympy.org/latest/modules/ntheory.html#module-sympy.ntheory.continued_fraction
https://reference.wolfram.com/language/ref/ContinuedFraction.html
https://en.wikipedia.org/wiki/Divisor_function
https://docs.sympy.org/latest/modules/functions/combinatorial.html#sympy.functions.combinatorial.numbers.divisor_sigma
https://reference.wolfram.com/language/ref/DivisorSigma.html

>> Divisors[20]
{1, 2, 4, 5, 10, 20}

The DivisorSigma function counts this sum:

>> DivisorSigma[1, 20]
42

This is the same thing as:

>> DivisorSum[20, # &]
42

To get a sum of the second power of the factors of 20:

>> DivisorSigma[2, 20]
546

Doing this with DivisorSum instead:

>> DivisorSum[20, #^2 &]
546

See also ’DivisorSum’ 31.9.3 and Divisors 31.9.4.

31.9.3. DivisorSum

WMA

DivisorSum[n, f orm]
transform the divisors of n using f orm and take their sum

>> DivisorSum[20, # &]
42

>> DivisorSum[20, #^2 &]
546

See also ’DivisorSigma’ 31.9.2 and Divisors 31.9.4.

31.9.4. Divisors

WMA link

Divisors[n]
returns a list of the integers that divide n.

436

https://reference.wolfram.com/language/ref/DivisorSum.html
https://reference.wolfram.com/language/ref/Divisors.html

>> Divisors[20]
{1, 2, 4, 5, 10, 20}

>> Divisors[704]
{1, 2, 4, 8, 11, 16, 22, 32, 44, 64, 88, 176, 352, 704}

>> Divisors[{87, 106, 202, 305}]
{{1, 3, 29, 87} , {1, 2, 53, 106} , {1, 2, 101, 202} , {1, 5, 61, 305}}

See also ’DivisorSigma’ 31.9.2 and DivisorSum 31.9.3.

31.9.5. EulerPhi

Euler’s totient function (SymPy, WMA) This function counts positive integers up to n that are relatively
prime to n. It is typically used in cryptography and in many applications in elementary number theory.

EulerPhi[n]
returns the Euler totient function .

Compute the Euler totient function:

>> EulerPhi[9]
6

EulerPhi of a negative integer is same as its positive counterpart:

>> EulerPhi[-11] == EulerPhi[11]
True

>> EulerPhi[0]
0

Large arguments are computed quickly:

>> EulerPhi[40!]
121343746763281707274905415180804423680000000000

EulerPhi threads over lists:

>> EulerPhi[Range[1, 17, 2]]
{1, 2, 4, 6, 6, 10, 12, 8, 16}

Above, we get consecutive even numbers when the input is prime.

Compare the results above with:

>> EulerPhi[Range[1, 17]]
{1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16}

437

https://en.wikipedia.org/wiki/Euler%27s_totient_function
https://docs.sympy.org/latest/modules/ntheory.html#sympy.ntheory.factor_.totient
https://reference.wolfram.com/language/ref/EulerPhi.html

31.9.6. FactorInteger

WMA link

FactorInteger[n]
returns the factorization of n as a list of factors and exponents.

>> factors = FactorInteger[2010]
{{2, 1} , {3, 1} , {5, 1} , {67, 1}}

To get back the original number:

>> Times @@ Power @@@ factors
2010

FactorInteger factors rationals using negative exponents:

>> FactorInteger[2010 / 2011]
{{2, 1} , {3, 1} , {5, 1} , {67, 1} , {2011,−1}}

31.9.7. FractionalPart

WMA link

FractionalPart[n]
finds the fractional part of n.

>> FractionalPart[4.1]
0.1

>> FractionalPart[-5.25]
− 0.25

31.9.8. FromContinuedFraction

WMA link

FromContinuedFraction[list]
reconstructs a number from the list of its continued fraction terms.

>> FromContinuedFraction[{3, 7, 15, 1, 292, 1, 1, 1, 2, 1}]
1146408
364913

438

https://reference.wolfram.com/language/ref/FactorInteger.html
https://reference.wolfram.com/language/ref/FractionalPart.html
https://reference.wolfram.com/language/ref/FromContinuedFraction.html

>> FromContinuedFraction[Range[5]]
225
157

31.9.9. IntegerPart

WMA link

IntegerPart[n]
finds the integer part of n.

>> IntegerPart[4.1]
4

>> IntegerPart[-5.25]
−5

31.9.10. IntegerPartitions

Integer partition (SymPy, WMA)

IntegerPartitions[n]
lists all possible ways to partition integer n into smaller integers.

IntegerPartitions[n, k]
lists all partitions into at most k integers.

IntegerPartitions[n, {k}]
lists all partitions with exactly k integers.

IntegerPartitions[n, {kmin, kmax}]
lists partitions between kmin and kmax integers.

IntegerPartitions[n, kspec, {s1, s2, ...}]
lists partitions involving only the si.

All partitions of positive integers that add to 5:

>> IntegerPartitions[5]
{{5} , {4, 1} , {3, 2} , {3, 1, 1} , {2, 2, 1} , {2, 1, 1, 1} , {1, 1, 1, 1, 1}}

Limit the above to just the first 3 elements:

>> IntegerPartitions[5, All, All, 3]
{{5} , {4, 1} , {3, 2}}

Partitions of 5 with at most 3 integers:

439

https://reference.wolfram.com/language/ref/IntegerPart.html
https://en.wikipedia.org/wiki/Integer_partition
https://docs.sympy.org/latest/modules/utilities/iterables.html#sympy.utilities.iterables.ordered_partitions
https://reference.wolfram.com/language/ref/IntegerPartitions.html

>> IntegerPartitions[5, 3]
{{5} , {4, 1} , {3, 2} , {3, 1, 1} , {2, 2, 1}}

Partitions of 5 with exactly 3 integers; this is a subset of “at most 3” above:

>> IntegerPartitions[5, {3}]
{{3, 1, 1} , {2, 2, 1}}

Partitions of 5 that involve only integers 1, and 2:

>> IntegerPartitions[5, All, {1, 2}]
{{2, 2, 1} , {2, 1, 1, 1} , {1, 1, 1, 1, 1}}

Partitions of 4 with exactly 2 elements and involve only integers -1, 0, 1, 4, and 5:

>> IntegerPartitions[4, {2}, {-1, 0, 1, 4, 5}]
{{5,−1} , {4, 0}}

31.9.11. JacobiSymbol

Jacobi symbol (WMA)

JacobiSymbol[a, n]
returns the Jacobi symbol (a/n).

>> Table[JacobiSymbol[n, m], {n, 0, 10}, {m, 1, n, 2}]
{{} , {1} , {1} , {1, 0} , {1, 1} , {1,−1, 0} , {1, 0, 1} , {1, 1,
−1, 0} , {1,−1,−1, 1} , {1, 0, 1, 1, 0} , {1, 1, 0,−1, 1}}

31.9.12. KroneckerSymbol

Kronecker symbol (WMA)

KroneckerSymbol[a, n]
returns the Kronecker symbol (a/n).

>> Table[KroneckerSymbol[n, m], {n, 5}, {m, 5}]
{{1, 1, 1, 1, 1} , {1, 0,−1, 0,−1} , {1,−1, 0, 1,−1} , {1, 0, 1, 0, 1} , {1,−1,−1, 1, 0}}

440

https://en.wikipedia.org/wiki/Jacobi_symbol
https://reference.wolfram.com/language/ref/JacobiSymbol.html
https://en.wikipedia.org/wiki/Kronecker_symbol
https://reference.wolfram.com/language/ref/KroneckerSymbol.html

31.9.13. MantissaExponent

WMA link

MantissaExponent[n]
finds a list containing the mantissa and exponent of a given number n.

MantissaExponent[n, b]
finds the base b mantissa and exponent of n.

>> MantissaExponent[2.5*10^20]
{0.25, 21}

>> MantissaExponent[125.24]
{0.12524, 3}

>> MantissaExponent[125., 2]
{0.976563, 7}

>> MantissaExponent[10, b]
MantissaExponent [10, b]

31.9.14. MersennePrimeExponent

Mersenne Prime exponent (SymPy, WMA)

MersennePrimeExponent[n]
returns the exponent of the n-th Mersenne prime.

>> Table[MersennePrimeExponent[n], {n, 10}]
{2, 3, 5, 7, 13, 17, 19, 31, 61, 89}

31.9.15. MoebiusMu

Mobius function (SymPy, WMA)

MoebiusMu[n]
returns µ(n).

>> Array[MoebiusMu, 10]
{1,−1,−1, 0,−1, 1,−1, 0, 0, 1}

441

https://reference.wolfram.com/language/ref/MantissaExponent.html
https://en.wikipedia.org/wiki/Mersenne_prime
https://docs.sympy.org/latest/modules/ntheory.html#sympy.ntheory.factor_.mersenne_prime_exponent
https://reference.wolfram.com/language/ref/MersennePrimeExponent.html
https://en.wikipedia.org/wiki/M%C3%B6bius_function
https://docs.sympy.org/latest/modules/functions/combinatorial.html#sympy.functions.combinatorial.numbers.mobius
https://reference.wolfram.com/language/ref/MoebiusMu.html

31.9.16. NextPrime

WMA link

NextPrime[n]
gives the next prime after n.

NextPrime[n,k]
gives the kth prime after n.

>> NextPrime[100]
101

The the first number does not have to be an integer:

>> NextPrime[100.5, 2]
103

However, when the second value, the step value is not an integer is given, we do nothing:

>> NextPrime[100, 2.5]
NextPrime [100, 2.5]

With a negative number, we find a prime number before the given number:

>> NextPrime[100, -1]
97

And with negative counts, it is possible to get negative prime numbers:

>> NextPrime[2, -1]
−2

31.9.17. PartitionsP

WMA link

PartitionsP[n]
return the number p(n) of unrestricted partitions of the integer n.

>> Table[PartitionsP[k], {k, -2, 12}]
{0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77}

442

https://reference.wolfram.com/language/ref/NextPrime.html
https://reference.wolfram.com/language/ref/PartitionsP.html

31.9.18. PowersRepresentations

WMA

PowersRepresentations[n, k, p]
represent n as a sum of k non-negative integers raised to the power of p.

Get the ways licence plate number 1729 can be represented as the sum of two cubes:

>> PowersRepresentations[1729, 2, 3]
{{1, 12} , {9, 10}}

See 1729 for the full backstory.

Demonstrate the validity of the Pythagorian triple: 3∧2 + 4∧2 == 5∧2

>> PowersRepresentations[25, 2, 2]
{{0, 5} , {3, 4}}

Since 0 is allowed in the sum, PowersRepresentations[n, k+1, p] is includes PowersRepresentations
[n, k, p] with by inserting a zero element at the beginning:

>> PowersRepresentations[25, 3, 2]
{{0, 0, 5} , {0, 3, 4}}

31.9.19. Prime

WMA link

Prime[n]
Prime[{n0, n1, ...}]

returns the nth prime number where n is an positive Integer. If given a list of integers,
the return value is a list with Prime applied to each.

Note that the first prime is 2, not 1:

>> Prime[1]
2

>> Prime[167]
991

When given a list of integers, a list is returned:

>> Prime[{5, 10, 15}]
{11, 29, 47}

443

https://reference.wolfram.com/language/ref/PowersRepresentations.html
https://en.wikipedia.org/wiki/1729_(number)
https://reference.wolfram.com/language/ref/Prime.html

1.2 isn’t an integer

>> Prime[1.2]
Prime [1.2]

Since 0 is less than 1, like 1.2 it is invalid.

>> Prime[{0, 1, 1.2, 3}]
{Prime [0] , 2, Prime [1.2] , 5}

31.9.20. PrimePi

Prime numbers

PrimePi[x]
gives the number of primes less than or equal to x.

PrimePi is the inverse of Prime:

>> PrimePi[2]
1

>> PrimePi[100]
25

>> PrimePi[-1]
0

>> PrimePi[3.5]
2

>> PrimePi[E]
1

31.9.21. PrimePowerQ

Prime numbers

PrimePowerQ[n]
returns True if n is a power of a prime number.

>> PrimePowerQ[9]
True

>> PrimePowerQ[52142]
False

>> PrimePowerQ[-8]
True

444

https://reference.wolfram.com/language/ref/PrimePi.html
https://reference.wolfram.com/language/ref/PrimePowerQ.html

>> PrimePowerQ[371293]
True

31.9.22. RandomPrime

Prime numbers

RandomPrime[{imin, imax}]
gives a random prime between imin and imax.

RandomPrime[imax]
gives a random prime between 2 and imax.

RandomPrime[range, n]
gives a list of n random primes in range.

>> RandomPrime[{14, 17}]
17

>> RandomPrime[{14, 16}, 1]
There are no primes in the specified interval.

RandomPrime
[
{14, 16} , 1

]
>> RandomPrime[{8,12}, 3]

{11, 11, 11}

>> RandomPrime[{10,30}, {2,5}]
{{29, 29, 29, 29, 29} , {29, 29, 29, 29, 29}}

31.9.23. SquaresR

Sum of squares function (WMA)

SquaresR[d, n]
returns the number of ways to represent n as a sum of d squares.

>> Table[SquaresR[2, n], {n, 10}]
{4, 4, 0, 4, 8, 0, 0, 4, 4, 8}

>> Table[Sum[SquaresR[2, k], {k, 0, n^2}], {n, 5}]
{5, 13, 29, 49, 81}

>> Table[SquaresR[4, n], {n, 10}]
{8, 24, 32, 24, 48, 96, 64, 24, 104, 144}

>> Table[SquaresR[6, n], {n, 10}]
{12, 60, 160, 252, 312, 544, 960, 1020, 876, 1560}

445

https://reference.wolfram.com/language/ref/RandomPrime.html
https://en.wikipedia.org/wiki/Sum_of_squares_function
https://reference.wolfram.com/language/ref/SquaresR.html

>> Table[SquaresR[8, n], {n, 10}]
{16, 112, 448, 1136, 2016, 3136, 5504, 9328, 12112, 14112}

31.10. Random number generation

Random numbers are generated using the Mersenne Twister.

31.10.1. Random

Randomness (WMA link)

Random[]
gives a pseudorandom real number in the range 0 to 1.

Random[type, range]
gives a pseudorandom number of the type type, in the specified interval range. Possible
types are Integer, Real or Complex.

Legacy function. Superseded by RandomReal 31.10.5, RandomInteger 31.10.4, and RandomComplex
31.10.3.

Four random numbers in the range 0..1:

>> Table[Random[], {4}]
{0.152343, 0.963858, 0.962405, 0.156925}

Eight random integers in the range 1..100:

>> Table[Random[Integer, {1, 100}], {8}]
{36, 100, 69, 47, 71, 69, 20, 36}

31.10.2. RandomChoice

WMA link

446

https://en.wikipedia.org/wiki/Randomness
https://reference.wolfram.com/language/ref/Random.html
https://reference.wolfram.com/language/ref/RandomChoice.html

RandomChoice[items]
randomly picks one item from items.

RandomChoice[items, n]
randomly picks n items from items. Each pick in the n picks happens from the given set
of items, so each item can be picked any number of times.

RandomChoice[items, {n1, n2, ...}]
randomly picks items from items and arranges the picked items in the nested list structure
described by {n1, n2, ...}.

RandomChoice[weights -> items, n]
randomly picks n items from items and uses the corresponding numeric values in weights
to determine how probable it is for each item in items to get picked (in the long run, items
with higher weights will get picked more often than ones with lower weight).

RandomChoice[weights -> items]
randomly picks one items from items using weights weights.

RandomChoice[weights -> items, {n1, n2, ...}]
randomly picks a structured list of items from items using weights weights.

Note: SeedRandom is used below so we get repeatable “random” numbers that we can test.

>> SeedRandom[42]

>> RandomChoice[{a, b, c}]
{c}

>> SeedRandom[42] (* Set for repeatable randomness *)

>> RandomChoice[{a, b, c}, 20]
{c, a, c, c, a, a, c, b, c, c, c, c, a, c, b, a, b, b, b, b}

>> SeedRandom[42]

>> RandomChoice[{"a", {1, 2}, x, {}}, 10]
{x, {} , a, x, x, {} , a, a, x, {1, 2}}

>> SeedRandom[42]

>> RandomChoice[{a, b, c}, {5, 2}]
{{c, a} , {c, c} , {a, a} , {c, b} , {c, c}}

>> SeedRandom[42]

>> RandomChoice[{1, 100, 5} -> {a, b, c}, 20]
{b, b, b, b, b, b, b, b, b, b, b, c, b, b, b, b, b, b, b, b}

31.10.3. RandomComplex

WMA link

447

https://reference.wolfram.com/language/ref/RandomComplex.html

RandomComplex[{zmin, zmax}]
yields a pseudorandom complex number in the rectangle with complex corners zmin and
zmax.

RandomComplex[zmax]
yields a pseudorandom complex number in the rectangle with corners at the origin and
at zmax.

RandomComplex[]
yields a pseudorandom complex number with real and imaginary parts from 0 to 1.

RandomComplex[range, n]
gives a list of n pseudorandom complex numbers.

RandomComplex[range, {n1, n2, ...}]
gives a nested list of pseudorandom complex numbers.

>> RandomComplex[]
0.600716 + 0.927319I

>> RandomComplex[{1+I, 5+5I}]
1.87984 + 1.23754I

>> RandomComplex[1+I, 5]
{0.546229 + 0.0527457I, 0.335621 + 0.1937I, 0.905773

+ 0.15793I, 0.777219 + 0.280257I, 0.775958 + 0.739345I}

>> RandomComplex[{1+I, 2+2I}, {2, 2}]
{{1.05763 + 1.36355I, 1.33308 + 1.31125I} , {1.43273 + 1.61359I, 1.98435 + 1.49489I}}

31.10.4. RandomInteger

WMA link

RandomInteger[{min, max}]
yields a pseudorandom integer in the range from min to max inclusive.

RandomInteger[max]
yields a pseudorandom integer in the range from 0 to max inclusive.

RandomInteger[]
gives 0 or 1.

RandomInteger[range, n]
gives a list of n pseudorandom integers.

RandomInteger[range, {n1, n2, ...}]
gives a nested list of pseudorandom integers.

>> RandomInteger[{1, 5}]
4

>> RandomInteger[100, {2, 3}] // TableForm
45 62 51
54 17 40

448

https://reference.wolfram.com/language/ref/RandomInteger.html

Calling RandomInteger changes $RandomState:

>> previousState = $RandomState;

>> RandomInteger[]
0

>> $RandomState != previousState
True

31.10.5. RandomReal

WMA link

RandomReal[{min, max}]
yields a pseudorandom real number in the range from min to max.

RandomReal[max]
yields a pseudorandom real number in the range from 0 to max.

RandomReal[]
yields a pseudorandom real number in the range from 0 to 1.

RandomReal[range, n]
gives a list of n pseudorandom real numbers.

RandomReal[range, {n1, n2, ...}]
gives an n1 x n2 array of pseudorandom real numbers.

>> RandomReal[]
0.789943

>> RandomReal[{1, 5}]
4.72288

31.10.6. RandomSample

WMA link

449

https://reference.wolfram.com/language/ref/RandomReal.html
https://reference.wolfram.com/language/ref/RandomSample.html

RandomSample[items]
randomly picks one item from items.

RandomSample[items, n]
randomly picks n items from items. Each pick in the n picks happens after the previous
items picked have been removed from items, so each item can be picked at most once.

RandomSample[items, {n1, n2, ...}]
randomly picks items from items and arranges the picked items in the nested list structure
described by {n1, n2, ...}. Each item gets picked at most once.

RandomSample[weights -> items, n]
randomly picks n items from items and uses the corresponding numeric values in weights
to determine how probable it is for each item in items to get picked (in the long run, items
with higher weights will get picked more often than ones with lower weight). Each item
gets picked at most once.

RandomSample[weights -> items]
randomly picks one items from items using weights weights. Each item gets picked at
most once.

RandomSample[weights -> items, {n1, n2, ...}]
randomly picks a structured list of items from items using weights weights. Each item
gets picked at most once.

>> SeedRandom[42]

>> RandomSample[{a, b, c, d}]
{b, d, a, c}

>> SeedRandom[42]

>> RandomSample[{a, b, c, d, e, f, g, h}, 7]
{b, f , a, h, c, e, d}

>> SeedRandom[42]

>> RandomSample[{"a", {1, 2}, x, {}}, 3]
{{1, 2} , {} , a}

>> SeedRandom[42]

>> RandomSample[Range[10]]
{9, 2, 6, 1, 8, 3, 10, 5, 4, 7}

>> SeedRandom[42]

>> RandomSample[Range[100], {2, 3}]
{{84, 54, 71} , {46, 45, 40}}

>> SeedRandom[42]

>> RandomSample[Range[100] -> Range[100], 5]
{62, 98, 86, 78, 40}

450

31.10.7. $RandomState

WMA link

$RandomState
is a long number representing the internal state of the pseudo-randomnumber generator.

>> Mod[$RandomState, 10^100]
8427713147997707315537988391814441438328804893015959100816005678284625982854741574294638579078698030

>> IntegerLength[$RandomState]
6442

So far, it is not possible to assign values to $RandomState.

>> $RandomState = 42
It is not possible to change the random state.
42

Not even to its own value:

>> $RandomState = $RandomState;
It is not possible to change the random state.

31.10.8. SeedRandom

WMA link

SeedRandom[n]
resets the pseudorandom generator with seed n.

SeedRandom[]
uses the current date and time as the seed.

SeedRandom can be used to get reproducible random numbers:

>> SeedRandom[42]

>> RandomInteger[100]
51

>> RandomInteger[100]
92

>> SeedRandom[42]

>> RandomInteger[100]
51

>> RandomInteger[100]
92

451

https://reference.wolfram.com/language/ref/RandomState.html
https://reference.wolfram.com/language/ref/SeedRandom.html

String seeds are supported as well:

>> SeedRandom["Mathics"]

>> RandomInteger[100]
27

Calling SeedRandom without arguments will seed the random number generator to a random state:

>> SeedRandom[]

>> RandomInteger[100]
48

31.11. Trigonometric Functions

Numerical values and derivatives can be computed; however, most special exact values and simplifica-
tion rules are not implemented yet.

31.11.1. AnglePath

WMA link

AnglePath[{ϕ1, ϕ2, ...}]
returns the points formed by a turtle starting at {0, 0} and angled at 0 degrees going
through the turns given by angles ϕ1, ϕ2, ... and using distance 1 for each step.

AnglePath[{{r1, ϕ1}, {r2, ϕ2}, ...}]
instead of using 1 as distance, use r1, r2, ... as distances for the respective steps.

AnglePath[ϕ0, {ϕ1, ϕ2, ...}]
starts with direction ϕ0 instead of 0.

AnglePath[{x, y}, {ϕ1, ϕ2, ...}]
starts at {x, y} instead of {0, 0}.

AnglePath[{{x, y}, ϕ0}, {ϕ1, ϕ2, ...}]
specifies initial position {x, y} and initial direction ϕ0.

AnglePath[{{x, y}, {dx, dy}}, {ϕ1, ϕ2, ...}]
specifies initial position {x, y} and a slope {dx, dy} that is understood to be the initial
direction of the turtle.

>> AnglePath[{90 Degree, 90 Degree, 90 Degree, 90 Degree}]
{{0, 0} , {0, 1} , {−1, 1} , {−1, 0} , {0, 0}}

>> AnglePath[{{1, 1}, 90 Degree}, {{1, 90 Degree}, {2, 90 Degree}, {1,
90 Degree}, {2, 90 Degree}}]

{{1, 1} , {0, 1} , {0,−1} , {1,−1} , {1, 1}}

>> AnglePath[{a, b}]
{{0, 0} , {Cos [a] , Sin [a]} , {Cos [a] + Cos [a + b] , Sin [a] + Sin [a + b]}}

452

https://reference.wolfram.com/language/ref/AnglePath.html

>> Precision[Part[AnglePath[{N[1/3, 100], N[2/3, 100]}], 2, 1]]
100.

>> Graphics[Line[AnglePath[Table[1.7, {50}]]]]

>> Graphics[Line[AnglePath[RandomReal[{-1, 1}, {100}]]]]

31.11.2. ArcCos

Inverse cosine, arccosine (SymPy, mpmath, WMA)

ArcCos[z]
returns the inverse cosine of z.

>> ArcCos[1]
0

>> ArcCos[0]
π

2

>> Integrate[ArcCos[x], {x, -1, 1}]
π

453

https://en.wikipedia.org/wiki/Inverse_trigonometric_functions#Principal_values
https://docs.sympy.org/latest/modules/functions/elementary.html#acot
https://mpmath.org/doc/current/functions/trigonometric.html#acos
https://reference.wolfram.com/language/ref/ArcCos.html

31.11.3. ArcCot

Inverse cotangent, arccotangent (SymPy, mpmath, WMA)

ArcCot[z]
returns the inverse cotangent of z.

>> ArcCot[0]
π

2

>> ArcCot[1]
π

4

31.11.4. ArcCsc

Inverse cosecant, arccosecant (SymPy, mpmath, WMA)

ArcCsc[z]
returns the inverse cosecant of z.

>> ArcCsc[1]
π

2

>> ArcCsc[-1]

−π

2

31.11.5. ArcSec

Inverse secant, arcsecant (SymPy, mpmath, WMA)

ArcSec[z]
returns the inverse secant of z.

>> ArcSec[1]
0

>> ArcSec[-1]
π

454

https://en.wikipedia.org/wiki/Inverse_trigonometric_functions#Principal_values
https://docs.sympy.org/latest/modules/functions/elementary.html#acot
https://mpmath.org/doc/current/functions/trigonometric.html#acot
https://reference.wolfram.com/language/ref/ArcCot.html
https://en.wikipedia.org/wiki/Inverse_trigonometric_functions#Principal_values
https://docs.sympy.org/latest/modules/functions/elementary.html#acsc
https://mpmath.org/doc/current/functions/trigonometric.html#acsc
https://reference.wolfram.com/language/ref/ArcCsc.html
https://en.wikipedia.org/wiki/Inverse_trigonometric_functions#Principal_values
https://docs.sympy.org/latest/modules/functions/elementary.html#sympy.functions.elementary.trigonometric.asec
https://mpmath.org/doc/current/functions/trigonometric.html#asec
https://reference.wolfram.com/language/ref/ArcSec.html

31.11.6. ArcSin

Inverse sine, arcsine (SymPy, mpmath, WMA)

ArcSin[z]
returns the inverse sine of z.

>> ArcSin[0]
0

>> ArcSin[1]
π

2

31.11.7. ArcTan

Inverse tangent, arctangent (SymPy, mpmath, WMA)

ArcTan[z]
returns the inverse tangent of z.

>> ArcTan[1]
π

4

>> ArcTan[1.0]
0.785398

>> ArcTan[-1.0]
− 0.785398

>> ArcTan[1, 1]
π

4

31.11.8. Cos

Cosine (SymPy, mpmath, WMA)

Cos[z]
returns the cosine of z.

>> Cos[3 Pi]
−1

455

https://en.wikipedia.org/wiki/Inverse_trigonometric_functions#Principal_values
https://docs.sympy.org/latest/modules/functions/elementary.html#asin
https://mpmath.org/doc/current/functions/trigonometric.html#asin
https://reference.wolfram.com/language/ref/ArcSin.html
https://en.wikipedia.org/wiki/Inverse_trigonometric_functions#Principal_values
https://docs.sympy.org/latest/modules/functions/elementary.html#atan
https://mpmath.org/doc/current/functions/trigonometric.html#atan
https://reference.wolfram.com/language/ref/ArcTan.html
https://en.wikipedia.org/wiki/Sine_and_cosine
https://docs.sympy.org/latest/modules/functions/elementary.html#cos
https://mpmath.org/doc/current/functions/trigonometric.html#cos
https://reference.wolfram.com/language/ref/Cos.html

31.11.9. Cot

Cotangent (SymPy, mpmath, WMA)

Cot[z]
returns the cotangent of z.

>> Cot[0]
ComplexInfinity

>> Cot[1.]
0.642093

31.11.10. Csc

Cosecant (SymPy, mpmath, WMA)

Csc[z]
returns the cosecant of z.

>> Csc[0]
ComplexInfinity

>> Csc[1] (* Csc[1] in Mathematica *)
1

Sin [1]

>> Csc[1.]
1.1884

31.11.11. Haversine

WMA link

Haversine[z]
returns the haversine function of z.

>> Haversine[1.5]
0.464631

>> Haversine[0.5 + 2I]
− 1.15082 + 0.869405I

456

https://en.wikipedia.org/wiki/Trigonometric_functions
https://docs.sympy.org/latest/modules/functions/elementary.html#cot
https://mpmath.org/doc/current/functions/trigonometric.html#cot
https://reference.wolfram.com/language/ref/Cot.html
https://en.wikipedia.org/wiki/Trigonometric_functions
https://docs.sympy.org/latest/modules/functions/elementary.html#csc
https://mpmath.org/doc/current/functions/trigonometric.html#csc
https://reference.wolfram.com/language/ref/Csc.html
https://reference.wolfram.com/language/ref/Haversine.html

31.11.12. InverseHaversine

WMA link

InverseHaversine[z]
returns the inverse haversine function of z.

>> InverseHaversine[0.5]
1.5708

>> InverseHaversine[1 + 2.5 I]
1.76459 + 2.33097I

31.11.13. Sec

Secant (SymPy, mpmath, WMA)

Sec[z]
returns the secant of z.

>> Sec[0]
1

>> Sec[1] (* Sec[1] in Mathematica *)
1

Cos [1]

>> Sec[1.]
1.85082

31.11.14. Sin

Sine (SymPy, mpmath, WMA)

Sin[z]
returns the sine of z.

>> Sin[0]
0

>> Sin[0.5]
0.479426

>> Sin[3 Pi]
0

>> Sin[1.0 + I]
1.29846 + 0.634964I

457

https://reference.wolfram.com/language/ref/InverseHaversine.html
https://en.wikipedia.org/wiki/Trigonometric_functions
https://docs.sympy.org/latest/modules/functions/elementary.html#sec
https://mpmath.org/doc/current/functions/trigonometric.html#sec
https://reference.wolfram.com/language/ref/Sec.html
https://en.wikipedia.org/wiki/Sine_and_cosine
https://docs.sympy.org/latest/modules/functions/elementary.html#sin
https://mpmath.org/doc/current/functions/trigonometric.html#sin
https://reference.wolfram.com/language/ref/Sin.html

>> Plot[Sin[x], {x, -Pi, Pi}]

−3 −2 −1 1 2 3

−1.0

−0.5

0.5

1.0

31.11.15. Tan

Tangent (SymPy, mpmath, WMA)

Tan[z]
returns the tangent of z.

>> Tan[0]
0

>> Tan[Pi / 2]
ComplexInfinity

458

https://en.wikipedia.org/wiki/Tangent
https://docs.sympy.org/latest/modules/functions/elementary.html#tan
https://mpmath.org/doc/current/functions/trigonometric.html#tan
https://reference.wolfram.com/language/ref/Tan.html

32. Interactive Manipulation

459

33. Kernel Sessions

Contents

33.1. Exit 460
33.2. Out 460

33.3. Quit 461

33.1. Exit

WMA link

Exit[]
Terminates the Mathics session.

Exit[n]
Terminates the mathics session with exit code n.

Exit is the same thing as Quit.

33.2. Out

WMA

%k or Out[k]
gives the result of the k-th input line.

%
gives the last result.

”%%’
gives the result before the previous input line.

>> 42
42

>> %
42

>> 43;

>> %
43

460

https://reference.wolfram.com/language/ref/Exit.html
https://reference.wolfram.com/language/ref/$Out

>> 44
44

>> %1
42

>> %%
44

>> Hold[Out[-1]]
Hold [%]

>> Hold[%4]
Hold [%4]

>> Out[0]
Out [0]

33.3. Quit

WMA link

Quit[]
Terminates the Mathics session.

Quit[n]
Terminates the mathics session with exit code n.

Quit is the same thing as Exit.

461

https://reference.wolfram.com/language/ref/Quit.html

34. Layout

This module contains symbols used to define the high level layout for expression formatting.

For instance, to represent a set of consecutive expressions in a row, we can use Row.

Contents

34.1. Center 462
34.2. Format 462
34.3. Grid 463
34.4. Infix 464
34.5. Left 464
34.6. NonAssociative 465
34.7. Postfix (//) 465
34.8. Precedence 465

34.9. PrecedenceForm 466
34.10. Prefix 466
34.11. Right 467
34.12. Row 467
34.13. Style 467
34.14. Subscript 468
34.15. Subsuperscript 468
34.16. Superscript 468

34.1. Center

WMA link

Center
is used with the ColumnAlignments option to Grid or TableForm to specify a centered
column.

34.2. Format

WMA link

Format[expr]
holds values specifying how expr should be printed.

Assign values to Format to control how particular expressions should be formatted when printed to the
user.

>> Format[f[x___]] := Infix[{x}, "~"]

>> f[1, 2, 3]
1 ∼ 2 ∼ 3

462

https://reference.wolfram.com/language/ref/Center.html
https://reference.wolfram.com/language/ref/Format.html

>> f[1]
1

Raw objects cannot be formatted:

>> Format[3] = "three";
Cannot assign to raw object 3.

Format types must be symbols:

>> Format[r, a + b] = "r";
Format type a + b is not a symbol.

Formats must be attached to the head of an expression:

>> f /: Format[g[f]] = "my f";
Tag f not found or too deep for an assigned rule.

34.3. Grid

WMA link

Grid[{{a1, a2, ...}, {b1, b2, ...}, ...}]
formats several expressions inside a GridBox.

>> Grid[{{a, b}, {c, d}}]
a b
c d

For shallow lists, elements are shown as a column:

>> Grid[{a, b, c}]
a
b
c

If the sublists have different sizes, the grid has the number of columns of the largest one. Incomplete
rows are completed with empty strings:

>> Grid[{{"first", "second", "third"},{a},{1, 2, 3}}]
first second third

a
1 2 3

If the list is a mixture of lists and other expressions, the non-list expressions are shown as rows:

463

https://reference.wolfram.com/language/ref/Grid.html

>> Grid[{"This is a long title", {"first", "second", "third"},{a},{1, 2,
3}}]

This is a long title
first second third

a
1 2 3

34.4. Infix

WMA link

Infix[expr, oper, prec, assoc]
displays expr with the infix operator oper, with precedence prec and associativity assoc.

Infix can be used with Format to display certain forms with user-defined infix notation:

>> Format[g[x_, y_]] := Infix[{x, y}, "#", 350, Left]

>> g[a, g[b, c]]
a# (b#c)

>> g[g[a, b], c]
a#b#c

>> g[a + b, c]
(a + b) #c

>> g[a * b, c]
ab#c

>> g[a, b] + c
c + a#b

>> g[a, b] * c
c (a#b)

>> Infix[{a, b, c}, {"+", "-"}]
a + b − c

34.5. Left

WMA link

Left
is used with operator formatting constructs to specify a left-associative operator.

464

https://reference.wolfram.com/language/ref/Infix.html
https://reference.wolfram.com/language/ref/Left.html

34.6. NonAssociative

on, logic, comparison, datentime, attributes and binary)

NonAssociative
is used with operator formatting constructs to specify a non-associative operator.

34.7. Postfix (//)

WMA link

x // f
is equivalent to f[x].

>> b // a
a [b]

>> c // b // a
a [b [c]]

The postfix operator // is parsed to an expression before evaluation:

>> Hold[x // a // b // c // d // e // f]
Hold

[
f [e [d [c [b [a [x]]]]]]

]

34.8. Precedence

on, logic, comparison, datentime, attributes and binary)

Precedence[op]
returns the precedence of the built-in operator op.

>> Precedence[Plus]
310.

>> Precedence[Plus] < Precedence[Times]
True

Unknown symbols have precedence 670:

>> Precedence[f]
670.

465

https://reference.wolfram.com/language/ref/Postfix.html

Other expressions have precedence 1000:

>> Precedence[a + b]
1000.

34.9. PrecedenceForm

WMA link

PrecedenceForm[expr, prec]
format expr parenthesized as it would be if it contained an operator of precedence prec.

34.10. Prefix

WMA link

f @ x
is equivalent to f[x].

>> a @ b
a [b]

>> a @ b @ c
a [b [c]]

>> Format[p[x_]] := Prefix[{x}, "*"]

>> p[3]
∗3

>> Format[q[x_]] := Prefix[{x}, "~", 350]

>> q[a+b]
∼ (a + b)

>> q[a*b]
∼ ab

>> q[a]+b
b+ ∼ a

The prefix operator @ is parsed to an expression before evaluation:

>> Hold[a @ b @ c @ d @ e @ f @ x]
Hold

[
a
[
b
[
c
[
d
[
e
[

f [x]
]]]]]]

466

https://reference.wolfram.com/language/ref/PrecedenceForm.html
https://reference.wolfram.com/language/ref/Prefix.html

34.11. Right

WMA link

Right
is used with operator formatting constructs to specify a right-associative operator.

34.12. Row

WMA link

Row[{expr, ...}]
formats several expressions inside a RowBox.

34.13. Style

WMA link

Style[expr, options]
displays expr formatted using the specified option settings.

Style[expr, “style”]
uses the option settings for the specified style in the current notebook.

Style[expr, color]
displays using the specified color.

Style[expr, Bold]
displays with fonts made bold.

Style[expr, Italic]
displays with fonts made italic.

Style[expr, Underlined]
displays with fonts underlined.

’Style[expr, Larger]
displays with fonts made larger.

Style[expr, Smaller]
displays with fonts made smaller.

Style[expr, n]
displays with font size n.

Style[expr, Tiny]
Style[expr, Small], etc.

display with fonts that are tiny, small, etc.

467

https://reference.wolfram.com/language/ref/Right.html
https://reference.wolfram.com/language/ref/Row.html
https://reference.wolfram.com/language/ref/Style.html

34.14. Subscript

WMA link

Subscript[a, i]
displays as ai.

>> Subscript[x,1,2,3] // TeXForm
x_{1,2,3}

34.15. Subsuperscript

WMA link

Subsuperscript[a, b, c]
displays as ac

b.

>> Subsuperscript[a, b, c] // TeXForm
a_b∧c

34.16. Superscript

WMA link

Superscript[x, y]
displays as x∧y.

>> Superscript[x,3] // TeXForm
x∧3

468

https://reference.wolfram.com/language/ref/Subscript.html
https://reference.wolfram.com/language/ref/Subsuperscript.html
https://reference.wolfram.com/language/ref/Superscript.html

35. List Functions

Generalized Lists make up a core part of Mathics. In fact, to first approximation Evaluation works on a
special kind of List called an M-Expression.

As a result, there about a hundred list functions.

Contents

35.1. Associations 470
35.1.1. Association 470
35.1.2. AssociationQ 470
35.1.3. Key 471
35.1.4. Keys 471
35.1.5. Lookup 471
35.1.6. Missing 472
35.1.7. Values 472

35.2. Constructing Lists 472
35.2.1. Array 473
35.2.2. ConstantArray 473
35.2.3. List 473
35.2.4. Normal 474
35.2.5. Permutations 474
35.2.6. Range 475
35.2.7. Reap 475
35.2.8. Sow 476
35.2.9. Table 477
35.2.10. Tuples 478

35.3. Elements of Lists 478
35.3.1. Append 478
35.3.2. AppendTo 479
35.3.3. Cases 479
35.3.4. Count 480
35.3.5. Delete 480
35.3.6. DeleteCases 482
35.3.7. Drop 482
35.3.8. Extract 483
35.3.9. First 484
35.3.10. FirstCase 484
35.3.11. FirstPosition 485
35.3.12. Insert 485
35.3.13. Last 486
35.3.14. Length 487
35.3.15. Most 487
35.3.16. Part 488

35.3.17. Pick 490
35.3.18. Position 490
35.3.19. Prepend 491
35.3.20. PrependTo 491
35.3.21. ReplacePart 492
35.3.22. Rest 493
35.3.23. Select 494
35.3.24. Span (;;) 494
35.3.25. Take 495
35.3.26. UpTo 496

35.4. Math & Counting Operations on Lists 496
35.4.1. TakeLargestBy 496
35.4.2. TakeSmallestBy 496

35.5. Predicates on Lists 497
35.5.1. ContainsOnly 497

35.6. Rearranging and Restructuring Lists 497
35.6.1. Catenate 497
35.6.2. Complement 498
35.6.3. DeleteDuplicates 498
35.6.4. Flatten 499
35.6.5. Gather 499
35.6.6. GatherBy 500
35.6.7. Intersection 500
35.6.8. Join 500
35.6.9. PadLeft 501
35.6.10. PadRight 502
35.6.11. Partition 502
35.6.12. Reverse 503
35.6.13. Riffle 503
35.6.14. RotateLeft 504
35.6.15. RotateRight 504
35.6.16. Split 505
35.6.17. SplitBy 505
35.6.18. Tally 506
35.6.19. Union 506

469

35.1. Associations

An Association maps keys to values and is similar to a dictionary in Python; it is often sparse in that
their key space is much larger than the number of actual keys found in the collection.

35.1.1. Association

WMA link

Association[key1 -> val1, key2 -> val2, ...]
<|key_1 -> val_1, key_2 -> val_2, ...|>

represents an association between keys and values.

Association is the head of associations:

>> Head[<|a -> x, b -> y, c -> z|>]
Association

>> <|a -> x, b -> y|>
<|a− > x, b− > y|>

>> Association[{a -> x, b -> y}]
<|a− > x, b− > y|>

Associations can be nested:

>> <|a -> x, b -> y, <|a -> z, d -> t|>|>
<|a− > z, b− > y, d− > t|>

35.1.2. AssociationQ

WMA link

AssociationQ[expr]
return True if expr is a valid Association object, and False otherwise.

>> AssociationQ[<|a -> 1, b :> 2|>]
True

>> AssociationQ[<|a, b|>]
False

470

https://reference.wolfram.com/language/ref/Association.html
https://reference.wolfram.com/language/ref/AssociationQ.html

35.1.3. Key

WMA link

Key[key]
represents a key used to access a value in an association.

Key[key][assoc]

35.1.4. Keys

WMA link

Keys[<| key1 -> val1, key2 -> val2, ...|>]
return a list of the keys keyi in an association.

Keys[{key1 -> val1, key2 -> val2, ...}]
return a list of the keyi in a list of rules.

>> Keys[<|a -> x, b -> y|>]
{a, b}

>> Keys[{a -> x, b -> y}]
{a, b}

Keys automatically threads over lists:

>> Keys[{<|a -> x, b -> y|>, {w -> z, {}}}]
{{a, b} , {w, {}}}

Keys are listed in the order of their appearance:

>> Keys[{c -> z, b -> y, a -> x}]
{c, b, a}

35.1.5. Lookup

WMA link

Lookup[assoc, key]
looks up the value associated with key in the association assoc, or Missing[KeyAbsent].

471

https://reference.wolfram.com/language/ref/Key.html
https://reference.wolfram.com/language/ref/Keys.html
https://reference.wolfram.com/language/ref/Lookup.html

35.1.6. Missing

WMA link

Missing[]
represents a data that is missing.

>> ElementData["Meitnerium","MeltingPoint"]
Missing [NotAvailable]

35.1.7. Values

WMA link

Values[<|key1 -> val1, key2 -> val2, ...|>]
return a list of the values vali in an association.

Values[{key1 -> val1, key2 -> val2, ...}]
return a list of the vali in a list of rules.

>> Values[<|a -> x, b -> y|>]
{x, y}

>> Values[{a -> x, b -> y}]
{x, y}

Values automatically threads over lists:

>> Values[{<|a -> x, b -> y|>, {c -> z, {}}}]
{{x, y} , {z, {}}}

Values are listed in the order of their appearance:

>> Values[{c -> z, b -> y, a -> x}]
{z, y, x}

35.2. Constructing Lists

Functions for constructing lists of various sizes and structure.

See also Constructing Vectors.

472

https://reference.wolfram.com/language/ref/Missing.html
https://reference.wolfram.com/language/ref/Values.html

35.2.1. Array

WMA link

Array[f , n]
returns the n-element list {f[1], ..., f[n]}.

Array[f , n, a]
returns the n-element list {f[a], ..., f[a + n]}.

Array[f , {n, m}, {a, b}]
returns an n-by-m matrix created by applying f to indices ranging from (a, b) to
(a + n, b + m).

Array[f , dims, origins, h]
returns an expression with the specified dimensions and index origins, with head h (in-
stead of List).

>> Array[f, 4]
{ f [1] , f [2] , f [3] , f [4]}

>> Array[f, {2, 3}]
{{ f [1, 1] , f [1, 2] , f [1, 3]} , { f [2, 1] , f [2, 2] , f [2, 3]}}

>> Array[f, {2, 3}, 3]
{{ f [3, 3] , f [3, 4] , f [3, 5]} , { f [4, 3] , f [4, 4] , f [4, 5]}}

>> Array[f, {2, 3}, {4, 6}]
{{ f [4, 6] , f [4, 7] , f [4, 8]} , { f [5, 6] , f [5, 7] , f [5, 8]}}

>> Array[f, {2, 3}, 1, Plus]
f [1, 1] + f [1, 2] + f [1, 3] + f [2, 1] + f [2, 2] + f [2, 3]

35.2.2. ConstantArray

WMA link

ConstantArray[expr, n]
returns a list of n copies of expr.

>> ConstantArray[a, 3]
{a, a, a}

>> ConstantArray[a, {2, 3}]
{{a, a, a} , {a, a, a}}

35.2.3. List

WMA link

473

https://reference.wolfram.com/language/ref/Array.html
https://reference.wolfram.com/language/ref/ConstantArray.html
https://reference.wolfram.com/language/ref/List.html

List[e1, e2, ..., ei]
{e_1, e_2, ..., ei}

represents a list containing the elements e1...ei.

List is the head of lists:

>> Head[{1, 2, 3}]
List

Lists can be nested:

>> {{a, b, {c, d}}}
{{a, b, {c, d}}}

35.2.4. Normal

WMA link

Normal[expr_]
Brings special expressions to a normal expression from different special forms.

>> Normal[Pi]
π

>> Series[Exp[x], {x, 0, 5}]

1 + x +
1
2

x2 +
1
6

x3 +
1
24

x4 +
1

120
x5 + O [x]6

>> Normal[%]

1 + x +
x2

2
+

x3

6
+

x4

24
+

x5

120

35.2.5. Permutations

WMA link

Permutations[list]
gives all possible orderings of the items in list.

Permutations[list, n]
gives permutations up to length n.

Permutations[list, {n}]
gives permutations of length n.

>> Permutations[{y, 1, x}]
{{y, 1, x} , {y, x, 1} , {1, y, x} , {1, x, y} , {x, y, 1} , {x, 1, y}}

474

https://reference.wolfram.com/language/ref/Normal.html
https://reference.wolfram.com/language/ref/Permutations.html

Elements are differentiated by their position in list, not their value.

>> Permutations[{a, b, b}]
{{a, b, b} , {a, b, b} , {b, a, b} , {b, b, a} , {b, a, b} , {b, b, a}}

>> Permutations[{1, 2, 3}, 2]
{{} , {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 1} , {2, 3} , {3, 1} , {3, 2}}

>> Permutations[{1, 2, 3}, {2}]
{{1, 2} , {1, 3} , {2, 1} , {2, 3} , {3, 1} , {3, 2}}

35.2.6. Range

WMA link

Range[n]
returns a list of integers from 1 to n.

Range[a, b]
returns a list of (Integer, Rational, Real) numbers from a to b.

Range[a, b, di]
returns a list of numbers from a to b using step di. More specifically, Range starts from a
and successively adds increments of di until the result is greater (if di > 0) or less (if di <
0) than b.

>> Range[5]
{1, 2, 3, 4, 5}

>> Range[-3, 2]
{−3,−2,−1, 0, 1, 2}

>> Range[5, 1, -2]
{5, 3, 1}

>> Range[1.0, 2.3]
{1., 2.}

>> Range[0, 2, 1/3]{
0,

1
3

,
2
3

, 1,
4
3

,
5
3

, 2
}

>> Range[1.0, 2.3, .5]
{1., 1.5, 2.}

35.2.7. Reap

WMA link

475

https://reference.wolfram.com/language/ref/Range.html
https://reference.wolfram.com/language/ref/Reap.html

Reap[expr]
gives the result of evaluating expr, together with all values sown during this evaluation.
Values sown with different tags are given in different lists.

Reap[expr, pattern]
only yields values sown with a tag matching pattern. Reap[$expr$] is equivalent to
Reap[$expr$, _].

Reap[expr, {pattern1, pattern2, ...}]
uses multiple patterns.

Reap[expr, pattern, f]
applies f on each tag and the corresponding values sown in the form
f[tag, {e_1, e_2, ...}].

>> Reap[Sow[3]; Sow[1]]
{1, {{3, 1}}}

>> Reap[Sow[2, {x, x, x}]; Sow[3, x]; Sow[4, y]; Sow[4, 1], {_Symbol,
_Integer, x}, f]{

4,
{{

f
[
x, {2, 2, 2, 3}

]
, f
[
y, {4}

]}
,
{

f
[
1, {4}

]}
,
{

f
[
x, {2, 2, 2, 3}

]}}}
Find the unique elements of a list, keeping their order:

>> Reap[Sow[Null, {a, a, b, d, c, a}], _, # &][[2]]
{a, b, d, c}

Sown values are reaped by the innermost matching Reap:

>> Reap[Reap[Sow[a, x]; Sow[b, 1], _Symbol, Print["Inner: ", #1]&];, _,
f]
Inner: x{
Null,

{
f
[
1, {b}

]}}
When no value is sown, an empty list is returned:

>> Reap[x]
{x, {}}

35.2.8. Sow

WMA link

Sow[e]
sends the value e to the innermost Reap.

Sow[e, tag]
sows e using tag. Sow[e] is equivalent to Sow[e, Null].

Sow[e, {tag1, tag2, ...}]
uses multiple tags.

476

https://reference.wolfram.com/language/ref/Sow.html

35.2.9. Table

WMA link

Table[expr, n]
generates a list of n copies of expr.

Table[expr, {i, n}]
generates a list of the values of expr when i runs from 1 to n.

Table[expr, {i, start, stop, step}]
evaluates expr with i ranging from start to stop, incrementing by step.

Table[expr, {i, {e1, e2, ..., ei}}]
evaluates expr with i taking on the values e1, e2, ..., ei.

>> Table[x, 3]
{x, x, x}

>> n = 0; Table[n = n + 1, {5}]
{1, 2, 3, 4, 5}

>> Table[i, {i, 4}]
{1, 2, 3, 4}

>> Table[i, {i, 2, 5}]
{2, 3, 4, 5}

>> Table[i, {i, 2, 6, 2}]
{2, 4, 6}

>> Table[i, {i, Pi, 2 Pi, Pi / 2}]{
π,

3π

2
, 2π

}
>> Table[x^2, {x, {a, b, c}}]{

a2, b2, c2
}

Table supports multi-dimensional tables:

>> Table[{i, j}, {i, {a, b}}, {j, 1, 2}]
{{{a, 1} , {a, 2}} , {{b, 1} , {b, 2}}}

Symbolic bounds:

>> Table[x, {x, a, a + 5 n, n}]
{a, 5 + a, 10 + a, 15 + a, 20 + a, 25 + a}

The lower bound is always included even for large step sizes:

>> Table[i, {i, 1, 9, Infinity}]
{1}

477

https://reference.wolfram.com/language/ref/Table.html

35.2.10. Tuples

WMA link

Tuples[list, n]
returns a list of all n-tuples of elements in list.

Tuples[{list1, list2, ...}]
returns a list of tuples with elements from the given lists.

>> Tuples[{a, b, c}, 2]
{{a, a} , {a, b} , {a, c} , {b, a} , {b, b} , {b, c} , {c, a} , {c, b} , {c, c}}

>> Tuples[{}, 2]
{}

>> Tuples[{a, b, c}, 0]
{{}}

>> Tuples[{{a, b}, {1, 2, 3}}]
{{a, 1} , {a, 2} , {a, 3} , {b, 1} , {b, 2} , {b, 3}}

The head of list need not be List:

>> Tuples[f[a, b, c], 2]
{ f [a, a] , f [a, b] , f [a, c] , f [b, a] , f [b, b] , f [b, c] , f [c, a] , f [c, b] , f [c, c]}

However, when specifying multiple expressions, List is always used:

>> Tuples[{f[a, b], g[c, d]}]
{{a, c} , {a, d} , {b, c} , {b, d}}

35.3. Elements of Lists

Functions for accessing elements of lists using either indices, positions, or patterns of criteria.

35.3.1. Append

WMA link

Append[expr, elem]
returns expr with elem appended.

>> Append[{1, 2, 3}, 4]
{1, 2, 3, 4}

478

https://reference.wolfram.com/language/ref/Tuples.html
https://reference.wolfram.com/language/ref/Append.html

Append works on expressions with heads other than List:

>> Append[f[a, b], c]
f [a, b, c]

Unlike Join, Append does not flatten lists in item:

>> Append[{a, b}, {c, d}]
{a, b, {c, d}}

35.3.2. AppendTo

WMA link

AppendTo[s, elem]
append elem to value of s and sets s to the result.

>> s = {};

>> AppendTo[s, 1]
{1}

>> s
{1}

Append works on expressions with heads other than List:

>> y = f[];

>> AppendTo[y, x]
f [x]

>> y
f [x]

35.3.3. Cases

WMA link

Cases[list, pattern]
returns the elements of list that match pattern.

Cases[list, pattern, ls]
returns the elements matching at levelspec ls.

Cases[list, pattern, Heads->bool]
Match including the head of the expression in the search.

479

https://reference.wolfram.com/language/ref/AppendTo.html
https://reference.wolfram.com/language/ref/Cases.html

>> Cases[{a, 1, 2.5, "string"}, _Integer|_Real]
{1, 2.5}

>> Cases[_Complex][{1, 2I, 3, 4-I, 5}]
{2I, 4− I}

Find symbols among the elements of an expression:

>> Cases[{b, 6, \[Pi]}, _Symbol]
{b, π}

Also include the head of the expression in the previous search:

>> Cases[{b, 6, \[Pi]}, _Symbol, Heads -> True]
{List, b, π}

See also ’MatchQ’ 55.2.2.

35.3.4. Count

WMA link

Count[list, pattern]
returns the number of times pattern appears in list.

Count[list, pattern, ls]
counts the elements matching at levelspec ls.

>> Count[{3, 7, 10, 7, 5, 3, 7, 10}, 3]
2

>> Count[{{a, a}, {a, a, a}, a}, a, {2}]
5

35.3.5. Delete

WMA link

Delete[expr, i]
deletes the element at position i in expr. The position is counted from the end if i is
negative.

Delete[expr, {m, n, ...}]
deletes the element at position {m, n, ...}.

Delete[expr, {{m1, n1, ...}, {m2, n2, ...}, ...}]
deletes the elements at several positions.

480

https://reference.wolfram.com/language/ref/Count.html
https://reference.wolfram.com/language/ref/Delete.html

Delete the element at position 3:

>> Delete[{a, b, c, d}, 3]
{a, b, d}

Delete at position 2 from the end:

>> Delete[{a, b, c, d}, -2]
{a, b, d}

Delete at positions 1 and 3:

>> Delete[{a, b, c, d}, {{1}, {3}}]
{b, d}

Delete in a 2D array:

>> Delete[{{a, b}, {c, d}}, {2, 1}]
{{a, b} , {d}}

Deleting the head of a whole expression gives a Sequence object:

>> Delete[{a, b, c}, 0]
Sequence [a, b, c]

Delete in an expression with any head:

>> Delete[f[a, b, c, d], 3]
f [a, b, d]

Delete a head to splice in its arguments:

>> Delete[f[a, b, u + v, c], {3, 0}]
f [a, b, u, v, c]

>> Delete[{a, b, c}, 0]
Sequence [a, b, c]

Delete without the position:

>> Delete[{a, b, c, d}]
Delete called with 1 argument; 2 arguments are expected.

Delete
[
{a, b, c, d}

]
Delete with many arguments:

>> Delete[{a, b, c, d}, 1, 2]
Delete called with 3 arguments; 2 arguments are expected.

Delete
[
{a, b, c, d} , 1, 2

]

481

Delete the element out of range:

>> Delete[{a, b, c, d}, 5]
Part {5} of {a, b, c, d} does not exist.
Delete

[
{a, b, c, d} , 5

]
Delete the position not integer:

>> Delete[{a, b, c, d}, {1, n}]
Position specification n in {a, b, c, d} is not a machine-sized
integer or a list of machine-sized integers.

Delete
[
{a, b, c, d} , {1, n}

]

35.3.6. DeleteCases

WMA link

DeleteCases[list, pattern]
returns the elements of list that do not match pattern.

DeleteCases[list, pattern, levelspec]
removes all parts of list on levels specified by levelspec that match pattern (not fully im-
plemented).

DeleteCases[list, pattern, levelspec, n]
removes the first n parts of list that match pattern.

>> DeleteCases[{a, 1, 2.5, "string"}, _Integer|_Real]
{a, string}

>> DeleteCases[{a, b, 1, c, 2, 3}, _Symbol]
{1, 2, 3}

35.3.7. Drop

WMA link

Drop[list, n]
returns list with the first n elements removed.

Drop[list, -n]
returns list with its last n elements removed.

Drop[list, {m, n}]
returns list with elements m though n removed.

Drop up until the third item from the beginning of a list:

482

https://reference.wolfram.com/language/ref/DeleteCases.html
https://reference.wolfram.com/language/ref/Drop.html

>> Drop[{a, b, c, d}, 3]
{d}

Drop until the second item from the end of that list:

>> Drop[{a, b, c, d}, -2]
{a, b}

Drop from the second item to the second-to-the-end item:

>> Drop[{a, b, c, d, e}, {2, -2}]
{a, e}

Drop a submatrix:

>> A = Table[i*10 + j, {i, 4}, {j, 4}]
{{11, 12, 13, 14} , {21, 22, 23, 24} , {31, 32, 33, 34} , {41, 42, 43, 44}}

>> Drop[A, {2, 3}, {2, 3}]
{{11, 14} , {41, 44}}

Dropping the 0th element does nothing, and returns the list unmodified:

>> Drop[{a, b, c, d}, 0]
{a, b, c, d}

Even if the list is empty:

>> Drop[{}, 0]
{}

See also ’Take’ 35.3.25.

35.3.8. Extract

WMA link

Extract[expr, list]
extracts parts of expr specified by list.

Extract[expr, {list1, list2, ...}]
extracts a list of parts.

Extract[$expr$, i, j, ...] is equivalent to Part[$expr$, {i, j, ...}].

>> Extract[a + b + c, {2}]
b

483

https://reference.wolfram.com/language/ref/Extract.html

>> Extract[{{a, b}, {c, d}}, {{1}, {2, 2}}]
{{a, b} , d}

35.3.9. First

WMA link

First[expr]
returns the first element in expr.

First[expr, de f]
returns the first element in expr if it exists or de f otherwise.

First[$expr$] is equivalent to $expr$[[1]].

>> First[{a, b, c}]
a

The first argument need not be a list:

>> First[a + b + c]
a

However, the first argument must be Nonatomic when there is a single argument:

>> First[x]
Nonatomic expression expected at position 1 in First[x].
First [x]

Or if it is not, but a second default argument is provided, that is evaluated and returned:

>> First[10, 1+2]
3

>> First[{}]
{} has zero length and no first element.

First
[
{}
]

As before, the first argument is empty, but a default argument is given, evaluate and return the second
argument:

>> First[{}, 1+2]
3

35.3.10. FirstCase

WMA link

484

https://reference.wolfram.com/language/ref/First.html
https://reference.wolfram.com/language/ref/FirstCase.html

FirstCase[{e1, e2, ...}, pattern]
gives the first ei to match pattern, or Missing[”NotFound”] if none matching pattern is
found.

FirstCase[{e1,e2, ...}, pattern -> rhs]
gives the value of rhs corresponding to the first ei to match pattern.

FirstCase[expr, pattern, de f ault]
gives de f ault if no element matching pattern is found.

FirstCase[expr, pattern, de f ault, levelspec]
finds only objects that appear on levels specified by levelspec.

FirstCase[pattern]
represents an operator form of FirstCase that can be applied to an expression.

35.3.11. FirstPosition

WMA link

FirstPosition[expr, pattern]
gives the position of the first element in expr that matches pattern, or Miss-
ing[“NotFound”] if no such element is found.

FirstPosition[expr, pattern, de f ault]
gives default if no element matching pattern is found.

FirstPosition[expr, pattern, de f ault, levelspec]
finds only objects that appear on levels specified by levelspec.

>> FirstPosition[{a, b, a, a, b, c, b}, b]
{2}

>> FirstPosition[{{a, a, b}, {b, a, a}, {a, b, a}}, b]
{1, 3}

>> FirstPosition[{x, y, z}, b]
Missing [NotFound]

Find the first position at which x∧2 to appears:

>> FirstPosition[{1 + x^2, 5, x^4, a + (1 + x^2)^2}, x^2]
{1, 2}

35.3.12. Insert

WMA link

Insert[list, elem, n]
inserts elem at position n in list. When n is negative, the position is counted from the end.

485

https://reference.wolfram.com/language/ref/FirstPosition.html
https://reference.wolfram.com/language/ref/Insert.html

>> Insert[{a,b,c,d,e}, x, 3]
{a, b, x, c, d, e}

>> Insert[{a,b,c,d,e}, x, -2]
{a, b, c, d, x, e}

35.3.13. Last

WMA link

Last[expr]
returns the last element in expr.

Last[expr, de f]
returns the last element in expr if it exists or de f otherwise.

Last[$expr$] is equivalent to $expr$[[-1]].

>> Last[{a, b, c}]
c

The first argument need not be a list:

>> Last[a + b + c]
c

However, the first argument must be Nonatomic when there is a single argument:

>> Last[10]
Nonatomic expression expected at position 1 in Last[10].
Last [10]

Or if it is not, but a second default argument is provided, that is evaluated and returned:

>> Last[10, 1+2]
3

>> Last[{}]
{} has zero length and no last element.

Last
[
{}
]

As before, the first argument is empty, but since default argument is given, evaluate and return the
second argument:

>> Last[{}, 1+2]
3

486

https://reference.wolfram.com/language/ref/Last.html

35.3.14. Length

WMA link

Length[expr]
returns the number of elements in expr.

Length of a list:

>> Length[{1, 2, 3}]
3

Length operates on the FullForm of expressions:

>> Length[Exp[x]]
2

>> FullForm[Exp[x]]
Power [E, x]

The length of atoms is 0:

>> Length[a]
0

Note that rational and complex numbers are atoms, although their FullFormmight suggest the opposite:

>> Length[1/3]
0

>> FullForm[1/3]
Rational [1, 3]

35.3.15. Most

WMA link

Most[expr]
returns expr with the last element removed.

Most[$expr$] is equivalent to $expr$[[;;-2]].

>> Most[{a, b, c}]
{a, b}

>> Most[a + b + c]
a + b

487

https://reference.wolfram.com/language/ref/Length.html
https://reference.wolfram.com/language/ref/Most.html

>> Most[x]
Nonatomic expression expected at position 1 in Most[x].
Most [x]

35.3.16. Part

WMA link

Part[expr, i]
returns part i of expr.

Extract an element from a list:

>> A = {a, b, c, d};

>> A[[3]]
c

Negative indices count from the end:

>> {a, b, c}[[-2]]
b

Part can be applied on any expression, not necessarily lists.

>> (a + b + c)[[2]]
b

$expr$[[0]] gives the head of expr:

>> (a + b + c)[[0]]
Plus

Parts of nested lists:

>> M = {{a, b}, {c, d}};

>> M[[1, 2]]
b

You can use Span to specify a range of parts:

>> {1, 2, 3, 4}[[2;;4]]
{2, 3, 4}

>> {1, 2, 3, 4}[[2;;-1]]
{2, 3, 4}

488

https://reference.wolfram.com/language/ref/Part.html

A list of parts extracts elements at certain indices:

>> {a, b, c, d}[[{1, 3, 3}]]
{a, c, c}

Get a certain column of a matrix:

>> B = {{a, b, c}, {d, e, f}, {g, h, i}};

>> B[[;;, 2]]
{b, e, h}

Extract a submatrix of 1st and 3rd row and the two last columns:

>> B = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};

>> B[[{1, 3}, -2;;-1]]
{{2, 3} , {8, 9}}

The 3d column of a matrix:

>> {{a, b, c}, {d, e, f}, {g, h, i}}[[All, 3]]
{c, f , i}

Further examples:

>> (a+b+c+d)[[-1;;-2]]
0

>> x[[2]]
Part specification is longer than depth of object.
x [[2]]

Assignments to parts are possible:

>> B[[;;, 2]] = {10, 11, 12}
{10, 11, 12}

>> B
{{1, 10, 3} , {4, 11, 6} , {7, 12, 9}}

>> B[[;;, 3]] = 13
13

>> B
{{1, 10, 13} , {4, 11, 13} , {7, 12, 13}}

>> B[[1;;-2]] = t;

>> B
{t, t, {7, 12, 13}}

>> F = Table[i*j*k, {i, 1, 3}, {j, 1, 3}, {k, 1, 3}];

489

>> F[[;; All, 2 ;; 3, 2]] = t;

>> F
{{{1, 2, 3} , {2, t, 6} , {3, t, 9}} , {{2, 4, 6} , {4, t, 12} , {6, t, 18}} , {{3, 6, 9} , {6, t, 18} , {9, t, 27}}}

>> F[[;; All, 1 ;; 2, 3 ;; 3]] = k;

>> F
{{{1, 2, k} , {2, t, k} , {3, t, 9}} , {{2, 4, k} , {4, t, k} , {6, t, 18}} , {{3, 6, k} , {6, t, k} , {9, t, 27}}}

Of course, part specifications have precedence over most arithmetic operations:

>> A[[1]] + B[[2]] + C[[3]] // Hold // FullForm
Hold [Plus [Part [A, 1] , Part [B, 2] , Part [C, 3]]]

35.3.17. Pick

WMA link

Pick[list, sel]
returns those items in list that are True in sel.

Pick[list, sel, patt]
returns those items in list that match patt in sel.

>> Pick[{a, b, c}, {False, True, False}]
{b}

>> Pick[f[g[1, 2], h[3, 4]], {{True, False}, {False, True}}]
f
[
g [1] , h [4]

]
>> Pick[{a, b, c, d, e}, {1, 2, 3.5, 4, 5.5}, _Integer]

{a, b, d}

35.3.18. Position

WMA link

Position[expr, patt]
returns the list of positions for which expr matches patt.

Position[expr, patt, ls]
returns the positions on levels specified by levelspec ls.

>> Position[{1, 2, 2, 1, 2, 3, 2}, 2]
{{2} , {3} , {5} , {7}}

490

https://reference.wolfram.com/language/ref/Pick.html
https://reference.wolfram.com/language/ref/Position.html

Find positions upto 3 levels deep:

>> Position[{1 + Sin[x], x, (Tan[x] - y)^2}, x, 3]
{{1, 2, 1} , {2}}

Find all powers of x:

>> Position[{1 + x^2, x y ^ 2, 4 y, x ^ z}, x^_]
{{1, 2} , {4}}

Use Position as an operator:

>> Position[_Integer][{1.5, 2, 2.5}]
{{2}}

35.3.19. Prepend

WMA link

Prepend[expr, item]
returns expr with item prepended to its elements.

Prepend[expr]
Prepend[$elem$][$expr$] is equivalent to Prepend[$expr$,$elem$].

Prepend is similar to Append, but adds item to the beginning of expr:

>> Prepend[{2, 3, 4}, 1]
{1, 2, 3, 4}

Prepend works on expressions with heads other than List:

>> Prepend[f[b, c], a]
f [a, b, c]

Unlike Join, Prepend does not flatten lists in item:

>> Prepend[{c, d}, {a, b}]
{{a, b} , c, d}

35.3.20. PrependTo

WMA link

491

https://reference.wolfram.com/language/ref/Prepend.html
https://reference.wolfram.com/language/ref/PrependTo.html

PrependTo[s, item]
prepends item to value of s and sets s to the result.

Assign s to a list

>> s = {1, 2, 4, 9}
{1, 2, 4, 9}

Add a new value at the beginning of the list:

>> PrependTo[s, 0]
{0, 1, 2, 4, 9}

The value assigned to s has changed:

>> s
{0, 1, 2, 4, 9}

PrependTo works with a head other than List:

>> y = f[a, b, c];

>> PrependTo[y, x]
f [x, a, b, c]

>> y
f [x, a, b, c]

35.3.21. ReplacePart

WMA link

ReplacePart[expr, i -> new]
replaces part i in expr with new.

ReplacePart[expr, {{i, j} -> e1, {k, l} -> e2}]
replaces parts i and j with e1, and parts k and l with e2.

>> ReplacePart[{a, b, c}, 1 -> t]
{t, b, c}

>> ReplacePart[{{a, b}, {c, d}}, {2, 1} -> t]
{{a, b} , {t, d}}

>> ReplacePart[{{a, b}, {c, d}}, {{2, 1} -> t, {1, 1} -> t}]
{{t, b} , {t, d}}

492

https://reference.wolfram.com/language/ref/ReplacePart.html

>> ReplacePart[{a, b, c}, {{1}, {2}} -> t]
{t, t, c}

Delayed rules are evaluated once for each replacement:

>> n = 1;

>> ReplacePart[{a, b, c, d}, {{1}, {3}} :> n++]
{1, b, 2, d}

Non-existing parts are simply ignored:

>> ReplacePart[{a, b, c}, 4 -> t]
{a, b, c}

You can replace heads by replacing part 0:

>> ReplacePart[{a, b, c}, 0 -> Times]
abc

(This is equivalent to Apply.)

Negative part numbers count from the end:

>> ReplacePart[{a, b, c}, -1 -> t]
{a, b, t}

35.3.22. Rest

WMA link

Rest[expr]
returns expr with the first element removed.

Rest[$expr$] is equivalent to $expr$[[2;;]].

>> Rest[{a, b, c}]
{b, c}

>> Rest[a + b + c]
b + c

>> Rest[x]
Nonatomic expression expected at position 1 in Rest[x].
Rest [x]

493

https://reference.wolfram.com/language/ref/Rest.html

>> Rest[{}]
Cannot take Rest of expression {} with length zero.

Rest
[
{}
]

35.3.23. Select

WMA link

Select[{e1, e2, ...}, crit]
returns a list of the elements ei for which crit[ei] is True.

Select[{e1, e2, ...}, crit, n]
returns a list of the first n elements ei for which crit[ei] is True.

Get a list of even numbers up to 10:

>> Select[Range[10], EvenQ]
{2, 4, 6, 8, 10}

Find numbers that are greater than zero in a list:

>> Select[{-3, 0, 10, 3, a}, #>0&]
{10, 3}

Find the first number that is list greater than zero in a list:

>> Select[{-3, 0, 10, 3, a}, #>0&, 1]
{10}

Select works on an expression with any head:

>> Select[f[a, 2, 3], NumberQ]
f [2, 3]

35.3.24. Span (;;)

WMA link

Span
is the head of span ranges like 1;;3.

>> ;; // FullForm
Span [1, All]

494

https://reference.wolfram.com/language/ref/Select.html
https://reference.wolfram.com/language/ref/Span.html

>> 1;;4;;2 // FullForm
Span [1, 4, 2]

>> 2;;-2 // FullForm
Span [2, − 2]

>> ;;3 // FullForm
Span [1, 3]

35.3.25. Take

WMA link

Take[expr, n]
returns expr with all but the first n elements removed.

Take[list, -n]
returns last n elements of list.

Take[list, {m, n}]
returns elements m through n of list.

Get the first three elements:

>> Take[{a, b, c, d}, 3]
{a, b, c}

Get the last two elements:

>> Take[{a, b, c, d}, -2]
{c, d}

Get the elements from the second element through the next to last element:

>> Take[{a, b, c, d, e}, {2, -2}]
{b, c, d}

Take a submatrix:

>> A = {{a, b, c}, {d, e, f}};

>> Take[A, 2, 2]
{{a, b} , {d, e}}

Take a single column:

>> Take[A, All, {2}]
{{b} , {e}}

495

https://reference.wolfram.com/language/ref/Take.html

Taking the 0th element does nothing, and returns an empty list:

>> Take[{a, b, c, d}, 0]
{}

See also ’Drop’ 35.3.7.

35.3.26. UpTo

WMA link

UpTo[n]
is a symbolic specification that represents up to n objects or positions. If n objects or positions
are available, all are used. If fewer are available, only those available are used.

35.4. Math & Counting Operations on Lists

35.4.1. TakeLargestBy

WMA link

TakeLargestBy[list, f , n]
returns the a sorted list of the n largest items in list using f to retrieve the items’ keys to
compare them.

For details on how to use the ExcludedForms option, see TakeLargest[].

>> TakeLargestBy[{{1, -1}, {10, 100}, {23, 7, 8}, {5, 1}}, Total, 2]
{{10, 100} , {23, 7, 8}}

>> TakeLargestBy[{"abc", "ab", "x"}, StringLength, 1]
{abc}

35.4.2. TakeSmallestBy

WMA link

TakeSmallestBy[list, f , n]
returns the a sorted list of the n smallest items in list using f to retrieve the items’ keys
to compare them.

For details on how to use the ExcludedForms option, see TakeLargest[].

496

https://reference.wolfram.com/language/ref/UpTo.html
https://reference.wolfram.com/language/ref/TakeLargestBy.html
https://reference.wolfram.com/language/ref/TakeSmallestBy.html

>> TakeSmallestBy[{{1, -1}, {10, 100}, {23, 7, 8}, {5, 1}}, Total, 2]
{{1,−1} , {5, 1}}

>> TakeSmallestBy[{"abc", "ab", "x"}, StringLength, 1]
{x}

35.5. Predicates on Lists

35.5.1. ContainsOnly

WMA link

ContainsOnly[list1, list2]
yields True if list1 contains only elements that appear in list2.

>> ContainsOnly[{b, a, a}, {a, b, c}]
True

The first list contains elements not present in the second list:

>> ContainsOnly[{b, a, d}, {a, b, c}]
False

>> ContainsOnly[{}, {a, b, c}]
True

Use Equal as the comparison function to have numerical tolerance:

>> ContainsOnly[{a, 1.0}, {1, a, b}, {SameTest -> Equal}]
True

35.6. Rearranging and Restructuring Lists

These functions reorder and rearrange lists.

35.6.1. Catenate

WMA link

Catenate[{l1, l2, ...}]
concatenates the lists l1, l2, ...

497

https://reference.wolfram.com/language/ref/ContainsOnly.html
https://reference.wolfram.com/language/ref/Catenate.html

>> Catenate[{{1, 2, 3}, {4, 5}}]
{1, 2, 3, 4, 5}

35.6.2. Complement

WMA link

Complement[all, e1, e2, ...]
returns an expression containing the elements in the set all that are not in any of e1, e2,
etc.

Complement[all, e1, e2, ..., SameTest->test]
applies test to the elements in all and each of the ei to determine equality.

The sets all, e1, etc can have any head, which must all match.

The returned expression has the same head as the input expressions. The expression will be sorted and
each element will only occur once.

>> Complement[{a, b, c}, {a, c}]
{b}

>> Complement[{a, b, c}, {a, c}, {b}]
{}

>> Complement[f[z, y, x, w], f[x], f[x, z]]
f
[
w, y

]
>> Complement[{c, b, a}]

{a, b, c}

35.6.3. DeleteDuplicates

WMA link

DeleteDuplicates[list]
deletes duplicates from list.

DeleteDuplicates[list, test]
deletes elements from list based on whether the function test yields True on pairs of
elements.

DeleteDuplicates does not change the order of the remaining elements.

>> DeleteDuplicates[{1, 7, 8, 4, 3, 4, 1, 9, 9, 2, 1}]
{1, 7, 8, 4, 3, 9, 2}

>> DeleteDuplicates[{3,2,1,2,3,4}, Less]
{3, 2, 1}

498

https://reference.wolfram.com/language/ref/Complement.html
https://reference.wolfram.com/language/ref/DeleteDuplicates.html

35.6.4. Flatten

WMA link

Flatten[expr]
flattens out nested lists in expr.

Flatten[expr, n]
stops flattening at level n.

Flatten[expr, n, h]
flattens expressions with head h instead of List.

>> Flatten[{{a, b}, {c, {d}, e}, {f, {g, h}}}]
{a, b, c, d, e, f , g, h}

>> Flatten[{{a, b}, {c, {e}, e}, {f, {g, h}}}, 1]
{a, b, c, {e} , e, f , {g, h}}

>> Flatten[f[a, f[b, f[c, d]], e], Infinity, f]
f [a, b, c, d, e]

>> Flatten[{{a, b}, {c, d}}, {{2}, {1}}]
{{a, c} , {b, d}}

>> Flatten[{{a, b}, {c, d}}, {{1, 2}}]
{a, b, c, d}

Flatten also works in irregularly shaped arrays

>> Flatten[{{1, 2, 3}, {4}, {6, 7}, {8, 9, 10}}, {{2}, {1}}]
{{1, 4, 6, 8} , {2, 7, 9} , {3, 10}}

35.6.5. Gather

WMA link

Gather[list, test]
gathers elements of list into sub lists of items that are the same according to test.

Gather[list]
gathers elements of list into sub lists of items that are the same.

The order of the items inside the sub lists is the same as in the original list.

>> Gather[{1, 7, 3, 7, 2, 3, 9}]
{{1} , {7, 7} , {3, 3} , {2} , {9}}

>> Gather[{1/3, 2/6, 1/9}]{{
1
3

,
1
3

}
,
{

1
9

}}

499

https://reference.wolfram.com/language/ref/Flatten.html
https://reference.wolfram.com/language/ref/Gather.html

35.6.6. GatherBy

WMA link

GatherBy[list, f]
gathers elements of list into sub lists of items whose image under f identical.

GatherBy[list, { f , g, ...}]
gathers elements of list into sub lists of items whose image under f identical. Then,
gathers these sub lists again into sub sub lists, that are identical under g.

>> GatherBy[{{1, 3}, {2, 2}, {1, 1}}, Total]
{{{1, 3} , {2, 2}} , {{1, 1}}}

>> GatherBy[{"xy", "abc", "ab"}, StringLength]
{{xy, ab} , {abc}}

>> GatherBy[{{2, 0}, {1, 5}, {1, 0}}, Last]
{{{2, 0} , {1, 0}} , {{1, 5}}}

>> GatherBy[{{1, 2}, {2, 1}, {3, 5}, {5, 1}, {2, 2, 2}}, {Total, Length
}]

{{{{1, 2} , {2, 1}}} , {{{3, 5}}} , {{{5, 1}} , {{2, 2, 2}}}}

35.6.7. Intersection

WMA link

Intersection[a, b, ...]
gives the intersection of the sets. The resulting list will be sorted and each element will
only occur once.

>> Intersection[{1000, 100, 10, 1}, {1, 5, 10, 15}]
{1, 10}

>> Intersection[{{a, b}, {x, y}}, {{x, x}, {x, y}, {x, z}}]
{{x, y}}

>> Intersection[{c, b, a}]
{a, b, c}

>> Intersection[{1, 2, 3}, {2, 3, 4}, SameTest->Less]
{3}

35.6.8. Join

WMA link

500

https://reference.wolfram.com/language/ref/GatherBy.html
https://reference.wolfram.com/language/ref/Intersection.html
https://reference.wolfram.com/language/ref/Join.html

Join[l1, l2]
concatenates the lists l1 and l2.

Join concatenates lists:

>> Join[{a, b}, {c, d, e}]
{a, b, c, d, e}

>> Join[{{a, b}, {c, d}}, {{1, 2}, {3, 4}}]
{{a, b} , {c, d} , {1, 2} , {3, 4}}

The concatenated expressions may have any head:

>> Join[a + b, c + d, e + f]
a + b + c + d + e + f

However, it must be the same for all expressions:

>> Join[a + b, c * d]
Heads Plus and Times are expected to be the same.
Join [a + b, cd]

35.6.9. PadLeft

WMA link

PadLeft[list, n]
pads list to length n by adding 0 on the left.

PadLeft[list, n, x]
pads list to length n by adding x on the left.

PadLeft[list, {n1, n2, ...}, x]
pads list to lengths n1, n2 at levels 1, 2, ... respectively by adding x on the left.

PadLeft[list, n, x, m]
pads list to length n by adding x on the left and adding a margin of m on the right.

PadLeft[list, n, x, {m1, m2, ...}]
pads list to length n by adding x on the left and adding margins of m1, m2, ... on levels 1,
2, ... on the right.

PadLeft[list]
turns the ragged list list into a regular list by adding 0 on the left.

>> PadLeft[{1, 2, 3}, 5]
{0, 0, 1, 2, 3}

>> PadLeft[x[a, b, c], 5]
x [0, 0, a, b, c]

>> PadLeft[{1, 2, 3}, 2]
{2, 3}

501

https://reference.wolfram.com/language/ref/PadLeft.html

>> PadLeft[{{}, {1, 2}, {1, 2, 3}}]
{{0, 0, 0} , {0, 1, 2} , {1, 2, 3}}

>> PadLeft[{1, 2, 3}, 10, {a, b, c}, 2]
{b, c, a, b, c, 1, 2, 3, a, b}

>> PadLeft[{{1, 2, 3}}, {5, 2}, x, 1]
{{x, x} , {x, x} , {x, x} , {3, x} , {x, x}}

35.6.10. PadRight

WMA link

PadRight[list, n]
pads list to length n by adding 0 on the right.

PadRight[list, n, x]
pads list to length n by adding x on the right.

PadRight[list, {n1, n2, ...}, x]
pads list to lengths n1, n2 at levels 1, 2, ... respectively by adding x on the right.

PadRight[list, n, x, m]
pads list to length n by adding x on the left and adding a margin of m on the left.

PadRight[list, n, x, {m1, m2, ...}]
pads list to length n by adding x on the right and adding margins of m1, m2, ... on levels
1, 2, ... on the left.

PadRight[list]
turns the ragged list list into a regular list by adding 0 on the right.

>> PadRight[{1, 2, 3}, 5]
{1, 2, 3, 0, 0}

>> PadRight[x[a, b, c], 5]
x [a, b, c, 0, 0]

>> PadRight[{1, 2, 3}, 2]
{1, 2}

>> PadRight[{{}, {1, 2}, {1, 2, 3}}]
{{0, 0, 0} , {1, 2, 0} , {1, 2, 3}}

>> PadRight[{1, 2, 3}, 10, {a, b, c}, 2]
{b, c, 1, 2, 3, a, b, c, a, b}

>> PadRight[{{1, 2, 3}}, {5, 2}, x, 1]
{{x, x} , {x, 1} , {x, x} , {x, x} , {x, x}}

35.6.11. Partition

WMA link

502

https://reference.wolfram.com/language/ref/PadRight.html
https://reference.wolfram.com/language/ref/Partition.html

Partition[list, n]
partitions list into sublists of length n.

Partition[list, n, d]
partitions list into sublists of length n which overlap d indices.

>> Partition[{a, b, c, d, e, f}, 2]
{{a, b} , {c, d} , {e, f }}

>> Partition[{a, b, c, d, e, f}, 3, 1]
{{a, b, c} , {b, c, d} , {c, d, e} , {d, e, f }}

35.6.12. Reverse

WMA link

Reverse[expr]
reverses the order of expr’s items (on the top level)

Reverse[expr, n]
reverses the order of items in expr on level n

Reverse[expr, {n1, n2, ...}]
reverses the order of items in expr on levels n1, n2, ...

>> Reverse[{1, 2, 3}]
{3, 2, 1}

>> Reverse[x[a, b, c]]
x [c, b, a]

>> Reverse[{{1, 2}, {3, 4}}, 1]
{{3, 4} , {1, 2}}

>> Reverse[{{1, 2}, {3, 4}}, 2]
{{2, 1} , {4, 3}}

>> Reverse[{{1, 2}, {3, 4}}, {1, 2}]
{{4, 3} , {2, 1}}

35.6.13. Riffle

WMA link

Riffle[list, x]
inserts a copy of x between each element of list.

Riffle[{a1, a2, ...}, {b1, b2, ...}]
interelements the elements of both lists, returning {a_1, b_1, a_2, b_2, ...}.

503

https://reference.wolfram.com/language/ref/Reverse.html
https://reference.wolfram.com/language/ref/Riffle.html

>> Riffle[{a, b, c}, x]
{a, x, b, x, c}

>> Riffle[{a, b, c}, {x, y, z}]
{a, x, b, y, c, z}

>> Riffle[{a, b, c, d, e, f}, {x, y, z}]
{a, x, b, y, c, z, d, x, e, y, f }

35.6.14. RotateLeft

WMA link

RotateLeft[expr]
rotates the items of expr’ by one item to the left.

RotateLeft[expr, n]
rotates the items of expr’ by n items to the left.

RotateLeft[expr, {n1, n2, ...}]
rotates the items of expr’ by n1 items to the left at the first level, by n2 items to the left at
the second level, and so on.

>> RotateLeft[{1, 2, 3}]
{2, 3, 1}

>> RotateLeft[Range[10], 3]
{4, 5, 6, 7, 8, 9, 10, 1, 2, 3}

>> RotateLeft[x[a, b, c], 2]
x [c, a, b]

>> RotateLeft[{{a, b, c}, {d, e, f}, {g, h, i}}, {1, 2}]
{{ f , d, e} , {i, g, h} , {c, a, b}}

35.6.15. RotateRight

WMA link

RotateRight[expr]
rotates the items of expr’ by one item to the right.

RotateRight[expr, n]
rotates the items of expr’ by n items to the right.

RotateRight[expr, {n1, n2, ...}]
rotates the items of expr’ by n1 items to the right at the first level, by n2 items to the right
at the second level, and so on.

504

https://reference.wolfram.com/language/ref/RotateLeft.html
https://reference.wolfram.com/language/ref/RotateRight.html

>> RotateRight[{1, 2, 3}]
{3, 1, 2}

>> RotateRight[Range[10], 3]
{8, 9, 10, 1, 2, 3, 4, 5, 6, 7}

>> RotateRight[x[a, b, c], 2]
x [b, c, a]

>> RotateRight[{{a, b, c}, {d, e, f}, {g, h, i}}, {1, 2}]
{{h, i, g} , {b, c, a} , {e, f , d}}

35.6.16. Split

WMA link

Split[list]
splits list into collections of consecutive identical elements.

Split[list, test]
splits list based on whether the function test yields True on consecutive elements.

>> Split[{x, x, x, y, x, y, y, z}]
{{x, x, x} , {y} , {x} , {y, y} , {z}}

Split into increasing or decreasing runs of elements

>> Split[{1, 5, 6, 3, 6, 1, 6, 3, 4, 5, 4}, Less]
{{1, 5, 6} , {3, 6} , {1, 6} , {3, 4, 5} , {4}}

>> Split[{1, 5, 6, 3, 6, 1, 6, 3, 4, 5, 4}, Greater]
{{1} , {5} , {6, 3} , {6, 1} , {6, 3} , {4} , {5, 4}}

Split based on first element

>> Split[{x -> a, x -> y, 2 -> a, z -> c, z -> a}, First[#1] === First
[#2] &]

{{x− > a, x− > y} , {2− > a} , {z− > c, z− > a}}

35.6.17. SplitBy

WMA link

SplitBy[list, f]
splits list into collections of consecutive elements that give the same result when f is
applied.

505

https://reference.wolfram.com/language/ref/Split.html
https://reference.wolfram.com/language/ref/SplitBy.html

>> SplitBy[Range[1, 3, 1/3], Round]{{
1,

4
3

}
,
{

5
3

, 2,
7
3

}
,
{

8
3

, 3
}}

>> SplitBy[{1, 2, 1, 1.2}, {Round, Identity}]
{{{1}} , {{2}} , {{1} , {1.2}}}

35.6.18. Tally

WMA link

Tally[list]
counts and returns the number of occurrences of objects and returns the result as a list of
pairs {object, count}.

Tally[list, test]
counts the number of occurrences of objects and uses test to determine if two objects
should be counted in the same bin.

>> Tally[{a, b, c, b, a}]
{{a, 2} , {b, 2} , {c, 1}}

Tally always returns items in the order as they first appear in list:

>> Tally[{b, b, a, a, a, d, d, d, d, c}]
{{b, 2} , {a, 3} , {d, 4} , {c, 1}}

35.6.19. Union

WMA link

Union[a, b, ...]
gives the union of the given set or sets. The resulting list will be sorted and each element
will only occur once.

A union of two lists:

>> Union[{a, b, c}, {c, d, e}]
{a, b, c, d, e}

A union of two associations:

>> Union[{a -> b}, {c -> d}]
{a− > b, c− > d}

506

https://reference.wolfram.com/language/ref/Tally.html
https://reference.wolfram.com/language/ref/Union.html

A union of one item is the item. Note that the list is sorted:

>> Union[{c, b, a}]
{a, b, c}

As usual, Union removes duplicate values:

>> Union[{5, 1, 3, 7, 1, 8, 3}]
{1, 3, 5, 7, 8}

Union using a custom test which compares using the last coordinate of each element list:

>> Union[{{a, 1}, {b, 2}}, {{c, 1}, {d, 3}}, SameTest->(SameQ[Last[#1],
Last[#2]]&)]

{{b, 2} , {c, 1} , {d, 3}}

>> Union[{1, 2, 3}, {2, 3, 4}, SameTest->Less]
{1, 2, 2, 3, 4}

507

36. Low-level Format definitions

Contents

36.1. $BoxForms 508
36.2. MakeBoxes 508

36.3. ToBoxes 509

36.1. $BoxForms

WMA link

$BoxForms
contains the list of box formats.

>> $BoxForms
{StandardForm, TraditionalForm}

36.2. MakeBoxes

WMA link

MakeBoxes[expr]
is a low-level formatting primitive that converts expr to box form, without evaluating it.

(...)
directly inputs box objects.

String representation of boxes

>> \(x \^ 2\)
SuperscriptBox [x, 2]

>> \(x _ 2\)
SubscriptBox [x, 2]

>> \(a \+ b \% c\)
UnderoverscriptBox [a, b, c]

508

https://reference.wolfram.com/language/ref/$BoxForms.html
https://reference.wolfram.com/language/ref/MakeBoxes.html

>> \(a \& b \% c\)
UnderoverscriptBox [a, c, b]

>> \(x \& y \)
OverscriptBox

[
x, y
]

>> \(x \+ y \)
UnderscriptBox

[
x, y
]

36.3. ToBoxes

WMA link

ToBoxes[expr]
evaluates expr and converts the result to box form.

Unlike MakeBoxes, ToBoxes evaluates its argument:

>> ToBoxes[a + a]
RowBox

[
{2, , a}

]
>> ToBoxes[a + b]

RowBox
[
{a, +, b}

]
>> ToBoxes[a ^ b] // FullForm

SuperscriptBox [“a”, “b”]

509

https://reference.wolfram.com/language/ref/ToBoxes.html

37. Mathematical Functions

Basic arithmetic functions, including complex number arithmetic.

Contents

37.1. $Assumptions 510
37.2. Arg 510
37.3. Assuming 511
37.4. Boole 512
37.5. Complex 512
37.6. ConditionalExpression 512
37.7. Conjugate 513
37.8. DirectedInfinity 514
37.9. Element 514

37.10. I . 515
37.11. Im 515
37.12. Integer 515
37.13. Product (∏) 516
37.14. Rational 517
37.15. Re 517
37.16. Real 518
37.17. RealValuedNumberQ 518
37.18. Sum (∑) 519

37.1. $Assumptions

WMA link

$Assumptions
is the default setting for the Assumptions option used in such functions as Simplify,
Refine, and Integrate.

37.2. Arg

Argument (complex analysis) (WMA link)

Arg[z, Method -> “option”]
returns the argument of a complex value z.

• Arg[z] is left unevaluated if z is not a numeric quantity.

• Arg[z] gives the phase angle of z in radians.

• The result from Arg[z] is always between -Pi and +Pi.

• Arg[z] has a branch cut discontinuity in the complex z plane running from -Infinity to 0.

510

https://reference.wolfram.com/language/ref/$Assumptions.html
https://en.wikipedia.org/wiki/Argument_(complex_analysis)
https://reference.wolfram.com/language/ref/Arg.html

• Arg[0] is 0.

>> Arg[-3]
π

Same as above, but using SymPy’s method:

>> Arg[-3, Method->"sympy"]
π

>> Arg[1-I]

−π

4

Arg evaluates the direction of DirectedInfinity quantities by the Arg of its arguments:

>> Arg[DirectedInfinity[1+I]]
π

4

>> Arg[DirectedInfinity[]]
1

Arg for 0 is assumed to be 0:

>> Arg[0]
0

37.3. Assuming

WMA link

Assuming[cond, expr]
Evaluates expr assuming the conditions cond.

>> $Assumptions = { x > 0 }
{x > 0}

>> Assuming[y>0, ConditionalExpression[y x^2, y>0]//Simplify]

x2y

>> Assuming[Not[y>0], ConditionalExpression[y x^2, y>0]//Simplify]
Undefined

>> ConditionalExpression[y x ^ 2, y > 0]//Simplify

ConditionalExpression
[

x2y, y > 0
]

511

https://reference.wolfram.com/language/ref/Assuming.html

37.4. Boole

WMA link

Boole[expr]
returns 1 if expr is True and 0 if expr is False.

>> Boole[2 == 2]
1

>> Boole[7 < 5]
0

>> Boole[a == 7]
Boole [a==7]

37.5. Complex

WMA link

Complex
is the head of complex numbers.

Complex[a, b]
constructs the complex number a + I b.

>> Head[2 + 3*I]
Complex

>> Complex[1, 2/3]

1 +
2I
3

>> Abs[Complex[3, 4]]
5

37.6. ConditionalExpression

WMA link

ConditionalExpression[expr, cond]
returns expr if cond evaluates to True, Unde f ined if cond evaluates to False.

>> ConditionalExpression[x^2, True]

x2

512

https://reference.wolfram.com/language/ref/Boole.html
https://reference.wolfram.com/language/ref/Complex.html
https://reference.wolfram.com/language/ref/ConditionalExpression.html

>> ConditionalExpression[x^2, False]
Undefined

>> f = ConditionalExpression[x^2, x>0]

ConditionalExpression
[

x2, x > 0
]

>> f /. x -> 2
4

>> f /. x -> -2
Undefined

ConditionalExpression uses assumptions to evaluate the condition:

>> $Assumptions = x > 0;

>> ConditionalExpression[x ^ 2, x>0]//Simplify

x2

>> $Assumptions = True;

» ConditionalExpression[ConditionalExpression[s,x>a], x<b] # = ConditionalExpression[s, And[x>a,
x<b]]

37.7. Conjugate

Complex Conjugate WMA link

Conjugate[z]
returns the complex conjugate of the complex number z.

>> Conjugate[3 + 4 I]
3− 4I

>> Conjugate[3]
3

>> Conjugate[a + b * I]
Conjugate [a]− IConjugate [b]

>> Conjugate[{{1, 2 + I 4, a + I b}, {I}}]
{{1, 2− 4I, Conjugate [a]− IConjugate [b]} , {−I}}

>> Conjugate[1.5 + 2.5 I]
1.5− 2.5I

513

https://en.wikipedia.org/wiki/Complex_conjugate
https://reference.wolfram.com/language/ref/Conjugate.html

37.8. DirectedInfinity

WMA link

DirectedInfinity[z]
represents an infinite multiple of the complex number z.

DirectedInfinity[]
is the same as ComplexInfinity.

>> DirectedInfinity[1]
∞

>> DirectedInfinity[]
ComplexInfinity

>> DirectedInfinity[1 + I](
1
2

+
I
2

)√
2∞

>> 1 / DirectedInfinity[1 + I]
0

>> DirectedInfinity[1] + DirectedInfinity[-1]
Indeterminate expression -Infinity + Infinity encountered.
Indeterminate

>> DirectedInfinity[0]
ComplexInfinity

37.9. Element

Element of WMA link

Element[expr, domain]
returns True if expr is an element of domain

Element[expr1|expr2|..., domain]
returns True if all the expri belongs to domain, and False if one of the items doesn’t.

Check if 3 and a are both integers. If a is not defined, then Element reduces the condition:

>> Element[3 | a, Integers]
Element

[
a, Integers

]
Notice that standard domain names (Primes, Integers, Rationals, Algebraics, Reals, Complexes,
and Booleans) are in plural form. If a singular form is used, a warning is shown:

514

https://reference.wolfram.com/language/ref/DirectedInfinity.html
https://en.wikipedia.org/wiki/Element_(mathematics)
https://reference.wolfram.com/language/ref/Element.html

>> Element[a, Real]
The second argument Real of Element should be one of: Primes,
Integers, Rationals, Algebraics, Reals, Complexes, or Booleans.
Element [a, Real]

37.10. I

Imaginary unit (WMA)

I
represents the imaginary number Sqrt[-1].

>> I^2
−1

>> (3+I)*(3-I)
10

37.11. Im

WMA link

Im[z]
returns the imaginary component of the complex number z.

>> Im[3+4I]
4

>> Plot[{Sin[a], Im[E^(I a)]}, {a, 0, 2 Pi}]

1 2 3 4 5 6

−1.0

−0.5

0.5

1.0

37.12. Integer

WMA link

515

https://en.wikipedia.org/wiki/Imaginary_unit
https://reference.wolfram.com/language/ref/I.html
https://reference.wolfram.com/language/ref/Im.html
https://reference.wolfram.com/language/ref/Integer.html

Integer
is the head of integers.

>> Head[5]
Integer

37.13. Product (∏)

Direct product (SymPy, WMA)

Product[f , {i, imin, imax}]
evaluates the discrete product of f with i ranging from imin to imax.

Product[f , {i, imax}]
same as Product[f , {i, 1, imax}].

Product[f , {i, imin, imax, di}]
i ranges from imin to imax in steps of di.

Product[f , {i, imin, imax}, {j, jmin, jmax}, ...]
evaluates f as a multiple product, with {i, ...}, {j, ...}, ... being in outermost-to-innermost
order.

Product[k, {k, i, n}] is defined in terms of Factorial 51.5.2:

>> Product[k, {k, i, n}]
n!

(−1 + i) !

When i is 1, we get the factorial function:

>> Product[k, {k, 1, n}]
n!

Or more succinctly:

>> Product[k, {k, n}]
n!

Symbolic products involving the factorial are evaluated:

>> Product[k, {k, 3, n}]
n!
2

Examples of numeric evaluation using more complex functions:

>> Product[x^k, {k, 2, 20, 2}]
x110

516

https://en.wikipedia.org/wiki/Direct_product
https://docs.sympy.org/latest/modules/concrete.html#sympy.concrete.products.Product
https://reference.wolfram.com/language/ref/Product.html

>> Product[2 ^ i, {i, 1, n}]

2
n
2 + n2

2

>> Product[f[i], {i, 1, 7}]
f [1] f [2] f [3] f [4] f [5] f [6] f [7]

Evaluate the n-th Primorial:

>> Primorial[0] = 1;

>> Primorial[n_Integer] := Product[Prime[k], {k, 1, n}];

>> Primorial[12]
7420738134810

37.14. Rational

WMA link

Rational
is the head of rational numbers.

Rational[a, b]
constructs the rational number a / b.

>> Head[1/2]
Rational

>> Rational[1, 2]
1
2

37.15. Re

WMA link

Re[z]
returns the real component of the complex number z.

>> Re[3+4I]
3

517

https://en.wikipedia.org/wiki/Primorial
https://reference.wolfram.com/language/ref/Rational.html
https://reference.wolfram.com/language/ref/Re.html

>> Plot[{Cos[a], Re[E^(I a)]}, {a, 0, 2 Pi}]

1 2 3 4 5 6

−1.0

−0.5

0.5

1.0

37.16. Real

WMA link

Real
is the head of real (inexact) numbers.

>> x = 3. ^ -20;

>> InputForm[x]
2.8679719907924413*∧ − 10

>> Head[x]
Real

37.17. RealValuedNumberQ

WMA link

RealValuedNumberQ[expr]
returns True if expr is an explicit number with no imaginary component.

>> RealValuedNumberQ[10]
True

>> RealValuedNumberQ[4.0]
True

>> RealValuedNumberQ[1+I]
False

>> RealValuedNumberQ[0 * I]
True

518

https://reference.wolfram.com/language/ref/Real.html
https://reference.wolfram.com/language/ref/RealValuedNumberQ.html

>> RealValuedNumberQ[0.0 * I]
False

”Underflow[]“ and ”Overflow[]” are considered Real valued numbers:

>> {RealValuedNumberQ[Underflow[]], RealValuedNumberQ[Overflow[]]}
{True, True}

37.18. Sum (∑)

Summation (SymPy, WMA)

Sum[f , {i, imin, imax}]
evaluates the discrete sum of f with i ranging from imin to imax.

Sum[f , {i, imax}]
same as Sum[f , {i, 1, imax}].

Sum[f , {i, imin, imax , di}]
i ranges from imin to imax in steps of di.

Sum[f , {i, imin, imax , {j, jmin, jmax , ...]
evaluates f as amultiple sum,with {i, ...}, {j, ...}, ... being in outermost-to-innermost order.

A sum that Gauss in elementary school was asked to do to kill time:

>> Sum[k, {k, 1, 10}]
55

The symbolic form he used:

>> Sum[k, {k, 1, n}]
n (1 + n)

2

A Geometric series with a finite limit:

>> Sum[1 / 2 ^ i, {i, 1, k}]

1− 2−k

A Geometric series using Infinity:

>> Sum[1 / 2 ^ i, {i, 1, Infinity}]
1

Leibniz formula used in computing Pi:

>> Sum[1 / ((-1)^k (2k + 1)), {k, 0, Infinity}]
π

4

519

https://en.wikipedia.org/wiki/Summation
https://docs.sympy.org/latest/modules/concrete.html#sympy.concrete.summations.Sum
https://reference.wolfram.com/language/ref/Sum.html

A table of double sums to compute squares:

>> Table[Sum[i * j, {i, 0, n}, {j, 0, n}], {n, 0, 4}]
{0, 1, 9, 36, 100}

Computing Harmonic using a sum

>> Sum[1 / k ^ 2, {k, 1, n}]
HarmonicNumber [n, 2]

Other symbolic sums:

>> Sum[k, {k, n, 2 n}]
3n (1 + n)

2

A sum with Complex-number iteration values

>> Sum[k, {k, I, I + 1}]
1 + 2I

>> Sum[k, {k, Range[5]}]
15

>> Sum[f[i], {i, 1, 7}]
f [1] + f [2] + f [3] + f [4] + f [5] + f [6] + f [7]

Verify algebraic identities:

>> Sum[x ^ 2, {x, 1, y}] - y * (y + 1)* (2 * y + 1)/ 6
0

Non-integer bounds:

>> Sum[i, {i, 1, 2.5}]
3

>> Sum[i, {i, 1.1, 2.5}]
3.2

>> Sum[k, {k, I, I + 1.5}]
1 + 2I

520

38. Mathematical Optimization

Mathematical optimization is the selection of a best element, with regard to some criterion, from some
set of available alternatives.

Optimization problems of sorts arise in all quantitative disciplines from computer science and engineer-
ing to operations research and economics, and the development of solutionmethods has been of interest
in mathematics for centuries.

We intend to provide local and global optimization techniques, both numeric and symbolic.

Contents

38.1. Maximize 521
38.2. Minimize 521

38.1. Maximize

WMA link

Maximize[f , x]
compute the maximum of f respect x that change between a and b.

>> Maximize[-2 x^2 - 3 x + 5, x]{{
49
8

,
{

x− > −3
4

}}}

38.2. Minimize

WMA link

Minimize[f , x]
compute the minimum of f respect x that change between a and b.

>> Minimize[2 x^2 - 3 x + 5, x]{{
31
8

,
{

x− >
3
4

}}}

521

https://reference.wolfram.com/language/ref/Maximize.html
https://reference.wolfram.com/language/ref/Minimize.html

39. Matrices and Linear Algebra

Construction and manipulation of Matrices.

Contents

39.1. Constructing Matrices 522
39.1.1. BoxMatrix 522
39.1.2. DiagonalMatrix 522
39.1.3. DiamondMatrix 523

39.1.4. DiskMatrix 523
39.1.5. IdentityMatrix 523

39.2. Parts of Matrices 523
39.2.1. Diagonal 524

39.1. Constructing Matrices

Methods for constructing Matrices.

39.1.1. BoxMatrix

WMA link

BoxMatrix[s]
Gives a box shaped kernel of size 2 s + 1.

>> BoxMatrix[3]
{{1, 1, 1, 1, 1, 1, 1} , {1, 1, 1, 1, 1, 1, 1} , {1, 1, 1, 1, 1, 1, 1} , {1, 1, 1, 1, 1, 1, 1} , {1, 1, 1, 1, 1, 1, 1} , {1, 1, 1, 1, 1, 1, 1} , {1, 1, 1, 1, 1, 1, 1}}

39.1.2. DiagonalMatrix

WMA link

DiagonalMatrix[list]
gives a matrix with the values in list on its diagonal and zeroes elsewhere.

>> DiagonalMatrix[{1, 2, 3}]
{{1, 0, 0} , {0, 2, 0} , {0, 0, 3}}

522

https://reference.wolfram.com/language/ref/BoxMatrix.html
https://reference.wolfram.com/language/ref/DiagonalMatrix.html

>> MatrixForm[%] 1 0 0
0 2 0
0 0 3



39.1.3. DiamondMatrix

WMA link

DiamondMatrix[s]
Gives a diamond shaped kernel of size 2 s + 1.

>> DiamondMatrix[3]
{{0, 0, 0, 1, 0, 0, 0} , {0, 0, 1, 1, 1, 0, 0} , {0, 1, 1, 1, 1, 1, 0} , {1, 1, 1, 1, 1, 1, 1} , {0, 1, 1, 1, 1, 1, 0} , {0, 0, 1, 1, 1, 0, 0} , {0, 0, 0, 1, 0, 0, 0}}

39.1.4. DiskMatrix

WMA link

DiskMatrix[s]
Gives a disk shaped kernel of size 2 s + 1.

>> DiskMatrix[3]
{{0, 0, 1, 1, 1, 0, 0} , {0, 1, 1, 1, 1, 1, 0} , {1, 1, 1, 1, 1, 1, 1} , {1, 1, 1, 1, 1, 1, 1} , {1, 1, 1, 1, 1, 1, 1} , {0, 1, 1, 1, 1, 1, 0} , {0, 0, 1, 1, 1, 0, 0}}

39.1.5. IdentityMatrix

WMA link

IdentityMatrix[n]
gives the identity matrix with n rows and columns.

>> IdentityMatrix[3]
{{1, 0, 0} , {0, 1, 0} , {0, 0, 1}}

39.2. Parts of Matrices

Methods for manipulating Matrices.

523

https://reference.wolfram.com/language/ref/DiamondMatrix.html
https://reference.wolfram.com/language/ref/DiskMatrix.html
https://reference.wolfram.com/language/ref/IdentityMatrix.html

39.2.1. Diagonal

WMA link

Diagonal[m]
gives a list with the values in the diagonal of the matrix m.

Diagonal[m, k]
gives a list with the values in the k diagonal of the matrix m.

>> Diagonal[{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}]
{1, 5, 9}

Get the superdiagonal:

>> Diagonal[{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}, 1]
{2, 6}

Get the subdiagonal:

>> Diagonal[{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}, -1]
{4, 8}

Get the diagonal of a nonsquare matrix:

>> Diagonal[{{1, 2, 3}, {4, 5, 6}}]
{1, 5}

524

https://reference.wolfram.com/language/ref/Diagonal.html

40. Message-related functions.

Contents

40.1. $Aborted 525
40.2. $Failed 525
40.3. Check 525
40.4. Failure 526
40.5. General 526
40.6. Message 526

40.7. MessageName (::) 527
40.8. Off 527
40.9. On 528
40.10. Quiet 528
40.11. Syntax 529

40.1. $Aborted

WMA link

$Aborted
is returned by a calculation that has been aborted.

40.2. $Failed

WMA link

$Failed
is returned by some functions in the event of an error.

40.3. Check

WMA link

Check[expr, f ailexpr]
evaluates expr, and returns the result, unless messages were generated, in which case it
evaluates and f ailexpr will be returned.

Check[expr, f ailexpr, {s1::t1,s2::t2,...}]
checks only for the specified messages.

525

https://reference.wolfram.com/language/ref/Aborted.html
https://reference.wolfram.com/language/ref/$Failed.html
https://reference.wolfram.com/language/ref/Check.html

Return err when a message is generated:

>> Check[1/0, err]
Infinite expression 1 / 0 encountered.
err

Check only for specific messages:

>> Check[Sin[0^0], err, Sin::argx]
Indeterminate expression 0 ^ 0 encountered.
Indeterminate

>> Check[1/0, err, Power::infy]
Infinite expression 1 / 0 encountered.
err

40.4. Failure

WMA link

Failure[tag, assoc]
represents a failure of a type indicated by tag, with details given by the association assoc.

40.5. General

WMA link

General
is a symbol to which all general-purpose messages are assigned.

>> General::argr
‘1‘ called with 1 argument; ‘2‘ arguments are expected.

>> Message[Rule::argr, Rule, 2]
Rule called with 1 argument; 2 arguments are expected.

40.6. Message

WMA link

526

https://reference.wolfram.com/language/ref/Failure.html
https://reference.wolfram.com/language/ref/General.html
https://reference.wolfram.com/language/ref/Message.html

Message[symbol::msg, expr1, expr2, ...]
displays the specified message, replacing placeholders in the message text with the cor-
responding expressions.

>> a::b = "Hello world!"
Hello world!

>> Message[a::b]
Hello world!

>> a::c := "Hello `1`, Mr 00`2`!"

>> Message[a::c, "you", 3 + 4]
Hello you, Mr 007!

40.7. MessageName (::)

WMA link

MessageName[symbol, tag]
$symbol$::tag

identifies a message.

MessageName is the head of message IDs of the form symbol::tag.

>> FullForm[a::b]
MessageName [a, “b”]

The second parameter tag is interpreted as a string.

>> FullForm[a::"b"]
MessageName [a, “b”]

40.8. Off

WMA link

Off[symbol::tag]
turns a message off so it is no longer printed.

>> Off[Power::infy]

>> 1 / 0
ComplexInfinity

527

https://reference.wolfram.com/language/ref/MessageName.html
https://reference.wolfram.com/language/ref/Off.html

>> Off[Power::indet, Syntax::com]

>> {0 ^ 0,}
{Indeterminate, Null}

40.9. On

WMA link

On[symbol::tag]
turns a message on for printing.

>> Off[Power::infy]

>> 1 / 0
ComplexInfinity

>> On[Power::infy]

>> 1 / 0
Infinite expression 1 / 0 encountered.
ComplexInfinity

40.10. Quiet

WMA link

Quiet[expr, {s1::t1, ...}]
evaluates expr, without messages {s_1::t_1, ...} being displayed.

Quiet[expr, All]
evaluates expr, without any messages being displayed.

Quiet[expr, None]
evaluates expr, without all messages being displayed.

Quiet[expr, o f f , on]
evaluates expr, with messages o f f being suppressed, but messages on being displayed.

Evaluate without generating messages:

>> Quiet[1/0]
ComplexInfinity

Same as above:

>> Quiet[1/0, All]
ComplexInfinity

528

https://reference.wolfram.com/language/ref/On.html
https://reference.wolfram.com/language/ref/Quiet.html

>> a::b = "Hello";

>> Quiet[x+x, {a::b}]
2x

>> Quiet[Message[a::b]; x+x, {a::b}]
2x

>> Message[a::b]; y=Quiet[Message[a::b]; x+x, {a::b}]; Message[a::b]; y
Hello
Hello
2x

>> Quiet[x + x, {a::b}, {a::b}]
In Quiet[x + x, {a::b}, {a::b}] the message name(s) {a::b} appear in
both the list of messages to switch off and the list of messages to
switch on.
Quiet

[
x + x, {a::b} , {a::b}

]

40.11. Syntax

WMA link

Syntax
is a symbol to which all syntax messages are assigned.

>> 1 +
Incomplete expression; more input is needed (line 1 of).

>> Sin[1)
"Sin[1" cannot be followed by ")" (line 1 of ")").

>> ^ 2
Expression cannot begin with "^ 2" (line 1 of).

>> 1.5``
"1.5`" cannot be followed by "`" (line 1 of "`").

529

https://reference.wolfram.com/language/guide/Syntax.html

41. Numerical Functions

Support for approximate real numbers and exact real numbers represented in algebraic or symbolic
form.

Contents

41.1. Abs 530
41.2. Chop 531
41.3. N 531
41.4. Piecewise 533
41.5. Rationalize 534

41.6. RealAbs 535
41.7. RealSign 535
41.8. Round 536
41.9. Sign 537
41.10. UnitStep 538

41.1. Abs

Absolute value (SymPy, WMA)

Abs[x]
returns the absolute value of x.

>> Abs[-3]
3

>> Plot[Abs[x], {x, -4, 4}]

−4 −2 2 4

1

2

3

4

Abs returns the magnitude of complex numbers:

>> Abs[3 + I]
√

10

>> Abs[3.0 + I]
3.16228

530

https://en.wikipedia.org/wiki/Absolute_value
https://docs.sympy.org/latest/modules/functions/elementary.html#sympy.functions.elementary.complexes.Abs
https://reference.wolfram.com/language/ref/Abs

All of the below evaluate to Infinity:

>> Abs[Infinity] == Abs[I Infinity] == Abs[ComplexInfinity]
True

41.2. Chop

WMA link

Chop[expr]
replaces floating point numbers close to 0 by 0.

Chop[expr, delta]
uses a tolerance of delta. The default tolerance is 10^-10.

>> Chop[10.0 ^ -16]
0

>> Chop[10.0 ^ -9]
1.*∧ − 9

>> Chop[10 ^ -11 I]
I

100000000000

>> Chop[0. + 10 ^ -11 I]
0

41.3. N

WMA link

N[expr, prec]
evaluates expr numerically with a precision of prec digits.

>> N[Pi, 50]
3.1415926535897932384626433832795028841971693993751

>> N[1/7]
0.142857

>> N[1/7, 5]
0.14286

You can manually assign numerical values to symbols.

When you do not specify a precision, MachinePrecision is taken.

531

https://reference.wolfram.com/language/ref/Chop.html
https://reference.wolfram.com/language/ref/N.html

>> N[a] = 10.9
10.9

>> a
a

N automatically threads over expressions, except when a symbol has attributes NHoldAll, NHoldFirst,
or NHoldRest.

>> N[a + b]
10.9 + b

>> N[a, 20]
a

>> N[a, 20] = 11;

>> N[a + b, 20]
11.000000000000000000 + b

>> N[f[a, b]]
f [10.9, b]

>> SetAttributes[f, NHoldAll]

>> N[f[a, b]]
f [a, b]

The precision can be a pattern:

>> N[c, p_?(#>10&)] := p

>> N[c, 3]
c

>> N[c, 11]
11.000000000

You can also use UpSet or TagSet to specify values for N:

>> N[d] ^= 5;

However, the value will not be stored in UpValues, but in NValues (as for Set):

>> UpValues[d]
{}

>> NValues[d]
{HoldPattern [N [d, MachinePrecision]] :>5}

>> e /: N[e] = 6;

>> N[e]
6.

532

Values for N[$expr$] must be associated with the head of expr:

>> f /: N[e[f]] = 7;
Tag f not found or too deep for an assigned rule.

You can use Condition:

>> N[g[x_, y_], p_] := x + y * Pi /; x + y > 3

>> SetAttributes[g, NHoldRest]

>> N[g[1, 1]]
g [1., 1]

>> N[g[2, 2]] // InputForm
8.283185307179586

The precision of the result is no higher than the precision of the input

>> N[Exp[0.1], 100]
1.10517

>> % // Precision
MachinePrecision

>> N[Exp[1/10], 100]
1.105170918075647624811707826490246668224547194737518718792863289440967966747654302989143318970748654

>> % // Precision
100.

>> N[Exp[1.0`20], 100]
2.7182818284590452354

>> % // Precision
20.

N can also accept an option “Method”. This establishes what is the prefrered underlying method to
compute numerical values:

>> N[F[Pi], 30, Method->"numpy"]
F [3.14159265358979300000000000000]

>> N[F[Pi], 30, Method->"sympy"]
F [3.14159265358979323846264338328]

41.4. Piecewise

SymPy, WMA

533

https://docs.sympy.org/latest/modules/functions/elementary.html#piecewise
https://reference.wolfram.com/language/ref/Piecewise.html

Piecewise[{{expr1, cond1}, ...}]
represents a piecewise function.

Piecewise[{{expr1, cond1}, ...}, expr]
represents a piecewise function with default expr.

Heaviside function

>> Piecewise[{{0, x <= 0}}, 1]
Piecewise

[
{{0, x<=0}} , 1

]
>> Integrate[Piecewise[{{1, x <= 0}, {-1, x > 0}}], x]

Piecewise
[
{{x, x<=0}} ,−x

]
>> Integrate[Piecewise[{{1, x <= 0}, {-1, x > 0}}], {x, -1, 2}]

−1

Piecewise defaults to 0 if no other case is matching.

>> Piecewise[{{1, False}}]
0

>> Plot[Piecewise[{{Log[x], x > 0}, {x*-0.5, x < 0}}], {x, -1, 1}]

−1.0 −0.5 0.5 1.0

−2.0

−1.5

−1.0

−0.5

0.5

>> Piecewise[{{0 ^ 0, False}}, -1]
−1

41.5. Rationalize

WMA link

Rationalize[x]
converts a real number x to a nearby rational number with small denominator.

Rationalize[x, dx]
finds the rational number lies within dx of x.

>> Rationalize[2.2]
11
5

534

https://reference.wolfram.com/language/ref/Rationalize.html

For negative x, -Rationalize[-x] == Rationalize[x] which gives symmetric results:

>> Rationalize[-11.5, 1]
−11

Not all numbers can be well approximated.

>> Rationalize[N[Pi]]
3.14159

Find the exact rational representation of N[Pi]

>> Rationalize[N[Pi], 0]
245850922
78256779

41.6. RealAbs

Abs (Real) (WMA link)

RealAbs[x]
returns the absolute value of a real number x.

RealAbs is also known as modulus. It is evaluated if x can be compared with 0.

>> RealAbs[-3.]
3.

RealAbs[z] is left unevaluated for complex z:

>> RealAbs[2. + 3. I]
RealAbs [2. + 3.I]

>> D[RealAbs[x ^ 2], x]
2x3

RealAbs
[
x2
]

41.7. RealSign

Sign function (WMA link)

RealSign[x]
returns -1, 0 or 1 depending on whether x is negative, zero or positive.

535

https://en.wikipedia.org/wiki/Absolute_value
https://reference.wolfram.com/language/ref/RealAbs.html
https://en.wikipedia.org/wiki/Sign_function
https://reference.wolfram.com/language/ref/RealSign.html

RealSign is also known as sgn or signum function.

>> RealSign[-3.]
−1

RealSign[z] is left unevaluated for complex z:

>> RealSign[2. + 3. I]
RealSign [2. + 3.I]

>> D[RealSign[x^2],x]

2xPiecewise
[{{

0, x2!=0
}}

, Indeterminate
]

>> Integrate[RealSign[u],{u,0,x}]
RealAbs [x]

41.8. Round

WMA link

Round[expr]
rounds expr to the nearest integer.

Round[expr, k]
rounds expr to the closest multiple of k.

>> Round[10.6]
11

>> Round[0.06, 0.1]
0.1

>> Round[0.04, 0.1]
0.

Constants can be rounded too

>> Round[Pi, .5]
3.

>> Round[Pi^2]
10

Round to exact value

>> Round[2.6, 1/3]
8
3

>> Round[10, Pi]
3π

536

https://reference.wolfram.com/language/ref/Round.html

Round complex numbers

>> Round[6/(2 + 3 I)]
1− I

>> Round[1 + 2 I, 2 I]
2I

Round Negative numbers too

>> Round[-1.4]
−1

Expressions other than numbers remain unevaluated:

>> Round[x]
Round [x]

>> Round[1.5, k]
Round [1.5, k]

41.9. Sign

Sign (WMA link)

Sign[x]
return -1, 0, or 1 depending on whether x is negative, zero, or positive.

>> Sign[19]
1

>> Sign[-6]
−1

>> Sign[0]
0

>> Sign[{-5, -10, 15, 20, 0}]
{−1,−1, 1, 1, 0}

For a complex number, Sign returns the phase of the number:

>> Sign[3 - 4*I]
3
5
− 4I

5

537

https://en.wikipedia.org/wiki/Sign_function
https://reference.wolfram.com/language/ref/Sign.html

41.10. UnitStep

Heaviside step function (WMA link)

UnitStep[x]
return 0 if x < 0, and 1 if x >= 0.

UnitStep[x1, x2, ...]
return the multidimensional unit step function which is 1 only if none of the xi are neg-
ative.

Evaluation numerically:

>> UnitStep[0.7]
1

We can use UnitStep on irrational numbers and infinities:

>> Map[UnitStep, {Pi, Infinity, -Infinity}]
{1, 1, 0}

>> Table[UnitStep[x], {x, -3, 3}]
{0, 0, 0, 1, 1, 1, 1}

Plot in one dimension:

>> Plot[UnitStep[x], {x, -4, 4}]

−4 −2 2 4

0.2

0.4

0.6

0.8

1.0

538

https://en.wikipedia.org/wiki/Heaviside_step_function
https://reference.wolfram.com/language/ref/UnitStep.html

42. Operations on Vectors

In mathematics and physics, a vector is a term that refers colloquially to some quantities that cannot be
expressed by a single number. It is also a row or column of a matrix.

In computer science, it is an array data structure consisting of collection of elements identified by at least
on array index or key.

In Mathics3 vectors as are Lists. One never needs to distinguish between row and column vectors. As
with other objects vectors can mix number and symbolic elements.

Vectors can be long, dense, or sparse.

Here are the grouping we have for Vector Operations:

Contents

42.1. Constructing Vectors 539
42.1.1. AngleVector 539

42.2. Mathematical Operations 540
42.2.1. Cross 540
42.2.2. Curl 541
42.2.3. Norm 541

42.3. Vector Space Operations 542
42.3.1. KroneckerProduct 542
42.3.2. Normalize 543
42.3.3. Projection 543
42.3.4. UnitVector 544
42.3.5. VectorAngle 544

42.1. Constructing Vectors

Functions for constructing lists of various sizes and structure.

See also Constructing Lists.

42.1.1. AngleVector

WMA link

AngleVector[ϕ]
returns the point at angle ϕ on the unit circle.

AngleVector[{r, ϕ}]
returns the point at angle ϕ on a circle of radius r.

AngleVector[{x, y}, ϕ]
returns the point at angle ϕ on a circle of radius 1 centered at {x, y}.

AngleVector[{x, y}, {r, ϕ}]
returns point at angle ϕ on a circle of radius r centered at {x, y}.

539

https://reference.wolfram.com/language/ref/AngleVector.html

>> AngleVector[90 Degree]
{0, 1}

>> AngleVector[{1, 10}, a]
{1 + Cos [a] , 10 + Sin [a]}

42.2. Mathematical Operations

42.2.1. Cross

Cross product (SymPy, WMA)

Cross[a, b]
computes the vector cross product of a and b.

Three-dimensional cross product:

>> Cross[{x1, y1, z1}, {x2, y2, z2}]
{y1z2− y2z1,−x1z2 + x2z1, x1y2− x2y1}

Cross is antisymmetric, so:

>> Cross[{x, y}]
{−y, x}

Graph two-Dimensional cross product:

>> v1 = {1, Sqrt[3]}; v2 = Cross[v1]{
−
√

3, 1
}

Visualize this:

>> Graphics[{Arrow[{{0, 0}, v1}], Red, Arrow[{{0, 0}, v2}]}, Axes ->
True]

−1.5 −1.0 −0.5 0.5 1.0

0.5

1.0

1.5

540

https://en.wikipedia.org/wiki/Cross_product
https://docs.sympy.org/latest/modules/physics/vector/api/functions.html#sympy.physics.vector.functions.cross
https://reference.wolfram.com/language/ref/Cross.html

>> Cross[{1, 2}, {3, 4, 5}]
The arguments are expected to be vectors of equal length, and the
number of arguments is expected to be 1 less than their length.

Cross
[
{1, 2} , {3, 4, 5}

]

42.2.2. Curl

Curl (SymPy, WMA)

Curl[{ f1, f2}, {x1, x2}]
returns the curl d f2/dx1 - d f1/dx2

Curl[{ f1, f2, f3} {x1, x2, x3}]
returns the curl (d f3/dx2 - d f2/dx3, dx3/d f3 - d f3/dx1, d f2/d f1 - d f1/dx2)

Two-dimensional Curl:

>> Curl[{y, -x}, {x, y}]
−2

>> v[x_, y_] := {Cos[x] Sin[y], Cos[y] Sin[x]}

>> Curl[v[x, y], {x, y}]
0

Three-dimensional Curl:

>> Curl[{y, -x, 2 z}, {x, y, z}]
{0, 0,−2}

42.2.3. Norm

Matrix norms induced by vector p-norms (SymPy, WMA)

Norm[m, p]
computes the p-norm of matrix m.

Norm[m]
computes the 2-norm of matrix m.

The Norm of of a vector is its Euclidean distance:

>> Norm[{x, y, z}]√
Abs [x]2 + Abs

[
y
]2 + Abs [z]2

By default, 2-norm is used for vectors, but you can be explicit:

541

https://en.wikipedia.org/wiki/Curl_(mathematics)
https://docs.sympy.org/latest/modules/vector/api/vectorfunctions.html#sympy.vector.curl
https://reference.wolfram.com/language/ref/Curl.html
https://en.wikipedia.org/wiki/Matrix_norm#Matrix_norms_induced_by_vector_p-norms
https://docs.sympy.org/latest/modules/matrices/matrices.html#sympy.matrices.matrices.MatrixBase.norm
https://reference.wolfram.com/language/ref/Norm.html

>> Norm[{3, 4}, 2]
5

The 1-norm is the sum of the values:

>> Norm[{10, 100, 200}, 1]
310

>> Norm[{x, y, z}, Infinity]
Max

[{
Abs [x] , Abs

[
y
]

, Abs [z]
}]

>> Norm[{-100, 2, 3, 4}, Infinity]
100

For complex numbers, Norm[z] is Abs[z]:

>> Norm[1 + I]
√

2

So the norm is always real, even when the input is complex.

Norm[m,“Frobenius”] gives the Frobenius norm of m:

>> Norm[Array[Subscript[a, ##] &, {2, 2}], "Frobenius"]√
Abs

[
a1,1
]2 + Abs

[
a1,2
]2 + Abs

[
a2,1
]2 + Abs

[
a2,2
]2

42.3. Vector Space Operations

42.3.1. KroneckerProduct

Kronecker product (SymPy, WMA)

KroneckerProduct[m1, m2, ...]
returns the Kronecker product of the arrays mi

Show symbolically how the Kronecker product works on two two-dimensional arrays:

>> a = {{a11, a12}, {a21, a22}}; b = {{b11, b12}, {b21, b22}};

>> KroneckerProduct[a, b]
{{a11b11, a11b12, a12b11, a12b12} , {a11b21, a11b22, a12b21, a12b22} , {a21b11, a21b12, a22b11, a22b12} , {a21b21, a21b22, a22b21, a22b22}}

Now do the same with discrete values:

>> a = {{0, 1}, {-1, 0}}; b = {{1, 2}, {3, 4}};

542

https://en.wikipedia.org/wiki/Kronecker_product
https://docs.sympy.org/latest/modules/physics/quantum/tensorproduct.html
https://reference.wolfram.com/language/ref/KroneckerProduct.html

>> KroneckerProduct[a, b] // MatrixForm
0 0 1 2
0 0 3 4
−1 −2 0 0
−3 −4 0 0



42.3.2. Normalize

WMA link

Normalize[v]
calculates the normalized vector v.

Normalize[z]
calculates the normalized complex number z.

>> Normalize[{1, 1, 1, 1}]{
1
2

,
1
2

,
1
2

,
1
2

}
>> Normalize[1 + I](

1
2

+
I
2

)√
2

42.3.3. Projection

WMA link

Projection[u, v]
gives the projection of the vector u onto v

For vectors u and v, the projection is taken to be (v . u / v . v) v

For complex vectors u and v, the projection is taken to be (v* . u / v* . v) v where v* is Conjugate[v].

Projection of two three-dimensional Integer vectors:

>> Projection[{5, 6, 7}, {1, 0, 0}]
{5, 0, 0}

Projection of two two-dimensional Integer vectors:

>> Projection[{2, 3}, {1, 2}]{
8
5

,
16
5

}

543

https://reference.wolfram.com/language/ref/KroneckerProduct.html
https://reference.wolfram.com/language/ref/Projection.html

Projection of a machine-precision vector onto another:

>> Projection[{1.3, 2.1, 3.1}, {-0.3, 4.2, 5.3}]
{ − 0.162767, 2.27874, 2.87556}

Projection of two complex vectors:

>> Projection[{3 + I, 2, 2 - I}, {2, 4, 5 I}]{
2
5
− 16I

45
,

4
5
− 32I

45
,

8
9

+ I
}

Project a symbol vector onto a numeric vector:

>> Projection[{a, b, c}, {1, 1, 1}]{
a + b + c

3
,

a + b + c
3

,
a + b + c

3

}

The projection of vector u onto vector v is in the direction of v:

>> {u, v} = RandomReal[1, {2, 6}];

>> Abs[VectorAngle[Projection[u, v], v]] < 0. + 10^-7
True

42.3.4. UnitVector

Unit vector (WMA)

UnitVector[n, k]
returns the n-dimensional unit vector with a 1 in position k.

UnitVector[k]
is equivalent to UnitVector[2, k].

>> UnitVector[2]
{0, 1}

>> UnitVector[4, 3]
{0, 0, 1, 0}

42.3.5. VectorAngle

WMA link

VectorAngle[u, v]
gives the angles between vectors u and v

544

https://en.wikipedia.org/wiki/Unit_vector
https://reference.wolfram.com/language/ref/UnitVector.html
https://reference.wolfram.com/language/ref/VectorAngle.html

>> VectorAngle[{1, 0}, {0, 1}]
π

2

>> VectorAngle[{1, 2}, {3, 1}]
π

4

>> VectorAngle[{1, 1, 0}, {1, 0, 1}]
π

3

545

43. Operators without Built-in Meanings

Not all operators recognized by the Mathics3 are associated with functions that have built‐in meanings.
You can use these operators as a way to build up your own notation within Mathics3.

Contents

43.1. Infix Operators that require
Additional Mathics3 Modules 548

43.1.1. DirectedEdge (→) 548
43.1.2. UndirectedEdge (↔) 548

43.2. Infix Operators without Built-in
Meanings 549

43.2.1. Backslash 549
43.2.2. Because (∵) 549
43.2.3. Cap (∩) 550
43.2.4. CenterDot (·) 550
43.2.5. CircleDot (⊙) 550
43.2.6. CircleMinus (⊖) 550
43.2.7. CirclePlus (\oplus) 551
43.2.8. CircleTimes (⊗) 551
43.2.9. Colon (:) 551
43.2.10. Congruent (≡) 552
43.2.11. Coproduct (⨿) 552
43.2.12. Cup (∪) 552
43.2.13. CupCap (⌣⌢) 553
43.2.14. Diamond (⋄) 553
43.2.15. DotEqual (.=) 553
43.2.16. DoubleDownArrow (⇓) . . . 554
43.2.17. DoubleLeftArrow (⇐) 554
43.2.18. DoubleLeftRightArrow (⇔) . 554
43.2.19. DoubleLeftTee (=|) 554
43.2.20. DoubleLongLeftArrow (⇐=) . 555
43.2.21. DoubleLongLeftRightArrow

(⇐⇒) 555
43.2.22. DoubleLongRightArrow (=⇒) 555
43.2.23. DoubleRightArrow (⇒) . . . 556
43.2.24. DoubleRightTee (�) 556
43.2.25. DoubleUpArrow (⇑) 556
43.2.26. DoubleUpDownArrow (⇕) . . 557
43.2.27. DoubleVerticalBar (∥) 557
43.2.28. DownArrow (↓) 557
43.2.29. DownArrowBar (↓) 558
43.2.30. DownArrowUpArrow (↓↑) . . 558
43.2.31. DownLeftRightVector (↽⇁) . 558

43.2.32. DownLeftTeeVector (↽ |) . . 558
43.2.33. DownLeftVector (↽) 559
43.2.34. DownLeftVectorBar

(|\leftharpoondown) 559
43.2.35. DownRightTeeVector

(|\rightharpoondown) 559
43.2.36. DownRightVector (⇁) 560
43.2.37. DownRightVectorBar (⇁ |) . . 560
43.2.38. DownTee (⊤) 560
43.2.39. DownTeeArrow (↓̄) 561
43.2.40. EqualTilde (h) 561
43.2.41. Equilibrium (⇀↽) 561
43.2.42. GreaterEqualLess

(a\gtreqless b) 562
43.2.43. GreaterFullEqual (½) 562
43.2.44. GreaterGreater (≫) 562
43.2.45. GreaterLess (≷) 562
43.2.46. GreaterSlantEqual (≥) 563
43.2.47. GreaterTilde (¦) 563
43.2.48. HumpDownHump (í) 563
43.2.49. HumpEqual (ì) 564
43.2.50. LeftArrow (←) 564
43.2.51. LeftArrowBar (|\leftarrow) . 564
43.2.52. LeftArrowRightArrow (�) . . 565
43.2.53. LeftDownTeeVector (�̄) 565
43.2.54. LeftDownVector (�) 565
43.2.55. LeftDownVectorBar (�) 566
43.2.56. LeftRightArrow (↔) 566
43.2.57. LeftRightVector (↼⇀) 566
43.2.58. LeftTee (⊣) 566
43.2.59. LeftTeeArrow (← �) 567
43.2.60. LeftTeeVector (↼ |) 567
43.2.61. LeftTriangle (◁) 567
43.2.62. LeftTriangleBar (◁|) 568
43.2.63. LeftTriangleEqual (Å) 568

43.2.64. LeftUpDownVector (
�
�) 568

43.2.65. LeftUpTeeVector (�) 569
43.2.66. LeftUpVector (�) 569
43.2.67. LeftUpVectorBar (�̄) 569
43.2.68. LeftVector (↼) 570

546

43.2.69. LeftVectorBar
(|\leftharpoonup) 570

43.2.70. LessEqualGreater (Ñ) 570
43.2.71. LessFullEqual (µ) 571
43.2.72. LessGreater (≶) 571
43.2.73. LessLess (≪) 571
43.2.74. LessSlantEqual (≤) 572
43.2.75. LessTilde (®) 572
43.2.76. LongLeftArrow (←−) 572
43.2.77. LongLeftRightArrow (←→) . 572
43.2.78. LongRightArrow (−→) 573
43.2.79. LowerLeftArrow (↙) 573
43.2.80. LowerRightArrow (↘) 573
43.2.81. MinusPlus (∓) 574
43.2.82. NestedGreaterGreater (≫) . . 574
43.2.83. NestedLessLess (≪) 574
43.2.84. NotCongruent (̸≡) 575
43.2.85. NotCupCap (̸ ⌣⌢) 575
43.2.86. NotDoubleVerticalBar (∦) . . 575
43.2.87. NotGreater (≯) 576
43.2.88. NotGreaterEqual (�) 576
43.2.89. NotGreaterFullEqual (�) . . . 576
43.2.90. NotGreaterGreater (̸≫) 576
43.2.91. NotGreaterLess (̸ ≷) 577
43.2.92. NotGreaterTilde (̸ ¦) 577
43.2.93. NotLeftTriangle (6) 577
43.2.94. NotLeftTriangleEqual (5) . . . 578
43.2.95. NotLess (≮) 578
43.2.96. NotLessEqual (�) 578
43.2.97. NotLessFullEqual (�) 579
43.2.98. NotLessGreater (̸ ≶) 579
43.2.99. NotLessTilde (̸ ®) 579
43.2.100. NotPrecedes (⊀) 580
43.2.101. NotPrecedesSlantEqual (̸ ´) . 580
43.2.102. NotPrecedesTilde (̸ ­) 580
43.2.103. NotReverseElement (̸∋) . . . 580
43.2.104. NotRightTriangle (7) 581
43.2.105. NotRightTriangleEqual (4) . . 581
43.2.106. NotSquareSubsetEqual (̸⊑) . . 581
43.2.107. NotSquareSupersetEqual

(\[NotSquareSupersetEqual]) 582
43.2.108. NotSubset (̸⊂) 582
43.2.109. NotSubsetEqual (*) 582
43.2.110. NotSucceeds (�) 583
43.2.111. NotSucceedsSlantEqual (̸⪰) . 583
43.2.112. NotSucceedsTilde (̸ ¥) 583
43.2.113. NotSuperset (̸⊃) 584
43.2.114. NotSupersetEqual (+) 584
43.2.115. NotTilde (̸∼) 584
43.2.116. NotTildeEqual (̸≃) 584
43.2.117. NotTildeFullEqual (�) 585

43.2.118. NotTildeTilde (̸≈) 585
43.2.119. Perpendicular (⊥) 585
43.2.120. PlusMinus 586
43.2.121. Precedes (≺) 586
43.2.122. PrecedesEqual (⪯) 586
43.2.123. PrecedesSlantEqual (´) 587
43.2.124. PrecedesTilde (­) 587
43.2.125. Proportion (::) 587
43.2.126. Proportional (∝) 588
43.2.127. ReverseElement (∋) 588
43.2.128. ReverseEquilibrium (�) . . . 588
43.2.129. ReverseUpEquilibrium (��) . 588
43.2.130. RightArrow (→) 589
43.2.131. RightArrowBar (→ |) 589
43.2.132. RightArrowLeftArrow (�) . . 589
43.2.133. RightDownTeeVector (�̄) . . . 590
43.2.134. RightDownVector (�) 590
43.2.135. RightDownVectorBar

(\[RightDownVectorBar]) . . 590
43.2.136. RightTee (⊢) 591
43.2.137. RightTeeArrow (⊢) 591
43.2.138. RightTeeVector

(|\rightharpoonup) 591
43.2.139. RightTriangle (▷) 592
43.2.140. RightTriangleBar

(|\triangleright) 592
43.2.141. RightTriangleEqual (Ä) 592

43.2.142. RightUpDownVector (
�
�) . . . 593

43.2.143. RightUpTeeVector (�) 593
43.2.144. RightUpVector (�) 593
43.2.145. RightUpVectorBar (�̄) 594
43.2.146. RightVector (⇀) 594
43.2.147. RightVectorBar (⇀ |) 594
43.2.148. RoundImplies

(RoundImplies[a, b]) 594
43.2.149. ShortDownArrow 595
43.2.150. ShortLeftArrow 595
43.2.151. ShortRightArrow 595
43.2.152. ShortUpArrow 596
43.2.153. SmallCircle (◦) 596
43.2.154. SquareIntersection (⊓) 596
43.2.155. SquareSubset (À) 597
43.2.156. SquareSubsetEqual (⊑) 597
43.2.157. SquareSuperset (Á) 597
43.2.158. SquareSupersetEqual (⊒) . . . 598
43.2.159. SquareUnion (⊔) 598
43.2.160. Star (⋆) 598
43.2.161. Subset (⊂) 598
43.2.162. SubsetEqual (⊆) 599
43.2.163. Succeeds (≻) 599
43.2.164. SucceedsEqual (⪰) 599
43.2.165. SucceedsSlantEqual (⪰) . . . 600
43.2.166. SucceedsTilde (¥) 600

547

43.2.167. SuchThat (�) 600
43.2.168. Superset (⊃) 601
43.2.169. SupersetEqual (⊇) 601
43.2.170. Therefore (∴) 601
43.2.171. Tilde (∼) 602
43.2.172. TildeEqual (≃) 602
43.2.173. TildeFullEqual (∼=) 602
43.2.174. TildeTilde (≈) 602
43.2.175. UnionPlus (⊎) 603
43.2.176. UpArrow (↑) 603
43.2.177. UpArrowBar (↑̄) 603
43.2.178. UpArrowDownArrow (↕) . . 604
43.2.179. UpDownArrow (↕) 604
43.2.180. UpEquilibrium (��) 604
43.2.181. UpTee (⊥) 605
43.2.182. UpTeeArrow (↑) 605

43.2.183. UpperLeftArrow (↖) 605
43.2.184. UpperRightArrow (↗) 606
43.2.185. Vee (∨) 606
43.2.186. VerticalBar (p) 606
43.2.187. VerticalTilde (≀) 606
43.2.188. Wedge (∧) 607

43.3. Postfix Operators without Built-in
Meanings 607

43.3.1. InvisiblePostfixScriptBase . . 607
43.4. Prefix Operators without Built-in

Meanings 608
43.4.1. CapitalDifferentialD 608
43.4.2. Del (∇) 608
43.4.3. DifferentialD (d) 608
43.4.4. InvisiblePrefixScriptBase . . . 609
43.4.5. Square (�) 609

43.1. Infix Operators that require Additional Mathics3 Modules

Some Infix operators require loading Mathics3 Modules before the operators is used in a special way.

Right now, this happens for directed andundirected edges of a network graph. Before issuing LoadModule["pymathics.graph"],
the operators here have no meaning and can be user defined like other operators that have no pre-set
meaning.

43.1.1. DirectedEdge (→)

WML link

DirectedEdge[x, y, ...]
displays x→ y→ ...

Directed edges are typically used in network graphs. In Mathics3, network graphs are sup-
ported through a Mathics3 module.
Issue LoadModule["pymathics.graph"] after pip installing Python package
pymathics-graph.

>> DirectedEdge[x, y, z]
x → y→ z

>> a \[DirectedEdge] b
a→ b

43.1.2. UndirectedEdge (↔)

WML link

548

https://reference.wolfram.com/language/ref/DirectedEdge.html
https://reference.wolfram.com/language/ref/UndirectedEdge.html

UndirectedEdge[x, y, ...]
displays x↔ y ...

Undirected edges are typically used in network graphs. In Mathics3, network graphs are
supported through a Mathics3 module.
Issue LoadModule["pymathics.graph"] after pip installing Python package
pymathics-graph.

>> UndirectedEdge[x, y, z]
x ↔ y↔ z

>> a <-> b
a↔ b

43.2. Infix Operators without Built-in Meanings

43.2.1. Backslash

WML link

Backslash[x, y, ...]
displays x � y � ...

>> Backslash[x, y, z]
x

y
z

>> a \[Backslash] b
a

b

43.2.2. Because (∵)

WML link

Because[x, y, ...]
displays x ∵ y ∵ ...

>> Because[x, y, z]
x ∵ y ∵ z

>> a \[Because] b
a ∵ b

549

https://reference.wolfram.com/language/ref/Backslash.html
https://reference.wolfram.com/language/ref/Because.html

43.2.3. Cap (∩)

WML link

Cap[x, y, ...]
displays x ∩ y ∩ ...

>> Cap[x, y, z]
x ∩ y ∩ z

>> a \[Cap] b
a ∩ b

43.2.4. CenterDot (·)

WML link

CenterDot[x, y, ...]
displays x · y · ...

>> CenterDot[x, y, z]
x · y · z

>> a \[CenterDot] b
a · b

43.2.5. CircleDot (⊙)

WML link

CircleDot[x, y, ...]
displays x ⊙ y ⊙ ...

>> CircleDot[x, y, z]
x ⊙ y ⊙ z

>> a \[CircleDot] b
a ⊙ b

43.2.6. CircleMinus (⊖)

WML link

550

https://reference.wolfram.com/language/ref/Cap.html
https://reference.wolfram.com/language/ref/CenterDot.html
https://reference.wolfram.com/language/ref/CircleDot.html
https://reference.wolfram.com/language/ref/CircleMinus.html

CircleMinus[x, y, ...]
displays x ⊖ y ⊖ ...

>> CircleMinus[x, y, z]
x ⊖ y ⊖ z

>> a \[CircleMinus] b
a ⊖ b

43.2.7. CirclePlus (\oplus)

WML link

CirclePlus[x, y, ...]
displays x \oplus y \oplus ...

>> CirclePlus[x, y, z]
x ⊕ y ⊕ z

>> a \[CirclePlus] b
a ⊕ b

43.2.8. CircleTimes (⊗)

WML link

CircleTimes[x, y, ...]
displays x ⊗ y ⊗ ...

>> CircleTimes[x, y, z]
x ⊗ y ⊗ z

>> a \[CircleTimes] b
a ⊗ b

43.2.9. Colon (:)

WML link

Colon[x, y, ...]
displays x : y : ...

551

https://reference.wolfram.com/language/ref/CirclePlus.html
https://reference.wolfram.com/language/ref/CircleTimes.html
https://reference.wolfram.com/language/ref/Colon.html

>> Colon[x, y, z]
x : y : z

>> a \[Colon] b
a : b

43.2.10. Congruent (≡)

WML link

Congruent[x, y, ...]
displays x ≡ y ≡ ...

>> Congruent[x, y, z]
x ≡ y ≡ z

>> a \[Congruent] b
a ≡ b

43.2.11. Coproduct (⨿)

WML link

Coproduct[x, y, ...]
displays x ⨿ y ⨿ ...

>> Coproduct[x, y, z]

x ⨿ y ⨿ z

>> a \[Coproduct] b

a ⨿ b

43.2.12. Cup (∪)

WML link

Cup[x, y, ...]
displays x ∪ y ∪ ...

>> Cup[x, y, z]
x ∪ y ∪ z

552

https://reference.wolfram.com/language/ref/Congruent.html
https://reference.wolfram.com/language/ref/Coproduct.html
https://reference.wolfram.com/language/ref/Cup.html

>> a \[Cup] b
a ∪ b

43.2.13. CupCap (⌣
⌢)

WML link

CupCap[x, y, ...]
displays x ⌣

⌢ y ⌣
⌢ ...

>> CupCap[x, y, z]

x ⌣
⌢ y ⌣

⌢ z

>> a \[CupCap] b

a ⌣
⌢ b

43.2.14. Diamond (⋄)

WML link

Diamond[x, y, ...]
displays x ⋄ y ⋄ ...

>> Diamond[x, y, z]
x ⋄ y ⋄ z

>> a \[Diamond] b
a ⋄ b

43.2.15. DotEqual (.=)

WML link

DotEqual[x, y, ...]
displays x .= y .= ...

>> DotEqual[x, y, z]
x .= y .= z

>> a \[DotEqual] b
a .= b

553

https://reference.wolfram.com/language/ref/CupCap.html
https://reference.wolfram.com/language/ref/Diamond.html
https://reference.wolfram.com/language/ref/DotEqual.html

43.2.16. DoubleDownArrow (⇓)

WML link

DoubleDownArrow[x, y, ...]
displays x ⇓ y ⇓ ...

>> DoubleDownArrow[x, y, z]
x ⇓ y ⇓ z

>> a \[DoubleDownArrow] b
a ⇓ b

43.2.17. DoubleLeftArrow (⇐)

WML link

DoubleLeftArrow[x, y, ...]
displays x⇐ y⇐ ...

>> DoubleLeftArrow[x, y, z]
x ⇐ y⇐ z

>> a \[DoubleLeftArrow] b
a⇐ b

43.2.18. DoubleLeftRightArrow (⇔)

WML link

DoubleLeftRightArrow[x, y, ...]
displays x⇔ y⇔ ...

>> DoubleLeftRightArrow[x, y, z]
x ⇔ y⇔ z

>> a \[DoubleLeftRightArrow] b
a⇔ b

43.2.19. DoubleLeftTee (=|)

WML link

554

https://reference.wolfram.com/language/ref/DoubleDownArrow.html
https://reference.wolfram.com/language/ref/DoubleLeftArrow.html
https://reference.wolfram.com/language/ref/DoubleLeftRightArrow.html
https://reference.wolfram.com/language/ref/DoubleLeftTee.html

DoubleLeftTee[x, y, ...]
displays x =| y =| ...

>> DoubleLeftTee[x, y, z]
x = |y = |z

>> a \[DoubleLeftTee] b
a = |b

43.2.20. DoubleLongLeftArrow (⇐=)

WML link

DoubleLongLeftArrow[x, y, ...]
displays x⇐= y⇐= ...

>> DoubleLongLeftArrow[x, y, z]
x ⇐= y⇐= z

>> a \[DoubleLongLeftArrow] b
a⇐= b

43.2.21. DoubleLongLeftRightArrow (⇐⇒)

WML link

DoubleLongLeftRightArrow[x, y, ...]
displays x⇐⇒ y⇐⇒ ...

>> DoubleLongLeftRightArrow[x, y, z]
x ⇐⇒ y⇐⇒ z

>> a \[DoubleLongLeftRightArrow] b
a⇐⇒ b

43.2.22. DoubleLongRightArrow (=⇒)

WML link

DoubleLongRightArrow[x, y, ...]
displays x =⇒ y =⇒ ...

555

https://reference.wolfram.com/language/ref/DoubleLongLeftArrow.html
https://reference.wolfram.com/language/ref/DoubleLongLeftRightArrow.html
https://reference.wolfram.com/language/ref/DoubleLongRightArrow.html

>> DoubleLongRightArrow[x, y, z]
x =⇒ y =⇒ z

>> a \[DoubleLongRightArrow] b
a =⇒ b

43.2.23. DoubleRightArrow (⇒)

WML link

DoubleRightArrow[x, y, ...]
displays x⇒ y⇒ ...

>> DoubleRightArrow[x, y, z]
x ⇒ y⇒ z

>> a \[DoubleRightArrow] b
a⇒ b

43.2.24. DoubleRightTee (�)

WML link

DoubleRightTee[x, y, ...]
displays x � y � ...

>> DoubleRightTee[x, y, z]
x � y � z

>> a \[DoubleRightTee] b
a � b

43.2.25. DoubleUpArrow (⇑)

WML link

DoubleUpArrow[x, y, ...]
displays x ⇑ y ⇑ ...

>> DoubleUpArrow[x, y, z]
x ⇑ y ⇑ z

556

https://reference.wolfram.com/language/ref/DoubleRightArrow.html
https://reference.wolfram.com/language/ref/DoubleRightTee.html
https://reference.wolfram.com/language/ref/DoubleUpArrow.html

>> a \[DoubleUpArrow] b
a ⇑ b

43.2.26. DoubleUpDownArrow (⇕)

WML link

DoubleUpDownArrow[x, y, ...]
displays x ⇕ y ⇕ ...

>> DoubleUpDownArrow[x, y, z]
x ⇕ y ⇕ z

>> a \[DoubleUpDownArrow] b
a ⇕ b

43.2.27. DoubleVerticalBar (∥)

WML link

DoubleVerticalBar[x, y, ...]
displays x ∥ y ∥ ...

>> DoubleVerticalBar[x, y, z]
x ∥ y ∥ z

>> a \[DoubleVerticalBar] b
a ∥ b

43.2.28. DownArrow (↓)

WML link

DownArrow[x, y, ...]
displays x ↓ y ↓ ...

>> DownArrow[x, y, z]
x ↓ y ↓ z

>> a \[DownArrow] b
a ↓ b

557

https://reference.wolfram.com/language/ref/DoubleUpDownArrow.html
https://reference.wolfram.com/language/ref/DoubleVerticalBar.html
https://reference.wolfram.com/language/ref/DownArrow.html

43.2.29. DownArrowBar (↓)

WML link

DownArrowBar[x, y, ...]
displays x ↓ y ↓ ...

>> DownArrowBar[x, y, z]
x↓y↓z

>> a \[DownArrowBar] b
a↓b

43.2.30. DownArrowUpArrow (↓↑)

WML link

DownArrowUpArrow[x, y, ...]
displays x ↓↑ y ↓↑ ...

>> DownArrowUpArrow[x, y, z]
x ↓↑ y ↓↑ z

>> a \[DownArrowUpArrow] b
a ↓↑ b

43.2.31. DownLeftRightVector (↽⇁)

WML link

DownLeftRightVector[x, y, ...]
displays x ↽⇁ y ↽⇁ ...

>> DownLeftRightVector[x, y, z]
x ↽⇁ y ↽⇁ z

>> a \[DownLeftRightVector] b
a ↽⇁ b

43.2.32. DownLeftTeeVector (↽ |)

WML link

558

https://reference.wolfram.com/language/ref/DownArrowBar.html
https://reference.wolfram.com/language/ref/DownArrowUpArrow.html
https://reference.wolfram.com/language/ref/DownLeftRightVector.html
https://reference.wolfram.com/language/ref/DownLeftTeeVector.html

DownLeftTeeVector[x, y, ...]
displays x ↽ | y ↽ | ...

>> DownLeftTeeVector[x, y, z]
x ↽ |y ↽ |z

>> a \[DownLeftTeeVector] b
a ↽ |b

43.2.33. DownLeftVector (↽)

WML link

DownLeftVector[x, y, ...]
displays x ↽ y ↽ ...

>> DownLeftVector[x, y, z]
x ↽ y ↽ z

>> a \[DownLeftVector] b
a ↽ b

43.2.34. DownLeftVectorBar (|\leftharpoondown)

WML link

DownLeftVectorBar[x, y, ...]
displays x |\leftharpoondown y |\leftharpoondown ...

>> DownLeftVectorBar[x, y, z]
x|↽ y|↽ z

>> a \[DownLeftVectorBar] b
a|↽ b

43.2.35. DownRightTeeVector (|\rightharpoondown)

WML link

DownRightTeeVector[x, y, ...]
displays x |\rightharpoondown y |\rightharpoondown ...

559

https://reference.wolfram.com/language/ref/DownLeftVector.html
https://reference.wolfram.com/language/ref/DownLeftVectorBar.html
https://reference.wolfram.com/language/ref/DownRightTeeVector.html

>> DownRightTeeVector[x, y, z]
x|⇁ y|⇁ z

>> a \[DownRightTeeVector] b
a|⇁ b

43.2.36. DownRightVector (⇁)

WML link

DownRightVector[x, y, ...]
displays x ⇁ y ⇁ ...

>> DownRightVector[x, y, z]
x ⇁ y ⇁ z

>> a \[DownRightVector] b
a ⇁ b

43.2.37. DownRightVectorBar (⇁ |)

WML link

DownRightVectorBar[x, y, ...]
displays x ⇁ | y ⇁ | ...

>> DownRightVectorBar[x, y, z]
x ⇁ |y ⇁ |z

>> a \[DownRightVectorBar] b
a ⇁ |b

43.2.38. DownTee (⊤)

WML link

DownTee[x, y, ...]
displays x ⊤ y ⊤ ...

>> DownTee[x, y, z]
x⊤y⊤z

560

https://reference.wolfram.com/language/ref/DownRightVector.html
https://reference.wolfram.com/language/ref/DownRightVectorBar.html
https://reference.wolfram.com/language/ref/DownTee.html

>> a \[DownTee] b
a⊤b

43.2.39. DownTeeArrow (↓̄)

WML link

DownTeeArrow[x, y, ...]
displays x ↓̄ y ↓̄ ...

>> DownTeeArrow[x, y, z]
x↓̄y↓̄z

>> a \[DownTeeArrow] b
a↓̄b

43.2.40. EqualTilde (h)

WML link

EqualTilde[x, y, ...]
displays x h y h ...

>> EqualTilde[x, y, z]
x h y h z

>> a \[EqualTilde] b
a h b

43.2.41. Equilibrium (⇀↽)

WML link

Equilibrium[x, y, ...]
displays x ⇀↽ y ⇀↽ ...

>> Equilibrium[x, y, z]
x ⇀↽ y ⇀↽ z

>> a \[Equilibrium] b
a ⇀↽ b

561

https://reference.wolfram.com/language/ref/DownTeeArrow.html
https://reference.wolfram.com/language/ref/EqualTilde.html
https://reference.wolfram.com/language/ref/Equilibrium.html

43.2.42. GreaterEqualLess (a\gtreqless b)

WML link

GreaterEqualLess[x, y, ...]
displays x a\gtreqless b y a\gtreqless b ...

>> GreaterEqualLess[x, y, z]
xa Ò bya Ò bz

>> a \[GreaterEqualLess] b
aa Ò bb

43.2.43. GreaterFullEqual (½)

WML link

GreaterFullEqual[x, y, ...]
displays x ½ y ½ ...

>> GreaterFullEqual[x, y, z]
x ½ y ½ z

>> a \[GreaterFullEqual] b
a ½ b

43.2.44. GreaterGreater (≫)

WML link

GreaterGreater[x, y, ...]
displays x≫ y≫ ...

>> GreaterGreater[x, y, z]
x ≫ y≫ z

>> a \[GreaterGreater] b
a≫ b

43.2.45. GreaterLess (≷)

WML link

562

https://reference.wolfram.com/language/ref/GreaterEqualLess.html
https://reference.wolfram.com/language/ref/GreaterFullEqual.html
https://reference.wolfram.com/language/ref/GreaterGreater.html
https://reference.wolfram.com/language/ref/GreaterLess.html

GreaterLess[x, y, ...]
displays x ≷ y ≷ ...

>> GreaterLess[x, y, z]
x ≷ y ≷ z

>> a \[GreaterLess] b
a ≷ b

43.2.46. GreaterSlantEqual (≥)

WML link

GreaterSlantEqual[x, y, ...]
displays x ≥ y ≥ ...

>> GreaterSlantEqual[x, y, z]
x ≥ y ≥ z

>> a \[GreaterSlantEqual] b
a ≥ b

43.2.47. GreaterTilde (¦)

WML link

GreaterTilde[x, y, ...]
displays x ¦ y ¦ ...

>> GreaterTilde[x, y, z]
x ¦ y ¦ z

>> a \[GreaterTilde] b
a ¦ b

43.2.48. HumpDownHump (í)

WML link

HumpDownHump[x, y, ...]
displays x í y í ...

563

https://reference.wolfram.com/language/ref/GreaterSlantEqual.html
https://reference.wolfram.com/language/ref/GreaterTilde.html
https://reference.wolfram.com/language/ref/HumpDownHump.html

>> HumpDownHump[x, y, z]
x í y í z

>> a \[HumpDownHump] b
a í b

43.2.49. HumpEqual (ì)

WML link

HumpEqual[x, y, ...]
displays x ì y ì ...

>> HumpEqual[x, y, z]
x ì y ì z

>> a \[HumpEqual] b
a ì b

43.2.50. LeftArrow (←)

WML link

LeftArrow[x, y, ...]
displays x← y← ...

>> LeftArrow[x, y, z]
x ← y← z

>> a \[LeftArrow] b
a← b

43.2.51. LeftArrowBar (|\leftarrow)

WML link

LeftArrowBar[x, y, ...]
displays x |\leftarrow y |\leftarrow ...

>> LeftArrowBar[x, y, z]
x|← y|← z

564

https://reference.wolfram.com/language/ref/HumpEqual.html
https://reference.wolfram.com/language/ref/LeftArrow.html
https://reference.wolfram.com/language/ref/LeftArrowBar.html

>> a \[LeftArrowBar] b
a|← b

43.2.52. LeftArrowRightArrow (�)

WML link

LeftArrowRightArrow[x, y, ...]
displays x � y � ...

>> LeftArrowRightArrow[x, y, z]
x � y � z

>> a \[LeftArrowRightArrow] b
a � b

43.2.53. LeftDownTeeVector (�̄)

WML link

LeftDownTeeVector[x, y, ...]
displays x �̄ y �̄ ...

>> LeftDownTeeVector[x, y, z]
x�̄y�̄z

>> a \[LeftDownTeeVector] b
a�̄b

43.2.54. LeftDownVector (�)

WML link

LeftDownVector[x, y, ...]
displays x � y � ...

>> LeftDownVector[x, y, z]
x � y � z

>> a \[LeftDownVector] b
a � b

565

https://reference.wolfram.com/language/ref/LeftArrowRightArrow.html
https://reference.wolfram.com/language/ref/LeftDownTeeVector.html
https://reference.wolfram.com/language/ref/LeftDownVector.html

43.2.55. LeftDownVectorBar (�)

WML link

LeftDownVectorBar[x, y, ...]
displays x � y � ...

>> LeftDownVectorBar[x, y, z]
x�y�z

>> a \[LeftDownVectorBar] b
a�b

43.2.56. LeftRightArrow (↔)

WML link

LeftRightArrow[x, y, ...]
displays x↔ y↔ ...

>> LeftRightArrow[x, y, z]
x ↔ y↔ z

>> a \[LeftRightArrow] b
a↔ b

43.2.57. LeftRightVector (↼⇀)

WML link

LeftRightVector[x, y, ...]
displays x ↼⇀ y ↼⇀ ...

>> LeftRightVector[x, y, z]
x ↼⇀ y ↼⇀ z

>> a \[LeftRightVector] b
a ↼⇀ b

43.2.58. LeftTee (⊣)

WML link

566

https://reference.wolfram.com/language/ref/LeftDownVectorBar.html
https://reference.wolfram.com/language/ref/LeftRightArrow.html
https://reference.wolfram.com/language/ref/LeftRightVector.html
https://reference.wolfram.com/language/ref/LeftTee.html

LeftTee[x, y, ...]
displays x ⊣ y ⊣ ...

>> LeftTee[x, y, z]
x ⊣ y ⊣ z

>> a \[LeftTee] b
a ⊣ b

43.2.59. LeftTeeArrow (← �)

WML link

LeftTeeArrow[x, y, ...]
displays x← � y← � ...

>> LeftTeeArrow[x, y, z]
x ← � y← � z

>> a \[LeftTeeArrow] b
a← � b

43.2.60. LeftTeeVector (↼ |)

WML link

LeftTeeVector[x, y, ...]
displays x ↼ | y ↼ | ...

>> LeftTeeVector[x, y, z]
x ↼ |y ↼ |z

>> a \[LeftTeeVector] b
a ↼ |b

43.2.61. LeftTriangle (◁)

WML link

LeftTriangle[x, y, ...]
displays x ◁ y ◁ ...

567

https://reference.wolfram.com/language/ref/LeftTeeArrow.html
https://reference.wolfram.com/language/ref/LeftTeeVector.html
https://reference.wolfram.com/language/ref/LeftTriangle.html

>> LeftTriangle[x, y, z]
x ◁ y ◁ z

>> a \[LeftTriangle] b
a ◁ b

43.2.62. LeftTriangleBar (◁|)

WML link

LeftTriangleBar[x, y, ...]
displays x ◁| y ◁| ...

>> LeftTriangleBar[x, y, z]
x ◁ |y ◁ |z

>> a \[LeftTriangleBar] b
a ◁ |b

43.2.63. LeftTriangleEqual (Å)

WML link

LeftTriangleEqual[x, y, ...]
displays x Å y Å ...

>> LeftTriangleEqual[x, y, z]
x Å y Å z

>> a \[LeftTriangleEqual] b
a Å b

43.2.64. LeftUpDownVector (
�
�)

WML link

LeftUpDownVector[x, y, ...]

displays x
�
� y

�
� ...

568

https://reference.wolfram.com/language/ref/LeftTriangleBar.html
https://reference.wolfram.com/language/ref/LeftTriangleEqual.html
https://reference.wolfram.com/language/ref/LeftUpDownVector.html

>> LeftUpDownVector[x, y, z]

x
�
� y

�
� z

>> a \[LeftUpDownVector] b

a
�
� b

43.2.65. LeftUpTeeVector (�)

WML link

LeftUpTeeVector[x, y, ...]
displays x � y � ...

>> LeftUpTeeVector[x, y, z]
x�y�z

>> a \[LeftUpTeeVector] b
a�b

43.2.66. LeftUpVector (�)

WML link

LeftUpVector[x, y, ...]
displays x � y � ...

>> LeftUpVector[x, y, z]
x � y � z

>> a \[LeftUpVector] b
a � b

43.2.67. LeftUpVectorBar (�̄)

WML link

LeftUpVectorBar[x, y, ...]
displays x �̄ y �̄ ...

569

https://reference.wolfram.com/language/ref/LeftUpTeeVector.html
https://reference.wolfram.com/language/ref/LeftUpVector.html
https://reference.wolfram.com/language/ref/LeftUpVectorBar.html

>> LeftUpVectorBar[x, y, z]
x�̄y�̄z

>> a \[LeftUpVectorBar] b
a�̄b

43.2.68. LeftVector (↼)

WML link

LeftVector[x, y, ...]
displays x ↼ y ↼ ...

>> LeftVector[x, y, z]
x ↼ y ↼ z

>> a \[LeftVector] b
a ↼ b

43.2.69. LeftVectorBar (|\leftharpoonup)

WML link

LeftVectorBar[x, y, ...]
displays x |\leftharpoonup y |\leftharpoonup ...

>> LeftVectorBar[x, y, z]
x|↼ y|↼ z

>> a \[LeftVectorBar] b
a|↼ b

43.2.70. LessEqualGreater (Ñ)

WML link

LessEqualGreater[x, y, ...]
displays x Ñ y Ñ ...

>> LessEqualGreater[x, y, z]
x Ñ y Ñ z

570

https://reference.wolfram.com/language/ref/LeftVector.html
https://reference.wolfram.com/language/ref/LeftVectorBar.html
https://reference.wolfram.com/language/ref/LessEqualGreater.html

>> a \[LessEqualGreater] b
a Ñ b

43.2.71. LessFullEqual (µ)

WML link

LessFullEqual[x, y, ...]
displays x µ y µ ...

>> LessFullEqual[x, y, z]
x µ y µ z

>> a \[LessFullEqual] b
a µ b

43.2.72. LessGreater (≶)

WML link

LessGreater[x, y, ...]
displays x ≶ y ≶ ...

>> LessGreater[x, y, z]
x ≶ y ≶ z

>> a \[LessGreater] b
a ≶ b

43.2.73. LessLess (≪)

WML link

LessLess[x, y, ...]
displays x≪ y≪ ...

>> LessLess[x, y, z]
x ≪ y≪ z

>> a \[LessLess] b
a≪ b

571

https://reference.wolfram.com/language/ref/LessFullEqual.html
https://reference.wolfram.com/language/ref/LessGreater.html
https://reference.wolfram.com/language/ref/LessLess.html

43.2.74. LessSlantEqual (≤)

WML link

LessSlantEqual[x, y, ...]
displays x ≤ y ≤ ...

>> LessSlantEqual[x, y, z]
x ≤ y ≤ z

>> a \[LessSlantEqual] b
a ≤ b

43.2.75. LessTilde (®)

WML link

LessTilde[x, y, ...]
displays x ® y ® ...

>> LessTilde[x, y, z]
x ® y ® z

>> a \[LessTilde] b
a ® b

43.2.76. LongLeftArrow (←−)

WML link

LongLeftArrow[x, y, ...]
displays x←− y←− ...

>> LongLeftArrow[x, y, z]
x ←− y←− z

>> a \[LongLeftArrow] b
a←− b

43.2.77. LongLeftRightArrow (←→)

WML link

572

https://reference.wolfram.com/language/ref/LessSlantEqual.html
https://reference.wolfram.com/language/ref/LessTilde.html
https://reference.wolfram.com/language/ref/LongLeftArrow.html
https://reference.wolfram.com/language/ref/LongLeftRightArrow.html

LongLeftRightArrow[x, y, ...]
displays x←→ y←→ ...

>> LongLeftRightArrow[x, y, z]
x ←→ y←→ z

>> a \[LongLeftRightArrow] b
a←→ b

43.2.78. LongRightArrow (−→)

WML link

LongRightArrow[x, y, ...]
displays x −→ y −→ ...

>> LongRightArrow[x, y, z]
x −→ y −→ z

>> a \[LongRightArrow] b
a −→ b

43.2.79. LowerLeftArrow (↙)

WML link

LowerLeftArrow[x, y, ...]
displays x↙ y↙ ...

>> LowerLeftArrow[x, y, z]
x ↙ y↙ z

>> a \[LowerLeftArrow] b
a↙ b

43.2.80. LowerRightArrow (↘)

WML link

LowerRightArrow[x, y, ...]
displays x↘ y↘ ...

573

https://reference.wolfram.com/language/ref/LongRightArrow.html
https://reference.wolfram.com/language/ref/LowerLeftArrow.html
https://reference.wolfram.com/language/ref/LowerRightArrow.html

>> LowerRightArrow[x, y, z]
x ↘ y↘ z

>> a \[LowerRightArrow] b
a↘ b

43.2.81. MinusPlus (∓)

WML link

MinusPlus[x, y, ...]
displays x ∓ y ∓ ...

>> MinusPlus[x, y, z]
x ∓ y ∓ z

>> a \[MinusPlus] b
a ∓ b

43.2.82. NestedGreaterGreater (≫)

WML link

NestedGreaterGreater[x, y, ...]
displays x≫ y≫ ...

>> NestedGreaterGreater[x, y, z]
x ≫ y≫ z

>> a \[NestedGreaterGreater] b
a≫ b

43.2.83. NestedLessLess (≪)

WML link

NestedLessLess[x, y, ...]
displays x≪ y≪ ...

>> NestedLessLess[x, y, z]
x ≪ y≪ z

574

https://reference.wolfram.com/language/ref/MinusPlus.html
https://reference.wolfram.com/language/ref/NestedGreaterGreater.html
https://reference.wolfram.com/language/ref/NestedLessLess.html

>> a \[NestedLessLess] b
a≪ b

43.2.84. NotCongruent (̸≡)

WML link

NotCongruent[x, y, ...]
displays x ̸≡ y ̸≡ ...

>> NotCongruent[x, y, z]
x ̸≡ y ̸≡ z

>> a \[NotCongruent] b
a ̸≡ b

43.2.85. NotCupCap (̸ ⌣⌢)

WML link

NotCupCap[x, y, ...]
displays x ̸ ⌣⌢ y ̸ ⌣⌢ ...

>> NotCupCap[x, y, z]

x ̸ ⌣⌢ y ̸ ⌣⌢ z

>> a \[NotCupCap] b

a ̸ ⌣⌢ b

43.2.86. NotDoubleVerticalBar (∦)

WML link

NotDoubleVerticalBar[x, y, ...]
displays x ∦ y ∦ ...

>> NotDoubleVerticalBar[x, y, z]
x ∦ y ∦ z

>> a \[NotDoubleVerticalBar] b
a ∦ b

575

https://reference.wolfram.com/language/ref/NotCongruent.html
https://reference.wolfram.com/language/ref/NotCupCap.html
https://reference.wolfram.com/language/ref/NotDoubleVerticalBar.html

43.2.87. NotGreater (≯)

WML link

NotGreater[x, y, ...]
displays x ≯ y ≯ ...

>> NotGreater[x, y, z]
x ≯ y ≯ z

>> a \[NotGreater] b
a ≯ b

43.2.88. NotGreaterEqual (�)

WML link

NotGreaterEqual[x, y, ...]
displays x � y � ...

>> NotGreaterEqual[x, y, z]
x � y � z

>> a \[NotGreaterEqual] b
a � b

43.2.89. NotGreaterFullEqual (�)

WML link

NotGreaterFullEqual[x, y, ...]
displays x � y � ...

>> NotGreaterFullEqual[x, y, z]
x � y � z

>> a \[NotGreaterFullEqual] b
a � b

43.2.90. NotGreaterGreater (̸≫)

WML link

576

https://reference.wolfram.com/language/ref/NotGreater.html
https://reference.wolfram.com/language/ref/NotGreaterEqual.html
https://reference.wolfram.com/language/ref/NotGreaterFullEqual.html
https://reference.wolfram.com/language/ref/NotGreaterGreater.html

NotGreaterGreater[x, y, ...]
displays x ̸≫ y ̸≫ ...

>> NotGreaterGreater[x, y, z]
x ̸≫ y ̸≫ z

>> a \[NotGreaterGreater] b
a ̸≫ b

43.2.91. NotGreaterLess (̸ ≷)

WML link

NotGreaterLess[x, y, ...]
displays x ̸ ≷ y ̸ ≷ ...

>> NotGreaterLess[x, y, z]
x ̸ ≷ y ̸ ≷ z

>> a \[NotGreaterLess] b
a ̸ ≷ b

43.2.92. NotGreaterTilde (̸ ¦)

WML link

NotGreaterTilde[x, y, ...]
displays x ̸ ¦ y ̸ ¦ ...

>> NotGreaterTilde[x, y, z]
x ̸ ¦ y ̸ ¦ z

>> a \[NotGreaterTilde] b
a ̸ ¦ b

43.2.93. NotLeftTriangle (6)

WML link

NotLeftTriangle[x, y, ...]
displays x 6 y 6 ...

577

https://reference.wolfram.com/language/ref/NotGreaterLess.html
https://reference.wolfram.com/language/ref/NotGreaterTilde.html
https://reference.wolfram.com/language/ref/NotLeftTriangle.html

>> NotLeftTriangle[x, y, z]
x 6 y 6 z

>> a \[NotLeftTriangle] b
a 6 b

43.2.94. NotLeftTriangleEqual (5)

WML link

NotLeftTriangleEqual[x, y, ...]
displays x 5 y 5 ...

>> NotLeftTriangleEqual[x, y, z]
x 5 y 5 z

>> a \[NotLeftTriangleEqual] b
a 5 b

43.2.95. NotLess (≮)

WML link

NotLess[x, y, ...]
displays x ≮ y ≮ ...

>> NotLess[x, y, z]
x ≮ y ≮ z

>> a \[NotLess] b
a ≮ b

43.2.96. NotLessEqual (�)

WML link

NotLessEqual[x, y, ...]
displays x � y � ...

>> NotLessEqual[x, y, z]
x � y � z

578

https://reference.wolfram.com/language/ref/NotLeftTriangleEqual.html
https://reference.wolfram.com/language/ref/NotLess.html
https://reference.wolfram.com/language/ref/NotLessEqual.html

>> a \[NotLessEqual] b
a � b

43.2.97. NotLessFullEqual (�)

WML link

NotLessFullEqual[x, y, ...]
displays x � y � ...

>> NotLessFullEqual[x, y, z]
x � y � z

>> a \[NotLessFullEqual] b
a � b

43.2.98. NotLessGreater (̸ ≶)

WML link

NotLessGreater[x, y, ...]
displays x ̸ ≶ y ̸ ≶ ...

>> NotLessGreater[x, y, z]
x ̸ ≶ y ̸ ≶ z

>> a \[NotLessGreater] b
a ̸ ≶ b

43.2.99. NotLessTilde (̸ ®)

WML link

NotLessTilde[x, y, ...]
displays x ̸ ® y ̸ ® ...

>> NotLessTilde[x, y, z]
x ̸ ® y ̸ ® z

>> a \[NotLessTilde] b
a ̸ ® b

579

https://reference.wolfram.com/language/ref/NotLessFullEqual.html
https://reference.wolfram.com/language/ref/NotLessGreater.html
https://reference.wolfram.com/language/ref/NotLessTilde.html

43.2.100. NotPrecedes (⊀)

WML link

NotPrecedes[x, y, ...]
displays x ⊀ y ⊀ ...

>> NotPrecedes[x, y, z]
x ⊀ y ⊀ z

>> a \[NotPrecedes] b
a ⊀ b

43.2.101. NotPrecedesSlantEqual (̸ ´)

WML link

NotPrecedesSlantEqual[x, y, ...]
displays x ̸ ´ y ̸ ´ ...

>> NotPrecedesSlantEqual[x, y, z]
x ̸ ´ y ̸ ´ z

>> a \[NotPrecedesSlantEqual] b
a ̸ ´ b

43.2.102. NotPrecedesTilde (̸ ­)

WML link

NotPrecedesTilde[x, y, ...]
displays x ̸ ­ y ̸ ­ ...

>> NotPrecedesTilde[x, y, z]
x ̸ ­ y ̸ ­ z

>> a \[NotPrecedesTilde] b
a ̸ ­ b

43.2.103. NotReverseElement (̸∋)

WML link

580

https://reference.wolfram.com/language/ref/NotPrecedes.html
https://reference.wolfram.com/language/ref/NotPrecedesSlantEqual.html
https://reference.wolfram.com/language/ref/NotPrecedesTilde.html
https://reference.wolfram.com/language/ref/NotReverseElement.html

NotReverseElement[x, y, ...]
displays x ̸∋ y ̸∋ ...

>> NotReverseElement[x, y, z]
x ̸∋ y ̸∋ z

>> a \[NotReverseElement] b
a ̸∋ b

43.2.104. NotRightTriangle (7)

WML link

NotRightTriangle[x, y, ...]
displays x 7 y 7 ...

>> NotRightTriangle[x, y, z]
x 7 y 7 z

>> a \[NotRightTriangle] b
a 7 b

43.2.105. NotRightTriangleEqual (4)

WML link

NotRightTriangleEqual[x, y, ...]
displays x 4 y 4 ...

>> NotRightTriangleEqual[x, y, z]
x 4 y 4 z

>> a \[NotRightTriangleEqual] b
a 4 b

43.2.106. NotSquareSubsetEqual (̸⊑)

WML link

NotSquareSubsetEqual[x, y, ...]
displays x ̸⊑ y ̸⊑ ...

581

https://reference.wolfram.com/language/ref/NotRightTriangle.html
https://reference.wolfram.com/language/ref/NotRightTriangleEqual.html
https://reference.wolfram.com/language/ref/NotSquareSubsetEqual.html

>> NotSquareSubsetEqual[x, y, z]
x ̸⊑ y ̸⊑ z

>> a \[NotSquareSubsetEqual] b
a ̸⊑ b

43.2.107. NotSquareSupersetEqual (\[NotSquareSupersetEqual])

WML link

NotSquareSupersetEqual[x, y, ...]
displays x \[NotSquareSupersetEqual] y \[NotSquareSupersetEqual] ...

>> NotSquareSupersetEqual[x, y, z]
x\[NotSquareSupersetEqual]y\[NotSquareSupersetEqual]z

>> a \[NotSquareSupersetEqual] b
a\[NotSquareSupersetEqual]b

43.2.108. NotSubset (̸⊂)

WML link

NotSubset[x, y, ...]
displays x ̸⊂ y ̸⊂ ...

>> NotSubset[x, y, z]
x ̸⊂ y ̸⊂ z

>> a \[NotSubset] b
a ̸⊂ b

43.2.109. NotSubsetEqual (*)

WML link

NotSubsetEqual[x, y, ...]
displays x * y * ...

>> NotSubsetEqual[x, y, z]
x * y * z

582

https://reference.wolfram.com/language/ref/NotSquareSupersetEqual.html
https://reference.wolfram.com/language/ref/NotSubset.html
https://reference.wolfram.com/language/ref/NotSubsetEqual.html

>> a \[NotSubsetEqual] b
a * b

43.2.110. NotSucceeds (�)

WML link

NotSucceeds[x, y, ...]
displays x � y � ...

>> NotSucceeds[x, y, z]
x � y � z

>> a \[NotSucceeds] b
a � b

43.2.111. NotSucceedsSlantEqual (̸⪰)

WML link

NotSucceedsSlantEqual[x, y, ...]
displays x ̸⪰ y ̸⪰ ...

>> NotSucceedsSlantEqual[x, y, z]
x ̸⪰ y ̸⪰ z

>> a \[NotSucceedsSlantEqual] b
a ̸⪰ b

43.2.112. NotSucceedsTilde (̸ ¥)

WML link

NotSucceedsTilde[x, y, ...]
displays x ̸ ¥ y ̸ ¥ ...

>> NotSucceedsTilde[x, y, z]
x ̸ ¥ y ̸ ¥ z

>> a \[NotSucceedsTilde] b
a ̸ ¥ b

583

https://reference.wolfram.com/language/ref/NotSucceeds.html
https://reference.wolfram.com/language/ref/NotSucceedsSlantEqual.html
https://reference.wolfram.com/language/ref/NotSucceedsTilde.html

43.2.113. NotSuperset (̸⊃)

WML link

NotSuperset[x, y, ...]
displays x ̸⊃ y ̸⊃ ...

>> NotSuperset[x, y, z]
x ̸⊃ y ̸⊃ z

>> a \[NotSuperset] b
a ̸⊃ b

43.2.114. NotSupersetEqual (+)

WML link

NotSupersetEqual[x, y, ...]
displays x + y + ...

>> NotSupersetEqual[x, y, z]
x + y + z

>> a \[NotSupersetEqual] b
a + b

43.2.115. NotTilde (̸∼)

WML link

NotTilde[x, y, ...]
displays x ̸∼ y ̸∼ ...

>> NotTilde[x, y, z]
x ̸∼ y ̸∼ z

>> a \[NotTilde] b
a ̸∼ b

43.2.116. NotTildeEqual (̸≃)

WML link

584

https://reference.wolfram.com/language/ref/NotSuperset.html
https://reference.wolfram.com/language/ref/NotSupersetEqual.html
https://reference.wolfram.com/language/ref/NotTilde.html
https://reference.wolfram.com/language/ref/NotTildeEqual.html

NotTildeEqual[x, y, ...]
displays x ̸≃ y ̸≃ ...

>> NotTildeEqual[x, y, z]
x ̸≃ y ̸≃ z

>> a \[NotTildeEqual] b
a ̸≃ b

43.2.117. NotTildeFullEqual (�)

WML link

NotTildeFullEqual[x, y, ...]
displays x � y � ...

>> NotTildeFullEqual[x, y, z]
x � y � z

>> a \[NotTildeFullEqual] b
a � b

43.2.118. NotTildeTilde (̸≈)

WML link

NotTildeTilde[x, y, ...]
displays x ̸≈ y ̸≈ ...

>> NotTildeTilde[x, y, z]
x ̸≈ y ̸≈ z

>> a \[NotTildeTilde] b
a ̸≈ b

43.2.119. Perpendicular (⊥)

WML link

Perpendicular[x, y, ...]
displays x ⊥ y ⊥ ...

585

https://reference.wolfram.com/language/ref/NotTildeFullEqual.html
https://reference.wolfram.com/language/ref/NotTildeTilde.html
https://reference.wolfram.com/language/ref/Perpendicular.html

>> Perpendicular[x, y, z]
x ⊥ y ⊥ z

>> a \[Perpendicular] b
a ⊥ b

43.2.120. PlusMinus

WML link

PlusMinus[x, y, ...]
displays x ± y ± ...

>> PlusMinus[x, y, z]
x ± y ± z

>> a \[PlusMinus] b
a ± b

43.2.121. Precedes (≺)

WML link

Precedes[x, y, ...]
displays x ≺ y ≺ ...

>> Precedes[x, y, z]
x ≺ y ≺ z

>> a \[Precedes] b
a ≺ b

43.2.122. PrecedesEqual (⪯)

WML link

PrecedesEqual[x, y, ...]
displays x ⪯ y ⪯ ...

>> PrecedesEqual[x, y, z]
x ⪯ y ⪯ z

586

https://reference.wolfram.com/language/ref/PlusMinus.html
https://reference.wolfram.com/language/ref/Precedes.html
https://reference.wolfram.com/language/ref/PrecedesEqual.html

>> a \[PrecedesEqual] b
a ⪯ b

43.2.123. PrecedesSlantEqual (´)

WML link

PrecedesSlantEqual[x, y, ...]
displays x ´ y ´ ...

>> PrecedesSlantEqual[x, y, z]
x ´ y ´ z

>> a \[PrecedesSlantEqual] b
a ´ b

43.2.124. PrecedesTilde (­)

WML link

PrecedesTilde[x, y, ...]
displays x ­ y ­ ...

>> PrecedesTilde[x, y, z]
x ­ y ­ z

>> a \[PrecedesTilde] b
a ­ b

43.2.125. Proportion (::)

WML link

Proportion[x, y, ...]
displays x :: y :: ...

>> Proportion[x, y, z]
x :: y :: z

>> a \[Proportion] b
a :: b

587

https://reference.wolfram.com/language/ref/PrecedesSlantEqual.html
https://reference.wolfram.com/language/ref/PrecedesTilde.html
https://reference.wolfram.com/language/ref/Proportion.html

43.2.126. Proportional (∝)

WML link

Proportional[x, y, ...]
displays x ∝ y ∝ ...

>> Proportional[x, y, z]
x ∝ y ∝ z

>> a \[Proportional] b
a ∝ b

43.2.127. ReverseElement (∋)

WML link

ReverseElement[x, y, ...]
displays x ∋ y ∋ ...

>> ReverseElement[x, y, z]
x ∋ y ∋ z

>> a \[ReverseElement] b
a ∋ b

43.2.128. ReverseEquilibrium (�)

WML link

ReverseEquilibrium[x, y, ...]
displays x � y � ...

>> ReverseEquilibrium[x, y, z]
x � y � z

>> a \[ReverseEquilibrium] b
a � b

43.2.129. ReverseUpEquilibrium (��)

WML link

588

https://reference.wolfram.com/language/ref/Proportional.html
https://reference.wolfram.com/language/ref/ReverseElement.html
https://reference.wolfram.com/language/ref/ReverseEquilibrium.html
https://reference.wolfram.com/language/ref/ReverseUpEquilibrium.html

ReverseUpEquilibrium[x, y, ...]
displays x �� y �� ...

>> ReverseUpEquilibrium[x, y, z]
x �� y �� z

>> a \[ReverseUpEquilibrium] b
a �� b

43.2.130. RightArrow (→)

WML link

RightArrow[x, y, ...]
displays x→ y→ ...

>> RightArrow[x, y, z]
x → y→ z

>> a \[RightArrow] b
a→ b

43.2.131. RightArrowBar (→ |)

WML link

RightArrowBar[x, y, ...]
displays x→ | y→ | ...

>> RightArrowBar[x, y, z]
x → |y→ |z

>> a \[RightArrowBar] b
a→ |b

43.2.132. RightArrowLeftArrow (�)

WML link

RightArrowLeftArrow[x, y, ...]
displays x � y � ...

589

https://reference.wolfram.com/language/ref/RightArrow.html
https://reference.wolfram.com/language/ref/RightArrowBar.html
https://reference.wolfram.com/language/ref/RightArrowLeftArrow.html

>> RightArrowLeftArrow[x, y, z]
x � y � z

>> a \[RightArrowLeftArrow] b
a � b

43.2.133. RightDownTeeVector (�̄)

WML link

RightDownTeeVector[x, y, ...]
displays x �̄ y �̄ ...

>> RightDownTeeVector[x, y, z]
x�̄y�̄z

>> a \[RightDownTeeVector] b
a�̄b

43.2.134. RightDownVector (�)

WML link

RightDownVector[x, y, ...]
displays x � y � ...

>> RightDownVector[x, y, z]
x�y�z

>> a \[RightDownVector] b
a�b

43.2.135. RightDownVectorBar (\[RightDownVectorBar])

WML link

RightDownVectorBar[x, y, ...]
displays x \[RightDownVectorBar] y \[RightDownVectorBar] ...

>> RightDownVectorBar[x, y, z]
x\[RightDownVectorBar]y\[RightDownVectorBar]z

590

https://reference.wolfram.com/language/ref/RightDownTeeVector.html
https://reference.wolfram.com/language/ref/RightDownVector.html
https://reference.wolfram.com/language/ref/RightDownVectorBar.html

>> a \[RightDownVectorBar] b
a\[RightDownVectorBar]b

43.2.136. RightTee (⊢)

WML link

RightTee[x, y, ...]
displays x ⊢ y ⊢ ...

>> RightTee[x, y, z]
x ⊢ y ⊢ z

>> a \[RightTee] b
a ⊢ b

43.2.137. RightTeeArrow (⊢)

WML link

RightTeeArrow[x, y, ...]
displays x ⊢ y ⊢ ...

>> RightTeeArrow[x, y, z]
x ⊢ y ⊢ z

>> a \[RightTeeArrow] b
a ⊢ b

43.2.138. RightTeeVector (|\rightharpoonup)

WML link

RightTeeVector[x, y, ...]
displays x |\rightharpoonup y |\rightharpoonup ...

>> RightTeeVector[x, y, z]
x|⇀ y|⇀ z

>> a \[RightTeeVector] b
a|⇀ b

591

https://reference.wolfram.com/language/ref/RightTee.html
https://reference.wolfram.com/language/ref/RightTeeArrow.html
https://reference.wolfram.com/language/ref/RightTeeVector.html

43.2.139. RightTriangle (▷)

WML link

RightTriangle[x, y, ...]
displays x ▷ y ▷ ...

>> RightTriangle[x, y, z]
x ▷ y ▷ z

>> a \[RightTriangle] b
a ▷ b

43.2.140. RightTriangleBar (|\triangleright)

WML link

RightTriangleBar[x, y, ...]
displays x |\triangleright y |\triangleright ...

>> RightTriangleBar[x, y, z]
x|▷y|▷z

>> a \[RightTriangleBar] b
a|▷b

43.2.141. RightTriangleEqual (Ä)

WML link

RightTriangleEqual[x, y, ...]
displays x Ä y Ä ...

>> RightTriangleEqual[x, y, z]
x Ä y Ä z

>> a \[RightTriangleEqual] b
a Ä b

592

https://reference.wolfram.com/language/ref/RightTriangle.html
https://reference.wolfram.com/language/ref/RightTriangleBar.html
https://reference.wolfram.com/language/ref/RightTriangleEqual.html

43.2.142. RightUpDownVector (
�
�)

WML link

RightUpDownVector[x, y, ...]

displays x
�
� y

�
� ...

>> RightUpDownVector[x, y, z]

x
�
� y

�
� z

>> a \[RightUpDownVector] b

a
�
� b

43.2.143. RightUpTeeVector (�)

WML link

RightUpTeeVector[x, y, ...]
displays x � y � ...

>> RightUpTeeVector[x, y, z]
x�y�z

>> a \[RightUpTeeVector] b
a�b

43.2.144. RightUpVector (�)

WML link

RightUpVector[x, y, ...]
displays x � y � ...

>> RightUpVector[x, y, z]
x � y � z

>> a \[RightUpVector] b
a � b

593

https://reference.wolfram.com/language/ref/RightUpDownVector.html
https://reference.wolfram.com/language/ref/RightUpTeeVector.html
https://reference.wolfram.com/language/ref/RightUpVector.html

43.2.145. RightUpVectorBar (�̄)

WML link

RightUpVectorBar[x, y, ...]
displays x �̄ y �̄ ...

>> RightUpVectorBar[x, y, z]
x�̄y�̄z

>> a \[RightUpVectorBar] b
a�̄b

43.2.146. RightVector (⇀)

WML link

RightVector[x, y, ...]
displays x ⇀ y ⇀ ...

>> RightVector[x, y, z]
x ⇀ y ⇀ z

>> a \[RightVector] b
a ⇀ b

43.2.147. RightVectorBar (⇀ |)

WML link

RightVectorBar[x, y, ...]
displays x ⇀ | y ⇀ | ...

>> RightVectorBar[x, y, z]
x ⇀ |y ⇀ |z

>> a \[RightVectorBar] b
a ⇀ |b

43.2.148. RoundImplies (RoundImplies[a, b])

WML link

594

https://reference.wolfram.com/language/ref/RightUpVectorBar.html
https://reference.wolfram.com/language/ref/RightVector.html
https://reference.wolfram.com/language/ref/RightVectorBar.html
https://reference.wolfram.com/language/ref/RoundImplies.html

RoundImplies[x, y, ...]
displays x RoundImplies[a, b] y RoundImplies[a, b] ...

>> RoundImplies[x, y, z]
xRoundImplies[a, b]yRoundImplies[a, b]z

>> a \[RoundImplies] b
aRoundImplies[a, b]b

43.2.149. ShortDownArrow

WML link

ShortDownArrow[x, y, ...]
displays x ↓ y ↓ ...

>> ShortDownArrow[x, y, z]
x ↓ y ↓ z

>> a \[ShortDownArrow] b
a ↓ b

43.2.150. ShortLeftArrow

WML link

ShortLeftArrow[x, y, ...]
displays x ← y ← ...

>> ShortLeftArrow[x, y, z]
x ← y← z

>> a \[ShortLeftArrow] b
a← b

43.2.151. ShortRightArrow

WML link

ShortRightArrow[x, y, ...]
displays x → y → ...

595

https://reference.wolfram.com/language/ref/ShortDownArrow.html
https://reference.wolfram.com/language/ref/ShortLeftArrow.html
https://reference.wolfram.com/language/ref/ShortRightArrow.html

>> ShortRightArrow[x, y, z]
x → y→ z

>> a \[ShortRightArrow] b
a→ b

43.2.152. ShortUpArrow

WML link

ShortUpArrow[x, y, ...]
displays x ↑ y ↑ ...

>> ShortUpArrow[x, y, z]
x ↑ y ↑ z

>> a \[ShortUpArrow] b
a ↑ b

43.2.153. SmallCircle (◦)

WML link

SmallCircle[x, y, ...]
displays x ◦ y ◦ ...

>> SmallCircle[x, y, z]
x ◦ y ◦ z

>> a \[SmallCircle] b
a ◦ b

43.2.154. SquareIntersection (⊓)

WML link

SquareIntersection[x, y, ...]
displays x ⊓ y ⊓ ...

>> SquareIntersection[x, y, z]
x ⊓ y ⊓ z

596

https://reference.wolfram.com/language/ref/ShortUpArrow.html
https://reference.wolfram.com/language/ref/SmallCircle.html
https://reference.wolfram.com/language/ref/SquareIntersection.html

>> a \[SquareIntersection] b
a ⊓ b

43.2.155. SquareSubset (À)

WML link

SquareSubset[x, y, ...]
displays x À y À ...

>> SquareSubset[x, y, z]
x À y À z

>> a \[SquareSubset] b
a À b

43.2.156. SquareSubsetEqual (⊑)

WML link

SquareSubsetEqual[x, y, ...]
displays x ⊑ y ⊑ ...

>> SquareSubsetEqual[x, y, z]
x ⊑ y ⊑ z

>> a \[SquareSubsetEqual] b
a ⊑ b

43.2.157. SquareSuperset (Á)

WML link

SquareSuperset[x, y, ...]
displays x Á y Á ...

>> SquareSuperset[x, y, z]
x Á y Á z

>> a \[SquareSuperset] b
a Á b

597

https://reference.wolfram.com/language/ref/SquareSubset.html
https://reference.wolfram.com/language/ref/SquareSubsetEqual.html
https://reference.wolfram.com/language/ref/SquareSuperset.html

43.2.158. SquareSupersetEqual (⊒)

WML link

SquareSupersetEqual[x, y, ...]
displays x ⊒ y ⊒ ...

>> SquareSupersetEqual[x, y, z]
x ⊒ y ⊒ z

>> a \[SquareSupersetEqual] b
a ⊒ b

43.2.159. SquareUnion (⊔)

WML link

SquareUnion[x, y, ...]
displays x ⊔ y ⊔ ...

>> SquareUnion[x, y, z]
x ⊔ y ⊔ z

>> a \[SquareUnion] b
a ⊔ b

43.2.160. Star (⋆)

WML link

Star[x, y, ...]
displays x ⋆ y ⋆ ...

>> Star[x, y, z]
x ⋆ y ⋆ z

>> a \[Star] b
a ⋆ b

43.2.161. Subset (⊂)

WML link

598

https://reference.wolfram.com/language/ref/SquareSupersetEqual.html
https://reference.wolfram.com/language/ref/SquareUnion.html
https://reference.wolfram.com/language/ref/Star.html
https://reference.wolfram.com/language/ref/Subset.html

Subset[x, y, ...]
displays x ⊂ y ⊂ ...

>> Subset[x, y, z]
x ⊂ y ⊂ z

>> a \[Subset] b
a ⊂ b

43.2.162. SubsetEqual (⊆)

WML link

SubsetEqual[x, y, ...]
displays x ⊆ y ⊆ ...

>> SubsetEqual[x, y, z]
x ⊆ y ⊆ z

>> a \[SubsetEqual] b
a ⊆ b

43.2.163. Succeeds (≻)

WML link

Succeeds[x, y, ...]
displays x ≻ y ≻ ...

>> Succeeds[x, y, z]
x ≻ y ≻ z

>> a \[Succeeds] b
a ≻ b

43.2.164. SucceedsEqual (⪰)

WML link

SucceedsEqual[x, y, ...]
displays x ⪰ y ⪰ ...

599

https://reference.wolfram.com/language/ref/SubsetEqual.html
https://reference.wolfram.com/language/ref/Succeeds.html
https://reference.wolfram.com/language/ref/SucceedsEqual.html

>> SucceedsEqual[x, y, z]
x ⪰ y ⪰ z

>> a \[SucceedsEqual] b
a ⪰ b

43.2.165. SucceedsSlantEqual (⪰)

WML link

SucceedsSlantEqual[x, y, ...]
displays x ⪰ y ⪰ ...

>> SucceedsSlantEqual[x, y, z]
x ⪰ y ⪰ z

>> a \[SucceedsSlantEqual] b
a ⪰ b

43.2.166. SucceedsTilde (¥)

WML link

SucceedsTilde[x, y, ...]
displays x ¥ y ¥ ...

>> SucceedsTilde[x, y, z]
x ¥ y ¥ z

>> a \[SucceedsTilde] b
a ¥ b

43.2.167. SuchThat (�)

WML link

SuchThat[x, y, ...]
displays x � y � ...

>> SuchThat[x, y, z]
x � y � z

600

https://reference.wolfram.com/language/ref/SucceedsSlantEqual.html
https://reference.wolfram.com/language/ref/SucceedsTilde.html
https://reference.wolfram.com/language/ref/SuchThat.html

>> a \[SuchThat] b
a � b

43.2.168. Superset (⊃)

WML link

Superset[x, y, ...]
displays x ⊃ y ⊃ ...

>> Superset[x, y, z]
x ⊃ y ⊃ z

>> a \[Superset] b
a ⊃ b

43.2.169. SupersetEqual (⊇)

WML link

SupersetEqual[x, y, ...]
displays x ⊇ y ⊇ ...

>> SupersetEqual[x, y, z]
x ⊇ y ⊇ z

>> a \[SupersetEqual] b
a ⊇ b

43.2.170. Therefore (∴)

WML link

Therefore[x, y, ...]
displays x ∴ y ∴ ...

>> Therefore[x, y, z]
x ∴ y ∴ z

>> a \[Therefore] b
a ∴ b

601

https://reference.wolfram.com/language/ref/Superset.html
https://reference.wolfram.com/language/ref/SupersetEqual.html
https://reference.wolfram.com/language/ref/Therefore.html

43.2.171. Tilde (∼)

WML link

Tilde[x, y, ...]
displays x ∼ y ∼ ...

>> Tilde[x, y, z]
x ∼ y ∼ z

>> a \[Tilde] b
a ∼ b

43.2.172. TildeEqual (≃)

WML link

TildeEqual[x, y, ...]
displays x ≃ y ≃ ...

>> TildeEqual[x, y, z]
x ≃ y ≃ z

>> a \[TildeEqual] b
a ≃ b

43.2.173. TildeFullEqual (∼=)

WML link

TildeFullEqual[x, y, ...]
displays x ∼= y ∼= ...

>> TildeFullEqual[x, y, z]
x ∼= y ∼= z

>> a \[TildeFullEqual] b
a ∼= b

43.2.174. TildeTilde (≈)

WML link

602

https://reference.wolfram.com/language/ref/Tilde.html
https://reference.wolfram.com/language/ref/TildeEqual.html
https://reference.wolfram.com/language/ref/TildeFullEqual.html
https://reference.wolfram.com/language/ref/TildeTilde.html

TildeTilde[x, y, ...]
displays x ≈ y ≈ ...

>> TildeTilde[x, y, z]
x ≈ y ≈ z

>> a \[TildeTilde] b
a ≈ b

43.2.175. UnionPlus (⊎)

WML link

UnionPlus[x, y, ...]
displays x ⊎ y ⊎ ...

>> UnionPlus[x, y, z]
x ⊎ y ⊎ z

>> a \[UnionPlus] b
a ⊎ b

43.2.176. UpArrow (↑)

WML link

UpArrow[x, y, ...]
displays x ↑ y ↑ ...

>> UpArrow[x, y, z]
x ↑ y ↑ z

>> a \[UpArrow] b
a ↑ b

43.2.177. UpArrowBar (↑̄)

WML link

UpArrowBar[x, y, ...]
displays x ↑̄ y ↑̄ ...

603

https://reference.wolfram.com/language/ref/UnionPlus.html
https://reference.wolfram.com/language/ref/UpArrow.html
https://reference.wolfram.com/language/ref/UpArrowBar.html

>> UpArrowBar[x, y, z]
x↑̄y↑̄z

>> a \[UpArrowBar] b
a↑̄b

43.2.178. UpArrowDownArrow (↕)

WML link

UpArrowDownArrow[x, y, ...]
displays x ↕ y ↕ ...

>> UpArrowDownArrow[x, y, z]
x ↕ y ↕ z

>> a \[UpArrowDownArrow] b
a ↕ b

43.2.179. UpDownArrow (↕)

WML link

UpDownArrow[x, y, ...]
displays x ↕ y ↕ ...

>> UpDownArrow[x, y, z]
x ↕ y ↕ z

>> a \[UpDownArrow] b
a ↕ b

43.2.180. UpEquilibrium (��)

WML link

UpEquilibrium[x, y, ...]
displays x �� y �� ...

>> UpEquilibrium[x, y, z]
x �� y �� z

604

https://reference.wolfram.com/language/ref/UpArrowDownArrow.html
https://reference.wolfram.com/language/ref/UpDownArrow.html
https://reference.wolfram.com/language/ref/UpEquilibrium.html

>> a \[UpEquilibrium] b
a �� b

43.2.181. UpTee (⊥)

WML link

UpTee[x, y, ...]
displays x ⊥ y ⊥ ...

>> UpTee[x, y, z]
x⊥y⊥z

>> a \[UpTee] b
a⊥b

43.2.182. UpTeeArrow (↑)

WML link

UpTeeArrow[x, y, ...]
displays x ↑ y ↑ ...

>> UpTeeArrow[x, y, z]
x↑y↑z

>> a \[UpTeeArrow] b
a↑b

43.2.183. UpperLeftArrow (↖)

WML link

UpperLeftArrow[x, y, ...]
displays x↖ y↖ ...

>> UpperLeftArrow[x, y, z]
x ↖ y↖ z

>> a \[UpperLeftArrow] b
a↖ b

605

https://reference.wolfram.com/language/ref/UpTee.html
https://reference.wolfram.com/language/ref/UpTeeArrow.html
https://reference.wolfram.com/language/ref/UpperLeftArrow.html

43.2.184. UpperRightArrow (↗)

WML link

UpperRightArrow[x, y, ...]
displays x↗ y↗ ...

>> UpperRightArrow[x, y, z]
x ↗ y↗ z

>> a \[UpperRightArrow] b
a↗ b

43.2.185. Vee (∨)

WML link

Vee[x, y, ...]
displays x ∨ y ∨ ...

>> Vee[x, y, z]
x ∨ y ∨ z

>> a \[Vee] b
a ∨ b

43.2.186. VerticalBar (p)

WML link

VerticalBar[x, y, ...]
displays x p y p ...

>> VerticalBar[x, y, z]
x p y p z

>> a \[VerticalBar] b
a p b

43.2.187. VerticalTilde (≀)

WML link

606

https://reference.wolfram.com/language/ref/UpperRightArrow.html
https://reference.wolfram.com/language/ref/Vee.html
https://reference.wolfram.com/language/ref/VerticalBar.html
https://reference.wolfram.com/language/ref/VerticalTilde.html

VerticalTilde[x, y, ...]
displays x ≀ y ≀ ...

>> VerticalTilde[x, y, z]
x ≀ y ≀ z

>> a \[VerticalTilde] b
a ≀ b

43.2.188. Wedge (∧)

WML link

Wedge[x, y, ...]
displays x ∧ y ∧ ...

>> Wedge[x, y, z]
x ∧ y ∧ z

>> a \[Wedge] b
a ∧ b

43.3. Postfix Operators without Built-in Meanings

43.3.1. InvisiblePostfixScriptBase

WML link

InvisiblePostfixScriptBase[x]
displays x

>> InvisiblePostfixScriptBase[x]
x

>> x \[InvisiblePostfixScriptBase]
x

607

https://reference.wolfram.com/language/ref/Wedge.html
https://reference.wolfram.com/language/ref/InvisiblePostfixScriptBase.html

43.4. Prefix Operators without Built-in Meanings

43.4.1. CapitalDifferentialD

WML link

CapitalDifferentialD[x]
displays D x

>> CapitalDifferentialD[x]
Dx

>> \[CapitalDifferentialD]x
Dx

43.4.2. Del (∇)

WML link

Del[x]
displays ∇ x

>> Del[x]
∇x

>> \[Del]x
∇x

43.4.3. DifferentialD (d)

WML link

DifferentialD[x]
displays d x

>> DifferentialD[x]
dx

>> \[DifferentialD]x
dx

608

https://reference.wolfram.com/language/ref/CapitalDifferentialD.html
https://reference.wolfram.com/language/ref/Del.html
https://reference.wolfram.com/language/ref/DifferentialD.html

43.4.4. InvisiblePrefixScriptBase

WML link

InvisiblePrefixScriptBase[x]
displays x

>> InvisiblePrefixScriptBase[x]
x

>> \[InvisiblePrefixScriptBase]x
x

43.4.5. Square (�)

WML link

Square[x]
displays � x

>> Square[x]
�x

>> \[Square]x
�x

609

https://reference.wolfram.com/language/ref/InvisiblePrefixScriptBase.html
https://reference.wolfram.com/language/ref/Square.html

44. Options Management

A number of functions have various options which control the behavior or the default behavior that
function. Default options can be queried or set.

WMA link

Contents

44.1. All 610
44.2. Default 611
44.3. FilterRules 612
44.4. None 612
44.5. NotOptionQ 613

44.6. OptionQ 613
44.7. OptionValue 614
44.8. Options 615
44.9. SetOptions 616

44.1. All

WMA link

All
is an option value for a number of functions indicating to include everything.

In list functions, it indicates all levels of the list.

For example, in Part 35.3.16, All, extracts into a first column vector the first element of each of the list
elements:

>> {{1, 3}, {5, 7}}[[All, 1]]
{1, 5}

While in Take 35.3.16, All extracts as a column matrix the first element as a list for each of the list ele-
ments:

>> Take[{{1, 3}, {5, 7}}, All, {1}]
{{1} , {5}}

In Plot 26.2.15, setting the Mesh 26.1.13 option to All will show the specific plot points:

610

https://reference.wolfram.com/language/guide/OptionsManagement.html
https://reference.wolfram.com/language/ref/All.html

>> Plot[x^2, {x, -1, 1}, MaxRecursion->5, Mesh->All]

−1.0 −0.5 0.5 1.0

0.2

0.4

0.6

0.8

44.2. Default

WMA link

Default[f]
gives the default value for an omitted parameter of f .

Default[f , k]
gives the default value for a parameter on the k-th position.

Default[f , k, n]
gives the default value for the k-th parameter out of n.

Assign values to Default to specify default values.

>> Default[f] = 1
1

>> f[x_.] := x ^ 2

>> f[]
1

Default values are stored in DefaultValues:

>> DefaultValues[f]{
HoldPattern

[
Default

[
f
]]

:>1
}

You can use patterns for k and n:

>> Default[h, k_, n_] := {k, n}

Note that the position of a parameter is relative to the pattern, not the matching expression:

>> h[] /. h[___, ___, x_., y_., ___] -> {x, y}
{{3, 5} , {4, 5}}

611

https://reference.wolfram.com/language/ref/Default.html

44.3. FilterRules

WMA link

FilterRules[rules, pattern]
gives those rules that have a left side that matches pattern.

FilterRules[rules, {pattern1, pattern2, ...}]
gives those rules that have a left side that match at least one of pattern1, pattern2, ...

>> FilterRules[{x -> 100, y -> 1000}, x]
{x− > 100}

>> FilterRules[{x -> 100, y -> 1000, z -> 10000}, {a, b, x, z}]
{x− > 100, z− > 10000}

44.4. None

WMA link

None
is a setting value for many options.

Plot3D shows the mesh grid between computed points by default. This the Mesh 26.1.13 However, you
hide the mesh by setting the Mesh option value to None:

>> Plot3D[{x^2 + y^2, -x^2 - y^2}, {x, -2, 2}, {y, -2, 2}, BoxRatios->
Automatic, Mesh->None]

612

https://reference.wolfram.com/language/ref/FilterRules.html
https://reference.wolfram.com/language/ref/None.html

44.5. NotOptionQ

WMA link

NotOptionQ[expr]
returns True if expr does not have the form of a valid option specification.

>> NotOptionQ[x]
True

>> NotOptionQ[2]
True

>> NotOptionQ["abc"]
True

>> NotOptionQ[a -> True]
False

44.6. OptionQ

WMA link

OptionQ[expr]
returns True if expr has the form of a valid option specification.

Examples of option specifications:

>> OptionQ[a -> True]
True

>> OptionQ[a :> True]
True

>> OptionQ[{a -> True}]
True

>> OptionQ[{a :> True}]
True

Options lists are flattened when are applied, so

>> OptionQ[{a -> True, {b->1, "c"->2}}]
True

>> OptionQ[{a -> True, {b->1, c}}]
False

613

https://reference.wolfram.com/language/ref/NotOptionQ.html
https://reference.wolfram.com/language/ref/OptionQ.html

>> OptionQ[{a -> True, F[b->1,c->2]}]
False

OptionQ returns False if its argument is not a valid option specification:

>> OptionQ[x]
False

44.7. OptionValue

WMA link

OptionValue[name]
gives the value of the option name matched by OptionsPattern.

OptionValue[f , name]
recover the value of the option name associated with the head f .

OptionValue[f , opts, name]
recover the value of the option name associated with the symbol f , extracting the values
from optvals if available.

OptionValue[..., list]
recover the value of the options in list .

First, set up a symbol with some options using Options:

>> Options[MySetting] = {"foo" -> 5, "bar" -> 6}
{foo− > 5, bar− > 6}

Now get a value previously set:

>> OptionValue[MySetting, "bar"]
6

If the option does exist we get a message:

>> OptionValue[MySetting, "baz"]
Option name baz not found in defaults for MySetting.
baz

Use OptionValue to get the value of option a inside OptionsPattern a->3

>> f[a->3] /. f[OptionsPattern[{}]] -> {OptionValue[a]}
{3}

An unavailable option returns argument and does not generate a message:

>> f[a->3] /. f[OptionsPattern[{}]] -> {OptionValue[b]}
{b}

614

https://reference.wolfram.com/language/ref/OptionValue.html

The argument of OptionValue must be a symbol:

>> f[a->3] /. f[OptionsPattern[{}]] -> {OptionValue[a+b]}
Argument a + b at position 1 is expected to be a symbol.
{OptionValue [a + b]}

However, the symbol can be evaluated dynamically:

>> f[a->5] /. f[OptionsPattern[{}]] -> {OptionValue[Symbol["a"]]}
{5}

See also ’Options’ 44.8 and ’OptionsPattern’ 47.2.5.

44.8. Options

WMA link

Options[f]
gives a list of optional arguments to f and their default values.

You can assign values to Options to specify options.

>> Options[f] = {n -> 2}
{n− > 2}

>> Options[f]
{n:>2}

>> f[x_, OptionsPattern[f]] := x ^ OptionValue[n]

>> f[x]
x2

>> f[x, n -> 3]
x3

Delayed option rules are evaluated just when the corresponding OptionValue is called:

>> f[a :> Print["value"]] /. f[OptionsPattern[{}]] :> (OptionValue[a];
Print["between"]; OptionValue[a]);
value

between

value

In contrast to that, normal option rules are evaluated immediately:

>> f[a -> Print["value"]] /. f[OptionsPattern[{}]] :> (OptionValue[a];
Print["between"]; OptionValue[a]);
value

between

615

https://reference.wolfram.com/language/ref/Options.html

Options must be rules or delayed rules:

>> Options[f] = {a}
{a} is not a valid list of option rules.
{a}

A single rule need not be given inside a list:

>> Options[f] = a -> b
a− > b

>> Options[f]
{a:>b}

Options can only be assigned to symbols:

>> Options[a + b] = {a -> b}
Argument a + b at position 1 is expected to be a symbol.
{a− > b}

See also ’OptionValue’ 44.7 and ’OptionsPattern’ 47.2.5.

44.9. SetOptions

WMA link

SetOptions[s, name1 -> value1, name2 -> value2, ...]
sets the specified default options for a symbol s. The entire set of options for s is returned.

One way to find the default options for a symbol is to use SetOptions passing no association pairs:

>> SetOptions[Plot]{
AspectRatio− >

1
GoldenRatio , Axes− > True, AxesStyle

− > {} , Background− > Automatic, Exclusions− > Automatic, ImageSize
− > Automatic, LabelStyle− > {} , MaxRecursion
− > Automatic, Mesh− > None, PlotPoints− > None, PlotRange

− > Automatic, PlotRangePadding− > Automatic, TicksStyle− > {}
}

616

https://reference.wolfram.com/language/ref/SetOptions.html

45. Physical and Chemical data

Contents

45.1. ElementData 617

45.1. ElementData

WMA link

ElementData[“name”, “property”]
gives the value of the property for the chemical specified by name.

ElementData[n, “property”]
gives the value of the property for the n-th chemical element.

>> ElementData[74]
Tungsten

>> ElementData["He", "AbsoluteBoilingPoint"]
4.22

>> ElementData["Carbon", "IonizationEnergies"]
{1086.5, 2352.6, 4620.5, 6222.7, 37831, 47277.}

>> ElementData[16, "ElectronConfigurationString"]
[Ne] 3s2 3p4

>> ElementData[73, "ElectronConfiguration"]
{{2} , {2, 6} , {2, 6, 10} , {2, 6, 10, 14} , {2, 6, 3} , {2}}

The number of known elements:

>> Length[ElementData[All]]
118

Some properties are not appropriate for certain elements:

>> ElementData["He", "ElectroNegativity"]
Missing

[
NotApplicable

]

617

https://reference.wolfram.com/language/ref/ElementData.html

Some data is missing:

>> ElementData["Tc", "SpecificHeat"]
Missing [NotAvailable]

All the known properties:

>> ElementData["Properties"]
{Abbreviation, AbsoluteBoilingPoint, AbsoluteMeltingPoint, AtomicNumber, AtomicRadius, AtomicWeight, Block, BoilingPoint, BrinellHardness, BulkModulus, CovalentRadius, CrustAbundance, Density, DiscoveryYear, ElectroNegativity, ElectronAffinity, ElectronConfiguration, ElectronConfigurationString, ElectronShellConfiguration, FusionHeat, Group, IonizationEnergies, LiquidDensity, MeltingPoint, MohsHardness, Name, Period, PoissonRatio, Series, ShearModulus, SpecificHeat, StandardName, ThermalConductivity, VanDerWaalsRadius, VaporizationHeat, VickersHardness, YoungModulus}

>> ListPlot[Table[ElementData[z, "AtomicWeight"], {z, 118}]]

20 40 60 80 100 120

50

100

150

200

250

618

46. Procedural Programming

Procedural programming is a programming paradigm, derived from imperative programming, based
on the concept of the procedure call. This term is sometimes compared and contrasted with Functional
Programming.

Procedures (a type of routine or subroutine) simply contain a series of computational steps to be carried
out. Any given procedure might be called at any point during a program’s execution, including by other
procedures or itself.

Procedural functions are integrated into Mathics3 symbolic programming environment.

Contents

46.1. Abort 619
46.2. Break 619
46.3. Catch 620
46.4. CheckAbort 620
46.5. CompoundExpression (;) 621
46.6. Continue 621
46.7. Do 621
46.8. For 622

46.9. If 623
46.10. Interrupt 623
46.11. Pause 624
46.12. Return 624
46.13. Switch 625
46.14. Throw 625
46.15. Which 626
46.16. While 626

46.1. Abort

WMA link

Abort[]
aborts an evaluation completely and returns $Aborted.

>> Print["a"]; Abort[]; Print["b"]
a

$Aborted

46.2. Break

WMA link

619

https://reference.wolfram.com/language/ref/Abort.html
https://reference.wolfram.com/language/ref/Break.html

Break[]
exits a For, While, or Do loop.

>> n = 0;

>> While[True, If[n>10, Break[]]; n=n+1]

>> n
11

46.3. Catch

WMA link

Catch[expr]
returns the argument of the first Throw generated in the evaluation of expr.

Catch[expr, f orm]
returns value from the first Throw[$value$, tag] for which f orm matches tag.

Catch[expr, f orm, f]
returns f [value, tag].

Exit to the enclosing Catch as soon as Throw is evaluated:

>> Catch[r; s; Throw[t]; u; v]
t

Define a function that can “throw an exception”:

>> f[x_] := If[x > 12, Throw[overflow], x!]

The result of Catch is just what is thrown by Throw:

>> Catch[f[1] + f[15]]
overflow

>> Catch[f[1] + f[4]]
25

46.4. CheckAbort

WMA link

CheckAbort[expr, f ailexpr]
evaluates expr, returning f ailexpr if an abort occurs.

620

https://reference.wolfram.com/language/ref/Catch.html
https://reference.wolfram.com/language/ref/CheckAbort.html

>> CheckAbort[Abort[]; 1, 2] + x
2 + x

>> CheckAbort[1, 2] + x
1 + x

46.5. CompoundExpression (;)

WMA link

CompoundExpression[e1, e2, ...]
e1; e2; ...

evaluates its arguments in turn, returning the last result.

>> a; b; c; d
d

If the last argument is omitted, Null is taken:

>> a;

46.6. Continue

WMA link

Continue[]
continues with the next iteration in a For, While, or Do loop.

>> For[i=1, i<=8, i=i+1, If[Mod[i,2] == 0, Continue[]]; Print[i]]
1

3

5

7

46.7. Do

WMA link

621

https://reference.wolfram.com/language/ref/CompoundExpression.html
https://reference.wolfram.com/language/ref/Continue.html
https://reference.wolfram.com/language/ref/Do.html

Do[expr, {max}]
evaluates expr max times.

Do[expr, {i, max}]
evaluates expr max times, substituting i in expr with values from 1 to max.

Do[expr, {i, min, max}]
starts with i = max.

Do[expr, {i, min, max, step}]
uses a step size of step.

Do[expr, {i, {i1, i2, ...}}]
uses values i1, i2, ... for i.

Do[expr, {i, imin, imax}, {j, jmin, jmax}, ...]
evaluates expr for each j from jmin to jmax, for each i from imin to imax, etc.

>> Do[Print[i], {i, 2, 4}]
2

3

4

>> Do[Print[{i, j}], {i,1,2}, {j,3,5}]
{1, 3}

{1, 4}

{1, 5}

{2, 3}

{2, 4}

{2, 5}

You can use Break[] and Continue[] inside Do:

>> Do[If[i > 10, Break[], If[Mod[i, 2] == 0, Continue[]]; Print[i]], {i,
5, 20}]

5

7

9

46.8. For

WMA link

For[start, test, incr, body]
evaluates start, and then iteratively body and incr as long as test evaluates to True.

For[start, test, incr]
evaluates only incr and no body.

For[start, test]
runs the loop without any body.

Compute the factorial of 10 using For:

>> n := 1

>> For[i=1, i<=10, i=i+1, n = n * i]

622

https://reference.wolfram.com/language/ref/For.html

>> n
3628800

>> n == 10!
True

46.9. If

WMA link

If[cond, pos, neg]
returns pos if cond evaluates to True, and neg if it evaluates to False.

If[cond, pos, neg, other]
returns other if cond evaluates to neither True nor False.

If[cond, pos]
returns Null if cond evaluates to False.

>> If[1<2, a, b]
a

If the second branch is not specified, Null is taken:

>> If[1<2, a]
a

>> If[False, a] //FullForm
Null

You might use comments inside (* and *) to make the branches of If more readable:

>> If[a, (*then*)b, (*else*)c];

Since one or more arguments to a boolean operation could be symbolic, it is possible that an If cannot
be evaluated. For example:

>> Clear[a, b]; If [a < b, a, b]
If [a < b, a, b]

To handle this, If takes an optional fourth parameter:

>> If [a < b, a, b, "I give up"]
I give up

46.10. Interrupt

WMA link

623

https://reference.wolfram.com/language/ref/If.html
https://reference.wolfram.com/language/ref/Interrupt.html

Interrupt[]
Interrupt an evaluation and returns $Aborted.

>> Print["a"]; Interrupt[]; Print["b"]
a

$Aborted

46.11. Pause

WMA link

Pause[n]
pauses for at least n seconds.

>> Pause[0.5]

46.12. Return

WMA link

Return[expr]
aborts a function call and returns expr.

>> f[x_] := (If[x < 0, Return[0]]; x)

>> f[-1]
0

>> Do[If[i > 3, Return[]]; Print[i], {i, 10}]
1

2

3

Return only exits from the innermost control flow construct.

>> g[x_] := (Do[If[x < 0, Return[0]], {i, {2, 1, 0, -1}}]; x)

>> g[-1]
−1

624

https://reference.wolfram.com/language/ref/Pause.html
https://reference.wolfram.com/language/ref/Return.html

46.13. Switch

WMA link

Switch[expr, pattern1, value1, pattern2, value2, ...]
yields the first value for which expr matches the corresponding pattern.

>> Switch[2, 1, x, 2, y, 3, z]
y

>> Switch[5, 1, x, 2, y]
Switch

[
5, 1, x, 2, y

]
>> Switch[5, 1, x, 2, a, _, b]

b

>> Switch[2, 1]
Switch called with 2 arguments. Switch must be called with an odd
number of arguments.
Switch [2, 1]

Notice that Switch evaluates each pattern before it against expr, stopping after the first match:

>> a:=(Print["a->p"];p); b:=(Print["b->q"];q);

>> Switch[p,a,1,b,2]
a->p

1

>> a=.; b=.;

46.14. Throw

WMA link

Throw[`value`]
stops evaluation and returns ‘value‘ as the value of the nearest enclosing Catch.

Catch[`value`, `tag`]
is caught only by ‘Catch[expr,form]‘, where tag matches form.

Using Throw can affect the structure of what is returned by a function:

>> NestList[#^2 + 1 &, 1, 7]
{1, 2, 5, 26, 677, 458330, 210066388901, 44127887745906175987802}

>> Catch[NestList[If[# > 1000, Throw[#], #^2 + 1] &, 1, 7]]
458330

625

https://reference.wolfram.com/language/ref/Switch.html
https://reference.wolfram.com/language/ref/Throw.html

>> Throw[1]
Uncaught Throw[1] returned to top level.
Hold [Throw [1]]

46.15. Which

WMA link

Which[cond1, expr1, cond2, expr2, ...]
yields expr1 if cond1 evaluates to True, expr2 if cond2 evaluates to True, etc.

>> n = 5;

>> Which[n == 3, x, n == 5, y]
y

>> f[x_] := Which[x < 0, -x, x == 0, 0, x > 0, x]

>> f[-3]
3

If no test yields True, Which returns Null:

>> Which[False, a]

If a test does not evaluate to True or False, evaluation stops and a Which expression containing the
remaining cases is returned:

>> Which[False, a, x, b, True, c]
Which [x, b, True, c]

Which must be called with an even number of arguments:

>> Which[a, b, c]
Which called with 3 arguments.
Which [a, b, c]

46.16. While

WMA link

While[test, body]
evaluates body as long as test evaluates to True.

While[test]
runs the loop without any body.

626

https://reference.wolfram.com/language/ref/Which.html
https://reference.wolfram.com/language/ref/While.html

Compute the GCD of two numbers:

>> {a, b} = {27, 6};

>> While[b != 0, {a, b} = {b, Mod[a, b]}];

>> a
3

627

47. Rules and Patterns

WMA link

The concept of transformation rules for arbitrary symbolic patterns is key in Mathics3.

Also, functions can get applied or transformeddepending onwhether or not functions argumentsmatch.

Some examples:

>> a + b + c /. a + b -> t
c + t

>> a + 2 + b + c + x * y /. n_Integer + s__Symbol + rest_ -> {n, s, rest
}

{2, a, b + c + xy}

>> f[a, b, c, d] /. f[first_, rest___] -> {first, {rest}}
{a, {b, c, d}}

Tests and Conditions:

>> f[4] /. f[x_?(# > 0&)] -> x ^ 2
16

>> f[4] /. f[x_] /; x > 0 -> x ^ 2
16

Elements in the beginning of a pattern rather match fewer elements:

>> f[a, b, c, d] /. f[start__, end__] -> {{start}, {end}}
{{a} , {b, c, d}}

Optional arguments using Optional:

>> f[a] /. f[x_, y_:3] -> {x, y}
{a, 3}

Options using OptionsPattern and OptionValue:

>> f[y, a->3] /. f[x_, OptionsPattern[{a->2, b->5}]] -> {x, OptionValue[
a], OptionValue[b]}

{y, 3, 5}

628

https://reference.wolfram.com/language/guide/RulesAndPatterns.html

The attributes Flat, Orderless, and OneIdentity affect pattern matching.

Contents

47.1. Basic Pattern Objects 629
47.1.1. Blank 629
47.1.2. BlankNullSequence 630
47.1.3. BlankSequence 630

47.2. Composite Patterns 631
47.2.1. Alternatives (|) 631
47.2.2. Except 631
47.2.3. HoldPattern 632
47.2.4. Longest 632
47.2.5. OptionsPattern 632
47.2.6. Pattern 633
47.2.7. Repeated (..) 634
47.2.8. RepeatedNull (...) 634
47.2.9. Shortest 635
47.2.10. Verbatim 635

47.3. Defining, applying and compiling
rules. 636

47.3.1. Dispatch 637
47.3.2. Replace 637
47.3.3. ReplaceAll (/.) 638
47.3.4. ReplaceList 639
47.3.5. ReplaceRepeated (//.) 640
47.3.6. RuleDelayed (:\to) 641
47.3.7. Rule 641

47.4. Pattern Defaults 641
47.4.1. Optional 641

47.5. Restrictions on Patterns 642
47.5.1. Condition (/;) 642
47.5.2. PatternTest (?) 643

47.1. Basic Pattern Objects

47.1.1. Blank

WMA link

Blank[]
_

represents any single expression in a pattern.
Blank[h]
_h

represents any expression with head h.

>> MatchQ[a + b, _]
True

Patterns of the form _h can be used to test the types of objects:

>> MatchQ[42, _Integer]
True

>> MatchQ[1.0, _Integer]
False

>> {42, 1.0, x} /. {_Integer -> "integer", _Real -> "real"} // InputForm
{“integer”, “real”, x}

629

https://reference.wolfram.com/language/ref/Blank.html

Blank only matches a single expression:

>> MatchQ[f[1, 2], f[_]]
False

47.1.2. BlankNullSequence

WMA link

BlankNullSequence[]

represents any sequence of expression elements in a pattern, including an empty se-
quence.

BlankNullSequence is like BlankSequence, except it can match an empty sequence:

>> MatchQ[f[], f[___]]
True

47.1.3. BlankSequence

WMA link

BlankSequence[]
__

represents any non-empty sequence of expression elements in a pattern.
BlankSequence[h]
__h

represents any sequence of elements, all of which have head h.

Use a BlankSequence pattern to stand for a non-empty sequence of arguments:

>> MatchQ[f[1, 2, 3], f[__]]
True

>> MatchQ[f[], f[__]]
False

__h will match only if all elements have head h:

>> MatchQ[f[1, 2, 3], f[__Integer]]
True

>> MatchQ[f[1, 2.0, 3], f[__Integer]]
False

The value captured by a named BlankSequence pattern is a Sequence object:

630

https://reference.wolfram.com/language/ref/BlankNullSequence.html
https://reference.wolfram.com/language/ref/BlankSequence.html

>> f[1, 2, 3] /. f[x__] -> x
Sequence [1, 2, 3]

47.2. Composite Patterns

47.2.1. Alternatives (|)

WMA link

Alternatives[p1, p2, ..., pi]
p1 | p2 | ... | pi

is a pattern that matches any of the patterns p1, p2,, pi.

>> a+b+c+d/.(a|b)->t
c + d + 2t

Alternatives can also be used for string expressions:

>> StringReplace["0123 3210", "1" | "2" -> "X"]
0XX3 3XX0

47.2.2. Except

WMA link

Except[c]
represents a pattern object that matches any expression except those matching c.

Except[c, p]
represents a pattern object that matches p but not c.

>> Cases[{x, a, b, x, c}, Except[x]]
{a, b, c}

>> Cases[{a, 0, b, 1, c, 2, 3}, Except[1, _Integer]]
{0, 2, 3}

Except can also be used for string expressions:

>> StringReplace["Hello world!", Except[LetterCharacter] -> ""]
Helloworld

631

https://reference.wolfram.com/language/ref/Alternatives.html
https://reference.wolfram.com/language/ref/Except.html

47.2.3. HoldPattern

WMA link

HoldPattern[expr]
is equivalent to expr for pattern matching, but maintains it in an unevaluated form.

>> HoldPattern[x + x]
HoldPattern [x + x]

>> x /. HoldPattern[x] -> t
t

HoldPattern has attribute HoldAll:

>> Attributes[HoldPattern]
{HoldAll, Protected}

47.2.4. Longest

WMA link

Longest[pat]
is a pattern object that matches the longest sequence consistent with the pattern pat.

>> StringCases["aabaaab", Longest["a" ~~__ ~~"b"]]
{aabaaab}

>> StringCases["aabaaab", Longest[RegularExpression["a+b"]]]
{aab, aaab}

47.2.5. OptionsPattern

WMA link

OptionsPattern[f]
is a pattern that stands for a sequence of options given to a function, with default
values taken from Options[f]. The options can be of the form opt->$value$ or
opt:>$value$, and might be in arbitrarily nested lists.

OptionsPattern[{opt1->value1, ...}]
takes explicit default values from the given list. The list may also contain symbols f , for
which Options[f] is taken into account; it may be arbitrarily nested. OptionsPattern
[{}] does not use any default values.

632

https://reference.wolfram.com/language/ref/HoldPattern.html
https://reference.wolfram.com/language/ref/Longest.html
https://reference.wolfram.com/language/ref/OptionsPattern.html

The option values can be accessed using OptionValue.

>> f[x_, OptionsPattern[{n->2}]] := x ^ OptionValue[n]

>> f[x]
x2

>> f[x, n->3]
x3

Delayed rules as options:

>> e = f[x, n:>a]
xa

>> a = 5;

>> e
x5

Options might be given in nested lists:

>> f[x, {{{n->4}}}]
x4

See also ’Options’ 44.8 and ’OptionValue’ 44.7.

47.2.6. Pattern

WMA link

Pattern[symb, pat]
symb : pat

assigns the name symb to the pattern pat.
symb_head

is equivalent to symb : _head (accordingly with __ and ___).
symb : pat : de f ault

is a patternwith name symb and default value de f ault, equivalent to Optional[pat : symb,
de f ault].

>> FullForm[a_b]
Pattern [a, Blank [b]]

>> FullForm[a:_:b]
Optional [Pattern [a, Blank []] , b]

Pattern has attribute HoldFirst, so it does not evaluate its name:

>> x = 2
2

633

https://reference.wolfram.com/language/ref/Pattern.html

>> x_
x_

Nested Pattern assignsmultiple names to the same pattern. Still, the last parameter is the default value.

>> f[y] /. f[a:b,_:d] -> {a, b}
f
[
y
]

This is equivalent to:

>> f[a] /. f[a:_:b] -> {a, b}
{a, b}

’FullForm’:

>> FullForm[a:b:c:d:e]
Optional

[
Pattern [a, b] , Optional [Pattern [c, d] , e]

]
>> f[] /. f[a:_:b] -> {a, b}

{b, b}

47.2.7. Repeated (..)

WMA link

Repeated[pat]
matches one or more occurrences of pat.

>> a_Integer.. // FullForm
Repeated

[
Pattern

[
a, Blank

[
Integer

]]]
>> 0..1//FullForm

Repeated [0]

>> {{}, {a}, {a, b}, {a, a, a}, {a, a, a, a}} /. {Repeated[x : a | b,
3]} -> x

{{} , a, {a, b} , a, {a, a, a, a}}

>> f[x, 0, 0, 0] /. f[x, s:0..] -> s
Sequence [0, 0, 0]

47.2.8. RepeatedNull (...)

WMA link

634

https://reference.wolfram.com/language/ref/Repeated.html
https://reference.wolfram.com/language/ref/RepeatedNull.html

RepeatedNull[pat]
matches zero or more occurrences of pat.

>> a___Integer...//FullForm
RepeatedNull

[
Pattern

[
a, BlankNullSequence

[
Integer

]]]
>> f[x] /. f[x, 0...] -> t

t

47.2.9. Shortest

WMA link

Shortest[pat]
is a pattern object that matches the shortest sequence consistent with the pattern pat.

>> StringCases["aabaaab", Shortest["a" ~~__ ~~"b"]]
{aab, aaab}

>> StringCases["aabaaab", Shortest[RegularExpression["a+b"]]]
{aab, aaab}

47.2.10. Verbatim

WMA link

Verbatim[expr]
prevents pattern constructs in expr from taking effect, allowing them to match them-
selves.

Create a pattern matching Blank:

>> _ /. Verbatim[_]->t
t

>> x /. Verbatim[_]->t
x

Without Verbatim, Blank has its normal effect:

>> x /. _->t
t

635

https://reference.wolfram.com/language/ref/Shortest.html
https://reference.wolfram.com/language/ref/Verbatim.html

47.3. Defining, applying and compiling rules.

WMA link

Rules are a basic element in the evaluation process. Every Definition in Mathics3 consists of a set of
rules associated with a symbol. The evaluation process consists of the sequential application of rules
associated with the symbols appearing in a given expression. The process iterates until no rules match
the final expression.

In Mathics3, rules consist of a Pattern object pat and an Expression repl. When the Rule is applied to
a symbolic Expression expr, the interpreter tries to match the pattern with subexpressions of expr in a
top-to-bottom way. If a match is found, the subexpression is then replaced by repl.

If the pat includes named subpatterns, symbols in repl associated with that name are replaced by the
(sub) match in the final expression.

Let us consider, for example, the Rule:

>> rule = F[u_]->g[u]
F [u_]− > g [u]

This rule associates the pattern F[u_] with the expression g[u].

Then, using the Replace operator /. we can apply the rule to an expression

>> a + F[x ^ 2] /. rule

a + g
[

x2
]

Notice that the rule is applied from top to bottom just once:

>> a + F[F[x ^ 2]] /. rule

a + g
[

F
[

x2
]]

Here, the subexpression F[F[x^2]] matches with the pattern, and the named subpattern u_ matches
with F[x^2]. The original expression is then replaced by g[u], and u is replacedwith the subexpression
that matches the subpattern (F[x ^ 2]).

Notice also that the rule is applied just once. We can apply it recursively until no further matches are
found by using the ReplaceRepeated operator //.:

>> a + F[F[x ^ 2]] //. rule

a + g
[

g
[

x2
]]

Rules are kept as expressions until a Replace expression is evaluated. At that moment, Pattern objects
are compiled, taking into account the attributes of the symbols involved. To make the repeated appli-
cation of the same rule over different expressions faster, it is convenient to use Dispatch tables. These
expressions store precompiled versions of a list of rules, avoiding repeating the compilation step each
time the rules are applied.

636

https://reference.wolfram.com/language/guide/Rules.html

>> dispatchrule = Dispatch[{rule}]
Dispatch [<1>]

>> a + F[F[x ^ 2]] //. dispatchrule

a + g
[

g
[

x2
]]

47.3.1. Dispatch

WMA link

Dispatch[rulelist]
Introduced for compatibility. Currently, it just return rulelist. In the future, it should
return an optimized DispatchRules atom, containing an optimized set of rules.

>> rules = {{a_,b_}->a^b, {1,2}->3., F[x_]->x^2};

>> F[2] /. rules
4

>> dispatchrules = Dispatch[rules]
Dispatch [<3>]

>> F[2] /. dispatchrules
4

47.3.2. Replace

WMA link

Replace[expr, x -> y]
yields the result of replacing expr with y if it matches the pattern x.

Replace[expr, x -> y, levelspec]
replaces only subexpressions at levels specified through levelspec.

Replace[expr, {x -> y, ...}]
performs replacement with multiple rules, yielding a single result expression.

Replace[expr, {{a -> b, ...}, {c -> d, ...}, ...}]
returns a list containing the result of performing each set of replacements.

>> Replace[x, {x -> 2}]
2

By default, only the top level is searched for matches:

>> Replace[1 + x, {x -> 2}]
1 + x

637

https://reference.wolfram.com/language/ref/Dispatch.html
https://reference.wolfram.com/language/ref/Replace.html

>> Replace[x, {{x -> 1}, {x -> 2}}]
{1, 2}

Replace stops after the first replacement:

>> Replace[x, {x -> {}, _List -> y}]
{}

Replace replaces the deepest levels first:

>> Replace[x[1], {x[1] -> y, 1 -> 2}, All]
x [2]

By default, heads are not replaced:

>> Replace[x[x[y]], x -> z, All]
x
[
x
[
y
]]

Heads can be replaced using the Heads option:

>> Replace[x[x[y]], x -> z, All, Heads -> True]
z
[
z
[
y
]]

Note that heads are handled at the level of elements:

>> Replace[x[x[y]], x -> z, {1}, Heads -> True]
z
[
x
[
y
]]

You can use Replace as an operator:

>> Replace[{x_ -> x + 1}][10]
11

47.3.3. ReplaceAll (/.)

WMA link

ReplaceAll[expr, x -> y]
$expr$ /. x -> y

yields the result of replacing all subexpressions of expr matching the pattern x with y.
$expr$ /. {x -> y, ...}

performs replacement with multiple rules, yielding a single result expression.
$expr$ /. {{a -> b, ...}, {c -> d, ...}, ...}

returns a list containing the result of performing each set of replacements.

638

https://reference.wolfram.com/language/ref/ReplaceAll.html

>> a+b+c /. c->d
a + b + d

>> g[a+b+c,a]/.g[x_+y_,x_]->{x,y}
{a, b + c}

If rules is a list of lists, a list of all possible respective replacements is returned:

>> {a, b} /. {{a->x, b->y}, {a->u, b->v}}
{{x, y} , {u, v}}

The list can be arbitrarily nested:

>> {a, b} /. {{{a->x, b->y}, {a->w, b->z}}, {a->u, b->v}}
{{{x, y} , {w, z}} , {u, v}}

>> {a, b} /. {{{a->x, b->y}, a->w, b->z}, {a->u, b->v}}
Elements of {{a -> x, b -> y}, a -> w, b -> z} are a mixture of lists
and nonlists.
{{a, b}/. {{a− > x, b− > y} , a− > w, b− > z} , {u, v}}

ReplaceAll also can be used as an operator:

>> ReplaceAll[{a -> 1}][{a, b}]
{1, b}

ReplaceAll replaces the shallowest levels first:

>> ReplaceAll[x[1], {x[1] -> y, 1 -> 2}]
y

47.3.4. ReplaceList

WMA link

ReplaceList[expr, rules]
returns a list of all possible results when applying rules to expr.

ReplaceList[expr, rules, n]
returns a list of at most n results when applying rules to expr.

Get all subsequences of a list:

>> ReplaceList[{a, b, c}, {___, x__, ___} -> {x}]
{{a} , {a, b} , {a, b, c} , {b} , {b, c} , {c}}

You can specify the maximum number of items:

639

https://reference.wolfram.com/language/ref/ReplaceList.html

>> ReplaceList[{a, b, c}, {___, x__, ___} -> {x}, 3]
{{a} , {a, b} , {a, b, c}}

>> ReplaceList[{a, b, c}, {___, x__, ___} -> {x}, 0]
{}

If no rule matches, an empty list is returned:

>> ReplaceList[a, b->x]
{}

Like in ReplaceAll, rules can be a nested list:

>> ReplaceList[{a, b, c}, {{{___, x__, ___} -> {x}}, {{a, b, c} -> t}},
2]

{{{a} , {a, b}} , {t}}

Possible matches for a sum:

>> ReplaceList[a + b + c, x_ + y_ -> {x, y}]
{{a, b + c} , {b, a + c} , {c, a + b} , {a + b, c} , {a + c, b} , {b + c, a}}

47.3.5. ReplaceRepeated (//.)

WMA link

ReplaceRepeated[expr, x -> y]
$expr$ //. x -> y

repeatedly applies the rule x -> y to expr until the result no longer changes.

>> a+b+c //. c->d
a + b + d

>> f = ReplaceRepeated[c->d];

>> f[a+b+c]
a + b + d

>> Clear[f];

Simplification of logarithms:

>> logrules = {Log[x_ * y_] :> Log[x] + Log[y], Log[x_ ^ y_] :> y * Log[
x]};

>> Log[a * (b * c)^ d ^ e * f] //. logrules
Log [a] + Log

[
f
]

+
(
Log [b] + Log [c]

)
de

640

https://reference.wolfram.com/language/ref/ReplaceRepeated.html

ReplaceAll just performs a single replacement:

>> Log[a * (b * c)^ d ^ e * f] /. logrules

Log [a] + Log
[

f (bc)de
]

47.3.6. RuleDelayed (:\to)

WMA link

RuleDelayed[x, y]
x :> y

represents a rule replacing x with y, with y held unevaluated.

>> Attributes[RuleDelayed]
{HoldRest, Protected, SequenceHold}

47.3.7. Rule

WMA link

Rule[x, y]
x -> y

represents a rule replacing x with y.

>> a+b+c /. c->d
a + b + d

>> {x,x^2,y} /. x->3
{3, 9, y}

>> a /. Rule[1, 2, 3] -> t
Rule called with 3 arguments; 2 arguments are expected.
a

47.4. Pattern Defaults

47.4.1. Optional

WMA link

641

https://reference.wolfram.com/language/ref/RuleDelayed.html
https://reference.wolfram.com/language/ref/Rule_.html
https://reference.wolfram.com/language/ref/Optional.html

Optional[pattern, de f ault]
$pattern$: $default$

is a pattern which matches pattern, which if omitted should be replaced by de f ault.

>> f[x_, y_:1] := {x, y}

>> f[1, 2]
{1, 2}

>> f[a]
{a, 1}

Note that $symb$: $pattern$ represents a Pattern object. However, there is no disambiguity, since
symb has to be a symbol in this case.

>> x:_ // FullForm
Pattern [x, Blank []]

>> _:d // FullForm
Optional [Blank [] , d]

>> x:_+y_:d // FullForm
Pattern

[
x, Plus

[
Blank [] , Optional

[
Pattern

[
y, Blank []

]
, d
]]]

s_. is equivalent to Optional[s_] and represents an optional parameter which, if omitted, gets its value
from Default.

>> FullForm[s_.]
Optional [Pattern [s, Blank []]]

>> Default[h, k_] := k

>> h[a] /. h[x_, y_.] -> {x, y}
{a, 2}

47.5. Restrictions on Patterns

47.5.1. Condition (/;)

WMA link

Condition[pattern, expr]
$pattern$ /; $expr$

places an additional constraint on pattern that only allows it to match if expr evaluates to
True.

The controlling expression of a Condition can use variables from the pattern:

642

https://reference.wolfram.com/language/ref/Condition.html

>> f[3] /. f[x_] /; x>0 -> t
t

>> f[-3] /. f[x_] /; x>0 -> t
f [− 3]

Condition can be used in an assignment:

>> f[x_] := p[x] /; x>0

>> f[3]
p [3]

>> f[-3]
f [− 3]

47.5.2. PatternTest (?)

WMA link

PatternTest[pattern, test]
$pattern$? $test$

constrains pattern to match expr only if the evaluation of $test$[$expr$] yields True.

>> MatchQ[3, _Integer?(#>0&)]
True

>> MatchQ[-3, _Integer?(#>0&)]
False

>> MatchQ[3, Pattern[3]]
First element in pattern Pattern[3] is not a valid pattern name.
False

643

https://reference.wolfram.com/language/ref/PatternTest.html

48. Scoping Constructs

Contents

48.1. $Context 644
48.2. $ContextPath 644
48.3. $ModuleNumber 644
48.4. Begin 645
48.5. BeginPackage 645
48.6. Block 645
48.7. Contexts 646

48.8. End 647
48.9. EndPackage 647
48.10. Module 647
48.11. System‘Private‘$ContextPathStack . 647
48.12. System‘Private‘$ContextStack 648
48.13. Unique 648
48.14. With 648

48.1. $Context

WMA link

$Context
is the current context.

>> $Context
Global‘

48.2. $ContextPath

WMA link

$ContextPath
is the search path for contexts.

>> $ContextPath // InputForm
{“System‘”, “Global‘”}

48.3. $ModuleNumber

WMA link

644

https://reference.wolfram.com/language/ref/$Context.html
https://reference.wolfram.com/language/ref/$ContextPath.html
https://reference.wolfram.com/language/ref/$ModuleNumber.html

$ModuleNumber
is the current “serial number” to be used for local module variables.

 $ModuleNumber is incremented every time Module or Unique is called. a Mathics session
starts with $ModuleNumber set to 1. You can reset $ModuleNumber to a positive machine integer, but
if you do so, naming conflicts may lead to inefficiencies.

48.4. Begin

WMA link

Begin[context]
temporarily sets the current context to context.

>> Begin["test`"]
test‘

>> End[]
test‘

>> End[]
No previous context defined.
Global‘

48.5. BeginPackage

WMA link

BeginPackage[context]
starts the package given by context.

The context argument must be a valid context name. BeginPackage changes the values of $Context and
$ContextPath, setting the current context to context.

48.6. Block

WMA link

645

https://reference.wolfram.com/language/ref/Begin.html
https://reference.wolfram.com/language/ref/BeginPackage.html
https://reference.wolfram.com/language/ref/Block.html

Block[{x, y, ...}, expr]
temporarily removes the definitions of the given variables, evaluates expr, and restores
the original definitions afterwards.

Block[{x=x0, y=y0, ...}, expr]
assigns temporary values to the variables during the evaluation of expr.

>> n = 10
10

>> Block[{n = 5}, n ^ 2]
25

>> n
10

Values assigned to block variables are evaluated at the beginning of the block. Keep in mind that the
result of Block is evaluated again, so a returned block variable will get its original value.

>> Block[{x = n+2, n}, {x, n}]
{12, 10}

If the variable specification is not of the described form, an error message is raised.

>> Block[{x + y}, x]
Local variable specification contains x + y, which is not a symbol or
an assignment to a symbol.
x

Variable names may not appear more than once:

>> Block[{x, x}, x]
Duplicate local variable x found in local variable specification.
x

48.7. Contexts

WMA link

Contexts[]
returns a list of contexts.

Contexts[``string']'
returns a list of contexts that match the string.

Contexts allows the string patterns with the following metacharacters:

• * zero or more characters

• @ one or more characters, excluding uppercase letters

646

https://reference.wolfram.com/language/ref/Contexts.html

Get a list of all contexts:

>> Contexts[]
{HTML‘, HTML‘Parser‘, ImportExport‘, Internal‘, Pymathics‘, Settings‘, System‘, System‘Convert‘Asy‘, System‘Convert‘B64Dump‘, System‘Convert‘Image‘, System‘Convert‘JSONDump‘, System‘Convert‘TableDump‘, System‘Convert‘TextDump‘, System‘ConvertersDump‘, System‘Limit‘private‘, System‘Private‘, XML‘, XML‘Parser‘, internals‘bessel‘, internals‘elements‘}

Get a list of HTML contexts only:

>> Contexts["HTML*"]
{HTML‘, HTML‘Parser‘}

48.8. End

WMA link

End[]
ends a context started by Begin.

48.9. EndPackage

WMA link

EndPackage[]
marks the end of a package, undoing a previous BeginPackage.

After EndPackage, the values of $Context and $ContextPath at the time of the BeginPackage call are
restored, with the new packageś context prepended to $ContextPath.

48.10. Module

WMA link

Module[{vars}, expr]
localizes variables by giving them a temporary name of the form name$number, where
number is the current value of $ModuleNumber. Each time a module is evaluated,
$ModuleNumber is incremented.

48.11. System‘Private‘$ContextPathStack

WMA link

647

https://reference.wolfram.com/language/ref/End.html
https://reference.wolfram.com/language/ref/EndPackage.html
https://reference.wolfram.com/language/ref/Module.html
https://reference.wolfram.com/language/ref/ContextPathStack.html

System`Private`$ContextPathStack
is an internal variable tracking the values of $ContextPath saved by Begin and
BeginPackage.

48.12. System‘Private‘$ContextStack

WMA link

System`Private`$ContextStack
is an internal variable tracking the values of $Context saved by Begin and BeginPackage.

48.13. Unique

WMA link

Unique[]
generates a new symbol and gives a name of the form $number.

Unique[x]
generates a new symbol and gives a name of the form x$number.

Unique[{x, y, ...}]
generates a list of new symbols.

Unique[``xxx']'
generates a new symbol and gives a name of the form xxxnumber.

Create a unique symbol with no particular name:

>> Unique[]
$3

Create a unique symbol whose name begins with x:

>> Unique["x"]
x4

48.14. With

WMA link

With[{x=x0, y=y0, ...}, expr]
specifies that all occurrences of the symbols x, y, ... in expr should be replaced by x0, y0,
...

648

https://reference.wolfram.com/language/ref/ContextStack.html
https://reference.wolfram.com/language/ref/Unique.html
https://reference.wolfram.com/language/ref/With.html

49. Solving Recurrence Equations

Contents

49.1. RSolve 649

49.1. RSolve

WMA link

RSolve[eqn, a[n], n]
solves a recurrence equation for the function a[n].

Solve a difference equation:

>> RSolve[a[n] == a[n+1], a[n], n]
{{a [n]− > C [0]}}

No boundary conditions gives two general parameters:

>> RSolve[{a[n + 2] == a[n]}, a, n]{{
a− > Function

[
{n} , C [0] + C [1] (−1) ∧n

]}}
Include one boundary condition:

>> RSolve[{a[n + 2] == a[n], a[0] == 1}, a, n]{{
a− > Function

[
{n} , C [0] + (1− C [0]) (−1) ∧n

]}}
Get a “pure function” solution for a with two boundary conditions:

>> RSolve[{a[n + 2] == a[n], a[0] == 1, a[1] == 4}, a, n]{{
a− > Function

[
{n} ,

5
2
− 3 (−1) ∧n

2

]}}

649

https://reference.wolfram.com/language/ref/RSolve.html

50. Sparse Array Functions

Contents

50.1. SparseArray 650

50.1. SparseArray

WMA link

SparseArray[rules]
Builds a sparse array according to the list of rules.

SparseArray[rules, dims]
Builds a sparse array of dimensions dims according to the rules.

SparseArray[list]
Builds a sparse representation of list.

>> SparseArray[{{1, 2} -> 1, {2, 1} -> 1}]
SparseArray

[
Automatic, {2, 2} , 0, {{1, 2}− > 1, {2, 1}− > 1}

]
>> SparseArray[{{1, 2} -> 1, {2, 1} -> 1}, {3, 3}]

SparseArray
[
Automatic, {3, 3} , 0, {{1, 2}− > 1, {2, 1}− > 1}

]
>> M=SparseArray[{{0, a}, {b, 0}}]

SparseArray
[
Automatic, {2, 2} , 0, {{1, 2}− > a, {2, 1}− > b}

]
>> M //Normal

{{0, a} , {b, 0}}

650

https://reference.wolfram.com/language/ref/SparseArray.html

51. Special Functions

There are a number of functions found in mathematical physics and found in standard handbooks.

One good source is The NIST Digital Library of Mathematical Functions.

The technical literature often contains several conflicting definitions. So beware, and check for confor-
mance with the Mathics3 documentation.

A number of special functions can be evaluated for arbitrary complex values of their arguments. How-
ever defining relations may apply only for some special choices of arguments. Here, the full function
corresponds to an extension or “analytic continuation” of the defining relation.

For example, integral representations of functions are only valid when the integral exists, but the func-
tions can usually be defined by analytic continuation.

Contents

51.1. Bessel and Related Functions 652
51.1.1. AiryAi 652
51.1.2. AiryAiPrime 653
51.1.3. AiryAiZero 653
51.1.4. AiryBi 654
51.1.5. AiryBiPrime 654
51.1.6. AiryBiZero 655
51.1.7. AngerJ 655
51.1.8. BesselI 656
51.1.9. BesselJ 656
51.1.10. BesselJZero 657
51.1.11. BesselK 658
51.1.12. BesselY 658
51.1.13. BesselYZero 659
51.1.14. HankelH1 659
51.1.15. HankelH2 660
51.1.16. KelvinBei 660
51.1.17. KelvinBer 660
51.1.18. KelvinKei 661
51.1.19. KelvinKer 662
51.1.20. SphericalBesselJ 662
51.1.21. SphericalBesselY 663
51.1.22. SphericalHankelH1 663
51.1.23. SphericalHankelH2 664
51.1.24. StruveH 664
51.1.25. StruveL 664
51.1.26. WeberE 665

51.2. Elliptic Integrals 665
51.2.1. EllipticE 666
51.2.2. EllipticF 666
51.2.3. EllipticK 667
51.2.4. EllipticPi 667

51.3. Error Function and Related Functions 668
51.3.1. Erf 668
51.3.2. Erfc 668
51.3.3. FresnelC 669
51.3.4. FresnelS 669
51.3.5. InverseErf 670
51.3.6. InverseErfc 670

51.4. Exponential Integral and Special
Functions 671

51.4.1. ExpIntegralE 671
51.4.2. ExpIntegralEi 671
51.4.3. LambertW 671
51.4.4. ProductLog 672

51.5. Gamma and Related Functions . . . 673
51.5.1. Beta 673
51.5.2. Factorial (!) 673
51.5.3. Factorial2 (!!) 674
51.5.4. Gamma 674
51.5.5. LogGamma 676
51.5.6. Pochhammer 676
51.5.7. PolyGamma 677
51.5.8. StieltjesGamma 677
51.5.9. Subfactorial 678

651

https://dlmf.nist.gov/

51.6. Hypergeometric functions 678
51.6.1. Hypergeometric1F1 678
51.6.2. Hypergeometric2F1 680
51.6.3. HypergeometricPFQ 681
51.6.4. HypergeometricU 682
51.6.5. MeĳerG 683

51.7. Orthogonal Polynomials 684
51.7.1. ChebyshevT 684
51.7.2. ChebyshevU 684
51.7.3. GegenbauerC 685

51.7.4. HermiteH 685
51.7.5. JacobiP 685
51.7.6. LaguerreL 686
51.7.7. LegendreP 686
51.7.8. LegendreQ 687
51.7.9. SphericalHarmonicY 687

51.8. Zeta Functions and Polylogarithms . 688
51.8.1. LerchPhi 688
51.8.2. PolyLog 688
51.8.3. Zeta 689

51.1. Bessel and Related Functions

See also Chapter 10 Bessel Functions in the Digital Library of Mathematical Functions.

51.1.1. AiryAi

Airy function of the first kind (SymPy, WMA)

AiryAi[x]
returns the Airy function Ai(x).

Exact values:

>> AiryAi[0]

3
1
3

3Gamma
[2

3
]

AiryAi can be evaluated numerically:

>> AiryAi[0.5]
0.231694

>> AiryAi[0.5 + I]
0.157118− 0.24104I

652

https://dlmf.nist.gov/10
https://en.wikipedia.org/wiki/Airy_function
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.bessel.airyai
https://reference.wolfram.com/language/ref/AiryAi.html

>> Plot[AiryAi[x], {x, -10, 10}]

−10 −5 5 10

−0.4

−0.2

0.2

0.4

51.1.2. AiryAiPrime

Derivative of Airy function (Sympy, WMA link)

AiryAiPrime[x]
returns the derivative of the Airy function AiryAi[x].

Exact values:

>> AiryAiPrime[0]

− 3
2
3

3Gamma
[

1
3

]
Numeric evaluation:

>> AiryAiPrime[0.5]
− 0.224911

>> Plot[AiryAiPrime[x], {x, -10, 10}]

−10 −5 5 10

−0.5

0.5

51.1.3. AiryAiZero

WMA link

653

https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.bessel.airyaiprime
https://reference.wolfram.com/language/ref/AiryAiPrime.html
https://reference.wolfram.com/language/ref/AiryAiZero.html

AiryAiZero[k]
returns the kth zero of the Airy function Ai(z).

>> N[AiryAiZero[1]]
− 2.33811

51.1.4. AiryBi

WMA link

AiryBi[x]
returns the Airy function of the second kind Bi(x).

Exact values:

>> AiryBi[0]

3
5
6

3Gamma
[2

3
]

Numeric evaluation:

>> AiryBi[0.5]
0.854277

>> AiryBi[0.5 + I]
0.688145 + 0.370815I

>> Plot[AiryBi[x], {x, -10, 2}]

−10 −8 −6 −4 −2 2

−0.5

0.5

1.0

1.5

51.1.5. AiryBiPrime

WMA link

AiryBiPrime[x]
returns the derivative of the Airy function of the second kind AiryBi[x].

654

https://reference.wolfram.com/language/ref/AiryBi.html
https://reference.wolfram.com/language/ref/AiryBiPrime.html

Exact values:

>> AiryBiPrime[0]

3
1
6

Gamma
[

1
3

]
Numeric evaluation:

>> AiryBiPrime[0.5]
0.544573

>> Plot[AiryBiPrime[x], {x, -10, 2}]

−10 −8 −6 −4 −2 2

−1.0

−0.5

0.5

1.0

1.5

2.0

51.1.6. AiryBiZero

WMA link

AiryBiZero[k]
returns the kth zero of the Airy function Bi(z).

>> N[AiryBiZero[1]]
− 1.17371

51.1.7. AngerJ

Anger function (mpmath, WMA)

AngerJ[n, z]
returns the Anger function Jn(z).

>> AngerJ[1.5, 3.5]
0.294479

655

https://reference.wolfram.com/language/ref/AiryBiZero.html
https://en.wikipedia.org/wiki/Anger_function
https://mpmath.org/doc/current/functions/bessel.html#mpmath.angerj
https://reference.wolfram.com/language/ref/AngerJ.html

>> Plot[AngerJ[1, x], {x, -10, 10}]

−10 −5 5 10

−0.6

−0.4

−0.2

0.2

0.4

0.6

51.1.8. BesselI

Modified Bessel function of the first kind (Sympy, WMA)

BesselI[n, z]
returns the modified Bessel function of the first kind In(z).

>> BesselI[0, 0]
1

>> BesselI[1.5, 4]
8.17263

>> Plot[BesselI[0, x], {x, 0, 5}]

1 2 3 4 5

5

10

15

20

The special case of half-integer index is expanded using Rayleigh’s formulas:

>> BesselI[3/2, x]
√

2
√

x
(
−Sinh[x]

x2 + Cosh[x]
x

)
√

π

51.1.9. BesselJ

Bessel function of the first kind (SymPy, WMA)

656

https://en.wikipedia.org/wiki/Bessel_function#Bessel_functions_of_the_first_kind:_J%CE%B1
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.bessel.besseli
https://reference.wolfram.com/language/ref/BesselI.html
https://en.wikipedia.org/wiki/Bessel_function#Bessel_functions_of_the_first_kind:_J%CE%B1
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.bessel.besselj
https://reference.wolfram.com/language/ref/BesselJ.html

BesselJ[n, z]
returns the Bessel function of the first kind Jn(z).

>> BesselJ[0, 5.2]
− 0.11029

>> D[BesselJ[n, z], z]

−BesselJ [1 + n, z]
2

+
BesselJ [− 1 + n, z]

2

>> BesselJ[0., 0.]
1.

>> Plot[BesselJ[0, x], {x, 0, 10}]

2 4 6 8 10

−0.4

−0.2

0.2

0.4

0.6

0.8

The special case of half-integer index is expanded using Rayleigh’s formulas:

>> BesselJ[1/2, x]
√

2Sin [x]√
x
√

π

Some integrals can be expressed in terms of Bessel functions:

>> Integrate[Cos[3 Sin[w]], {w, 0, Pi}]
πBesselJ [0, 3]

51.1.10. BesselJZero

WMA link

BesselJZero[n, k]
returns the kth zero of the Bessel function of the first kind Jn(z).

>> N[BesselJZero[0, 1]]
2.40483

>> N[BesselJZero[0, 1], 10]
2.404825558

657

https://reference.wolfram.com/language/ref/BesselJZero.html

51.1.11. BesselK

Modified Bessel function of the second kind (SymPy, WMA)

BesselK[n, z]
returns the modified Bessel function of the second kind Kn(z).

>> BesselK[1.5, 4]
0.014347

>> Plot[BesselK[0, x], {x, 0, 5}]

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

The special case of half-integer index is expanded using Rayleigh’s formulas:

>> BesselK[-3/2, x]
√

2
√

x
√

π
(

E−x

x2 + E−x

x

)
2

51.1.12. BesselY

Bessel function of the second kind (SymPy, WMA)

BesselY[n, z]
returns the Bessel function of the second kind Yn(z).

>> BesselY[1.5, 4]
0.367112

>> BesselY[0., 0.]
−∞

658

https://en.wikipedia.org/wiki/Bessel_function#Modified_Bessel_functions:_I%CE%B1,_K%CE%B1
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.bessel.besselk
https://reference.wolfram.com/language/ref/BesselJ.html
https://en.wikipedia.org/wiki/Bessel_function#Bessel_functions_of_the_second_kind:_Y%CE%B1
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.bessel.bessely
https://reference.wolfram.com/language/ref/BesselY.html

>> Plot[BesselY[0, x], {x, 0, 10}]

2 4 6 8 10

−0.4

−0.2

0.2

0.4

The special case of half-integer index is expanded using Rayleigh’s formulas:

>> BesselY[-3/2, x]
√

2
√

x
(
−Sin[x]

x2 + Cos[x]
x

)
√

π

>> BesselY[0, 0]
−∞

51.1.13. BesselYZero

WMA link

BesselYZero[n, k]
returns the kth zero of the Bessel function of the second kind Yn(z).

>> N[BesselYZero[0, 1]]
0.893577

>> N[BesselYZero[0, 1], 10]
0.8935769663

51.1.14. HankelH1

WMA link

HankelH1[n, z]
returns the Hankel function of the first kind H1

n(z).

>> HankelH1[1.5, 4]
0.185286 + 0.367112I

659

https://reference.wolfram.com/language/ref/BesselYZero.html
https://reference.wolfram.com/language/ref/HankelH1.html

51.1.15. HankelH2

WMA link

HankelH2[n, z]
returns the Hankel function of the second kind H2

n(z).

>> HankelH2[1.5, 4]
0.185286− 0.367112I

51.1.16. KelvinBei

Kelvin function bei (mpmath, WMA)

KelvinBei[z]
returns the Kelvin function bei(z).

KelvinBei[n, z]
returns the Kelvin function bein(z).

>> KelvinBei[0.5]
0.0624932

>> KelvinBei[1.5 + I]
0.326323 + 0.755606I

>> KelvinBei[0.5, 0.25]
0.370153

>> Plot[KelvinBei[x], {x, 0, 10}]

2 4 6 8 10

−30

−20

−10

10

51.1.17. KelvinBer

Kelvin function ber (mpmath, WMA)

660

https://reference.wolfram.com/language/ref/HankelH2.html
https://en.wikipedia.org/wiki/Kelvin_functions#bei(x)
https://mpmath.org/doc/current/functions/bessel.html#bei
https://reference.wolfram.com/language/ref/KelvinBei.html
https://en.wikipedia.org/wiki/Kelvin_functions#ber(x)
https://mpmath.org/doc/current/functions/bessel.html#ber
https://reference.wolfram.com/language/ref/KelvinBer.html

KelvinBer[z]
returns the Kelvin function ber(z).

KelvinBer[n, z]
returns the Kelvin function bern(z).

>> KelvinBer[0.5]
0.999023

>> KelvinBer[1.5 + I]
1.1162− 0.117944I

>> KelvinBer[0.5, 0.25]
0.148824

>> Plot[KelvinBer[x], {x, 0, 10}]

2 4 6 8 10

20

40

60

80

51.1.18. KelvinKei

Kelvin function kei (mpmath, WMA)

KelvinKei[z]
returns the Kelvin function kei(z).

KelvinKei[n, z]
returns the Kelvin function kein(z).

>> KelvinKei[0.5]
− 0.671582

>> KelvinKei[1.5 + I]
− 0.248994 + 0.303326I

>> KelvinKei[0.5, 0.25]
− 2.0517

661

https://en.wikipedia.org/wiki/Kelvin_functions#kei(x)
https://mpmath.org/doc/current/functions/bessel.html#kei
https://reference.wolfram.com/language/ref/KelvinKei.html

>> Plot[KelvinKei[x], {x, 0, 10}]

2 4 6 8 10

−0.5

−0.4

−0.3

−0.2

−0.1

51.1.19. KelvinKer

Kelvin function ker (mpmath, WMA)

KelvinKer[z]
returns the Kelvin function ker(z).

KelvinKer[n, z]
returns the Kelvin function kern(z).

>> KelvinKer[0.5]
0.855906

>> KelvinKer[1.5 + I]
− 0.167162− 0.184404I

>> KelvinKer[0.5, 0.25]
0.450023

>> Plot[KelvinKer[x], {x, 0, 10}]

2 4 6 8 10

−0.1

0.1

0.2

0.3

0.4

0.5

51.1.20. SphericalBesselJ

Spherical Bessel function of the first kind (Sympy, WMA)

662

https://en.wikipedia.org/wiki/Kelvin_functions#ker(x)
https://mpmath.org/doc/current/functions/bessel.html#ker
https://reference.wolfram.com/language/ref/KelvinKer.html
https://en.wikipedia.org/wiki/Bessel_function#Spherical_Bessel_functions
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.bessel.jn
https://reference.wolfram.com/language/ref/SphericalBesselJ.html

SphericalBesselJ[n, z]
returns the spherical Bessel function of the first kind Yn(z).

>> SphericalBesselJ[1, 5.2]
− 0.122771

>> Plot[SphericalBesselJ[1, x], {x, 0.1, 10}]

2 4 6 8 10

−0.2

−0.1

0.1

0.2

0.3

0.4

51.1.21. SphericalBesselY

Spherical Bessel function of the first kind (Sympy, WMA)

SphericalBesselY[n, z]
returns the spherical Bessel function of the second kind Yn(z).

>> SphericalBesselY[1, 5.5]
0.104853

>> Plot[SphericalBesselY[1, x], {x, 0, 10}]

2 4 6 8 10

−8

−6

−4

−2

51.1.22. SphericalHankelH1

Spherical Bessel function of the first kind (WMA link)

663

https://en.wikipedia.org/wiki/Bessel_function#Spherical_Bessel_functions
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.bessel.yn
https://reference.wolfram.com/language/ref/SphericalBesselY.html
https://en.wikipedia.org/wiki/Bessel_function#Spherical_Bessel_functions
https://reference.wolfram.com/language/ref/SphericalHankelH1.html

SphericalHankelH1[n, z]
returns the spherical Hankel function of the first kind h(1)

n (z).

>> SphericalHankelH1[3, 1.5]
0.0283246− 3.78927I

51.1.23. SphericalHankelH2

Spherical Bessel function of the second kind (WMA link)

SphericalHankelH1[n, z]
returns the spherical Hankel function of the second kind h(2)

n (z).

>> SphericalHankelH2[3, 1.5]
0.0283246 + 3.78927I

51.1.24. StruveH

Struve functions H (WMA)

StruveH[n, z]
returns the Struve function Hn(z).

>> StruveH[1.5, 3.5]
1.13192

>> Plot[StruveH[0, x], {x, 0, 10}]

2 4 6 8 10

−0.2

0.2

0.4

0.6

0.8

51.1.25. StruveL

Modified Struve functions L

664

https://en.wikipedia.org/wiki/Bessel_function#Spherical_Bessel_functions
https://reference.wolfram.com/language/ref/SphericalHankelH2.html
https://en.wikipedia.org/wiki/Struve_function
https://reference.wolfram.com/language/ref/StruveH.html
https://en.wikipedia.org/wiki/Struve_function

StruveL[n, z]
returns the modified Struve function Ln(z).

>> StruveL[1.5, 3.5]
4.41126

>> Plot[StruveL[0, x], {x, 0, 5}]

1 2 3 4 5

5

10

15

20

51.1.26. WeberE

WMA link

WeberE[n, z]
returns the Weber function En(z).

>> WeberE[1.5, 3.5]
− 0.397256

>> Plot[WeberE[1, x], {x, -10, 10}]

−10 −5 5 10

−0.4

−0.2

0.2

0.4

0.6

51.2. Elliptic Integrals

In integral calculus, an elliptic integral is one of a number of related functions defined as the value of
certain integral. Their name originates from their originally arising in connection with the problem of
finding the arc length of an ellipse.

These functions often are used in cryptography to encode and decode messages.

665

https://reference.wolfram.com/language/ref/WeberE.html
https://en.wikipedia.org/wiki/Elliptic_integral

See also Chapter 19 Elliptic Integrals in the Digital Library of Mathematical Functions.

51.2.1. EllipticE

Elliptic complete elliptic integral of the second kind (SymPy, WMA)

EllipticE[m]
computes the complete elliptic integral E(m).

EllipticE[ϕ|m]
computes the complete elliptic integral of the second kind E(m|ϕ).

Elliptic curves give Pi / 2 when evaluated at zero:

>> EllipticE[0]
π

2

>> EllipticE[0.3, 0.8]
0.296426

Plot over a reals centered around 0:

>> Plot[EllipticE[m], {m, -2, 2}]

−2.0 −1.5 −1.0 −0.5 0.5 1.0

0.5

1.0

1.5

2.0

51.2.2. EllipticF

Complete elliptic integral of the first kind (SymPy, WMA)

EllipticF[ϕ, m]
computes the elliptic integral of the first kind F(ϕ|m).

>> EllipticF[0.3, 0.8]
0.303652

EllipticF is zero when the first argument is zero:

666

https://dlmf.nist.gov/19
https://en.wikipedia.org/wiki/Elliptic_integral#Complete_elliptic_integral_of_the_second_kind
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.elliptic_integrals.elliptic_e
https://reference.wolfram.com/language/ref/EllipticE.html
https://en.wikipedia.org/wiki/Elliptic_integral#Complete_elliptic_integral_of_the_first_kind
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.elliptic_integrals.elliptic_f
https://reference.wolfram.com/language/ref/EllipticF.html

>> EllipticF[0, 0.8]
0

51.2.3. EllipticK

Complete elliptic integral of the first kind (SymPy, WMA)

EllipticK[m]
computes the elliptic integral of the first kind K(m).

>> EllipticK[0.5]
1.85407

Elliptic curves give Pi / 2 when evaluated at zero:

>> EllipticK[0]
π

2

Plot over a reals around 0:

>> Plot[EllipticK[n], {n, -1, 1}]

−1.0 −0.5 0.5 1.0

0.5

1.0

1.5

2.0

2.5

51.2.4. EllipticPi

Complete elliptic integral of the third kind (SymPy, WMA)

EllipticPi[n, m]
computes the elliptic integral of the third kind Pi(m).

>> EllipticPi[0.4, 0.6]
2.89281

Elliptic curves give Pi / 2 when evaluated at zero:

667

https://en.wikipedia.org/wiki/Elliptic_integral#Complete_elliptic_integral_of_the_first_kind
https://docs.sympy.org/latest/modules/functions/special.html
https://reference.wolfram.com/language/ref/EllipticK.html
https://en.wikipedia.org/wiki/Elliptic_integral#Incomplete_elliptic_integral_of_the_third_kind
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.elliptic_integrals.elliptic_pi
https://reference.wolfram.com/language/ref/EllipticPi.html

>> EllipticPi[0, 0]
π

2

51.3. Error Function and Related Functions

See also Chapter 7 Error Functions, Dawson’s and Fresnel Integrals.

51.3.1. Erf

Error function (SymPy, WMA)

Erf[z]
returns the error function of z.

Erf[z0, z1]
returns the result of Erf[z_1] - Erf[z_0].

Erf[x] is an odd function:

>> Erf[-x]
−Erf [x]

>> Erf[1.0]
0.842701

>> Erf[0]
0

>> {Erf[0, x], Erf[x, 0]}
{Erf [x] ,−Erf [x]}

>> Plot[Erf[x], {x, -2, 2}]

−2 −1 1 2

−1.0

−0.5

0.5

1.0

51.3.2. Erfc

Complementary Error function (SymPy, WMA)

668

https://dlmf.nist.gov/7
https://en.wikipedia.org/wiki/Error_function
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.error_functions.erf
https://reference.wolfram.com/language/ref/Erf.html
https://en.wikipedia.org/wiki/Error_function
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.error_functions.erfc
https://reference.wolfram.com/language/ref/Erfc.html

Erfc[z]
returns the complementary error function of z.

>> Erfc[-x] / 2
2− Erfc [x]

2

>> Erfc[1.0]
0.157299

>> Erfc[0]
1

>> Plot[Erfc[x], {x, -2, 2}]

−2 −1 1 2

0.5

1.0

1.5

2.0

51.3.3. FresnelC

Fresnel integral (mpmath, WMA)

FresnelC[z]
is the Fresnel C integral C(z).

>> FresnelC[{0, Infinity}]{
0,

1
2

}
>> Integrate[Cos[x^2 Pi/2], {x, 0, z}]

FresnelC [z]

51.3.4. FresnelS

Fresnel integral (mpmath, WMA)

FresnelS[z]
is the Fresnel S integral S(z).

669

https://en.wikipedia.org/wiki/Fresnel_integral
https://mpmath.org/doc/current/functions/expintegrals.html?mpmath.fresnelc
https://reference.wolfram.com/language/ref/FresnelC.html
https://en.wikipedia.org/wiki/Fresnel_integral
https://mpmath.org/doc/current/functions/expintegrals.html#mpmath.fresnels
https://reference.wolfram.com/language/ref/FresnelS.html

>> FresnelS[{0, Infinity}]{
0,

1
2

}
>> Integrate[Sin[x^2 Pi/2], {x, 0, z}]

FresnelS [z]

51.3.5. InverseErf

Inverse error function (SymPy, WMA)

InverseErf[z]
returns the inverse error function of z.

>> InverseErf /@ {-1, 0, 1}
{−∞, 0, ∞}

>> Plot[InverseErf[x], {x, -1, 1}]

−1.0 −0.5 0.5 1.0

−1.0

−0.5

0.5

1.0

InverseErf[z] only returns numeric values for -1 <= z <= 1:

>> InverseErf /@ {0.9, 1.0, 1.1}
{1.16309, ∞, InverseErf [1.1]}

51.3.6. InverseErfc

Complementary error function (SymPy, WMA)

InverseErfc[z]
returns the inverse complementary error function of z.

>> InverseErfc /@ {0, 1, 2}
{∞, 0,−∞}

670

https://en.wikipedia.org/wiki/Error_function#Inverse_functions
https://docs.sympy.org/latest/modules/functions/special.html?sympy.functions.special.error_functions.erfinv
https://reference.wolfram.com/language/ref/InverseErf.html
https://en.wikipedia.org/wiki/Error_function#Complementary_error_function
https://docs.sympy.org/latest/modules/functions/special.html?sympy.functions.special.error_functions.erfcinv
https://reference.wolfram.com/language/ref/InverseErfc.html

51.4. Exponential Integral and Special Functions

See also Chapters 4.2-4.13 Logarithm, Exponential, Powers in the Digital Library of Mathematical Func-
tions.

51.4.1. ExpIntegralE

WMA link

ExpIntegralE[n, z]
returns the exponential integral function En(z).

>> ExpIntegralE[2.0, 2.0]
0.0375343

51.4.2. ExpIntegralEi

WMA link

ExpIntegralEi[z]
returns the exponential integral function Ei(z).

>> ExpIntegralEi[2.0]
4.95423

51.4.3. LambertW

Lambert <i>W</i> Function, MathWorld

LambertW[k]
alias for ProductLog[z].

LambertW[k, z]
alias for ProductLog[k, z].

>> LambertW[k, z]
ProductLog [k, z]

671

https://dlmf.nist.gov/4#PT2
https://dlmf.nist.gov/4#PT2
https://reference.wolfram.com/language/ref/ExpIntegralE.html
https://reference.wolfram.com/language/ref/ExpIntegralEi.html
https://en.wikipedia.org/wiki/Lambert_W_function
https://mathworld.wolfram.com/LambertW-Function.html

>> Plot[LambertW[x], {x, -1/E, E}]

−0.5 0.5 1.0 1.5 2.0 2.5

−0.2

0.2

0.4

0.6

0.8

1.0

See also ProductLog 51.4.4.

51.4.4. ProductLog

WMA link

ProductLog[z]
returns the principle solution for w in z == wEw.

ProductLog[k, z]
gives the k-th solution.

The defining equation:

>> z == ProductLog[z] * E ^ ProductLog[z]
True

Some special values:

>> ProductLog[0]
0

>> ProductLog[E]
1

>> ProductLog[-1.5]
− 0.0327837 + 1.54964I

The graph of ProductLog:

672

https://reference.wolfram.com/language/ref/ProductLog.html

>> Plot[ProductLog[x], {x, -1/E, E}]

−0.5 0.5 1.0 1.5 2.0 2.5

−0.2

0.2

0.4

0.6

0.8

1.0

51.5. Gamma and Related Functions

See also Chapter 5 Gamma Function in the Digital Library of Mathematical Functions.

51.5.1. Beta

Euler beta function (SymPy, WMA)

Beta[a, b]
is the Euler’s Beta function B(a, b).

Beta[z, a, b]
gives the incomplete Beta function Bz(a, b).

The Beta function satisfies the property: B =
∫ t

0 t(x−1)(1−t)(y−1) = Γ(a)Γ(b)/Γ(a + b)

>> Beta[2, 3]
1

12

>> 12* Beta[1., 2, 3]
1.

51.5.2. Factorial (!)

Factorial (SymPy, mpmath, WMA)

Factorial[n]
n!

computes the factorial of n.

>> 20!
2432902008176640000

673

https://dlmf.nist.gov/5
https://en.wikipedia.org/wiki/Beta_function
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.beta_functions.beta
https://reference.wolfram.com/language/ref/Beta.html
https://en.wikipedia.org/wiki/Factorial
https://docs.sympy.org/latest/modules/functions/combinatorial.html#factorial
https://mpmath.org/doc/current/functions/gamma.html#mpmath.factorial
https://reference.wolfram.com/language/ref/Factorial.html

Factorial handles numeric (real and complex) values using the gamma function:

>> 10.5!
1.18994*∧7

>> (-3.0+1.5*I)!
0.0427943− 0.00461565I

However, the value at poles is ComplexInfinity:

>> (-1.)!
ComplexInfinity

Factorial has the same operator (!) as Not, but with higher precedence:

>> !a! //FullForm
Not [Factorial [a]]

51.5.3. Factorial2 (!!)

WMA link

Factorial2[n]
n!!

computes the double factorial of n.

The double factorial or semifactorial of a number n, is the product of all the integers from 1 up to n that
have the same parity (odd or even) as n.

>> 5!!
15.

>> Factorial2[-3]
−1.

Factorial2 accepts Integers, Rationals, Reals, or Complex Numbers:

>> I!! + 1
3.71713 + 0.279527I

Irrationals can be handled by using numeric approximation:

>> N[Pi!!, 6]
3.35237

51.5.4. Gamma

Gamma function (SymPy, mpmath, WMA)

674

https://reference.wolfram.com/language/ref/Factorial2.html
https://en.wikipedia.org/wiki/Gamma_function
https://docs.sympy.org/latest/modules/functions/special.html#module-sympy.functions.special.gamma_functions
https://mpmath.org/doc/current/functions/gamma.html#gamma
https://reference.wolfram.com/language/ref/Gamma.html

The gamma function is one commonly used extension of the factorial function applied to complex num-
bers, and is defined for all complex numbers except the non-positive integers.

Gamma[z]
is the Euler gamma function, Γ(z) on the complex number z.

Gamma[a, z]
is the upper incomplete gamma function, Γ(a, z).

Gamma[a, z0, z1]
is the generalized incomplete gamma function Γ[a, z0]− Γ(a, z1).

Gamma[z] is equivalent to (z− 1)!:

>> Simplify[Gamma[z] - (z - 1)!]
0

Examples of using Gamma with exact numeric arguments:

>> Gamma[8]
5040

>> Gamma[1/2]
√

π

>> Gamma[123.78]
4.21078*∧204

>> Gamma[1. + I]
0.498016− 0.15495I

Examples of Gamma with symbolic arguments:

>> Gamma[1, x]
E−x

>> Gamma[0, x]
ExpIntegralE [1, x]

Both Gamma and Factorial functions are continuous:

>> Plot[{Gamma[x], x!}, {x, 0, 4}]

1 2 3 4

2

4

6

8

10

12

675

51.5.5. LogGamma

log-gamma function (SymPy, WMA)

LogGamma[z]
is the logarithm of the gamma function on the complex number z.

>> LogGamma[3]
Log [2]

LogGamma[z] has different analytical structure than Log[Gamma[z]]

>> LogGamma[-2.+3 I]
− 6.77652− 4.56879I

>> Log[Gamma[-2.+3 I]]
− 6.77652 + 1.71439I

LogGamma also can be evaluated for large arguments, for which Gamma produces Overflow:

>> LogGamma[1.*^20]
4.50517*∧21

>> Log[Gamma[1.*^20]]
Overflow occurred in computation.
Overflow []

51.5.6. Pochhammer

Rising factorial (SymPy, WMA)

The Pochhammer symbol or rising factorial often appears in series expansions for hypergeometric func-
tions.

The Pochammer symbol has a definite value even when the gamma functions which appear in its defi-
nition are infinite.

Pochhammer[a, n]
is the Pochhammer symbol an.

Product of the first 3 numbers:

>> Pochhammer[1, 3]
6

Pochhammer[1, n] is the same as Pochhammer[2, n-1] since 1 is a multiplicative identity.

676

https://en.wikipedia.org/wiki/Gamma_function#The_log-gamma_function
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.gamma_functions.loggamma
https://reference.wolfram.com/language/ref/LogGamma.html
https://en.wikipedia.org/wiki/Falling_and_rising_factorials
https://docs.sympy.org/latest/modules/functions/combinatorial.html#risingfactorial
https://reference.wolfram.com/language/ref/Pochhammer.html

>> Pochhammer[1, 3] == Pochhammer[2, 2]
True

Pochhammer[0, −n] for positive integer n, is −1n1/|n|!:

>> Table[Pochhammer[0, n], {n, 0, -4, -1}]{
1,−1,

1
2

,−1
6

,
1

24

}

Pochhammer uses Gamma for non-Integer values of n:

>> Pochhammer[1, 3.001]
6.00754

>> Pochhammer[1, 3.001] == Pochhammer[2, 2.001]
True

>> Pochhammer[1.001, 3] == 1.001 2.001 3.001
True

51.5.7. PolyGamma

Polygamma function (SymPy, WMA)

PolyGamma is a meromorphic function on the complex numbers and is defined as a derivative of the
logarithm of the gamma function.

PolyGamma[z]
returns the digamma function.

PolyGamma[n,z]
gives the n∧(th) derivative of the digamma function.

>> PolyGamma[5]
25
12
− EulerGamma

>> PolyGamma[3, 5]

−22369
3456

+
π4

15

51.5.8. StieltjesGamma

Stieltjes constants (SymPy, WMA)

677

https://en.wikipedia.org/wiki/Polygamma_function
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.gamma_functions.polygamma
https://reference.wolfram.com/language/ref/PolyGamma.html
https://en.wikipedia.org/wiki/Stieltjes_constants
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.zeta_functions.stieltjes
https://reference.wolfram.com/language/ref/StieltjesGamma.html

StieltjesGamma[n]
returns the Stieltjes constant for n.

StieltjesGamma[n, a]
gives the generalized Stieltjes constant of its parameters

51.5.9. Subfactorial

Derangement (SymPy, WMA)

Subfactorial[n]
computes the subfactorial of n.

Here are the first few derangements:

>> Subfactorial[{0, 1, 2, 3}]
{1, 0, 1, 2}

We can handle MachineReal numbers:

>> Subfactorial[6.0]
265

Here is how the exponential, Factorial, and Subfactorial grow in comparison:

>> LogPlot[{10^x, Factorial[x], Subfactorial[x]}, {x, 0, 25}, PlotPoints
->26]

5 10 15 20 25

100000

10000000000

1000000000000000

100000000000000000000

10000000000000000905969664

51.6. Hypergeometric functions

See also Chapter 15 Hypergeometric Functions in the Digital Library of Mathematical Functions.

51.6.1. Hypergeometric1F1

Kummer confluent hypergeometric function (mpmath, WMA)

Hypergeometric1F1[a, b, z]
returns 1F1(a; b; z).

678

https://en.wikipedia.org/wiki/Derangement
https://docs.sympy.org/latest/modules/functions/combinatorial.html#sympy.functions.combinatorial.factorials.subfactorial
https://reference.wolfram.com/language/ref/Subfactorial.html
https://dlmf.nist.gov/15
https://en.wikipedia.org/wiki/Confluent_hypergeometric_function
https://mpmath.org/doc/current/functions/hypergeometric.html#hyp1f1
https://reference.wolfram.com/language/ref/Hypergeometric1F1.html

Numeric evaluation:

>> Hypergeometric1F1[1, 2, 3.0]
6.36185

Plot over a subset of reals:

>> Plot[Hypergeometric1F1[1, 2, x], {x, -5, 5}]

−4 −2 2 4

5

10

15

>> Plot[{Hypergeometric1F1[1/2, Sqrt[2], x], Hypergeometric1F1[1/2, Sqrt
[3], x], Hypergeometric1F1[1/2, Sqrt[5], x]}, {x, -4, 4}]

−4 −2 2 4

1

2

3

4

5

>> Plot[{Hypergeometric1F1[Sqrt[3], Sqrt[2], z], -0.01}, {z, -10, -2}]

−8 −6 −4 −2

−0.02

−0.015

−0.01

−0.005

0.005

679

>> Plot[{Hypergeometric1F1[Sqrt[2], b, 1], Hypergeometric1F1[Sqrt[5], b,
1], Hypergeometric1F1[Sqrt[7], b, 1]}, {b, -3, 3}]

−3 −2 −1 1 2 3

−150

−100

−50

50

100

150

Compute the elementwise values of an array:

>> Hypergeometric1F1[1, 1, {{1, 0}, {0, 1}}]
{{E, 1} , {1, E}}

>> Hypergeometric1F1[1/2, 1, x]

BesselI
[
0,

x
2

]
E

x
2

Evaluate using complex arguments:

>> Hypergeometric1F1[2 + I, 2, 0.5]
1.61833 + 0.379258I

Large numbers are supported:

>> Hypergeometric1F1[3, 4, 10^10]

− 3
500000000000000000000000000000

+
149999999970000000003E10000000000

500000000000000000000000000000

Hypergeometric1F1 evaluates to simpler functions for certain parameters:

>> Hypergeometric1F1[1/2, 1, x]

BesselI
[
0,

x
2

]
E

x
2

>> Hypergeometric1F1[2, 1, x]
(1 + x) Ex

>> Hypergeometric1F1[1, 1/2, x]

−
√

x
(
−E−x
√

x
−
√

πErf
[√

x
])

Ex

51.6.2. Hypergeometric2F1

Hypergeometric function (mpmath, WMA)

680

https://en.wikipedia.org/wiki/Hypergeometric_function
https://mpmath.org/doc/current/functions/hypergeometric.html#mpmath.hyp2f1
https://reference.wolfram.com/language/ref/Hypergeometric2F1.html

Hypergeometric2F1[a, b, c, z]
returns 2F1(a; b; c; z).

>> Hypergeometric2F1[2., 3., 4., 5.0]
0.156542 + 0.150796I

Evaluate symbolically:

>> Hypergeometric2F1[2, 3, 4, x]
6Log [1− x]

x3 +
−6 + 3x
−x2 + x3

Evaluate using complex arguments:

>> Hypergeometric2F1[2 + I, -I, 3/4, 0.5 - 0.5 I]
− 0.972167− 0.181659I

Plot over a subset of the reals:

>> Plot[Hypergeometric2F1[1/3, 1/3, 2/3, x], {x, -1, 1}]

−1.0 −0.5 0.5 1.0

0.5

1.0

51.6.3. HypergeometricPFQ

Generalized hypergeometric function (mpmath, SymPy, WMA)

HypergeometricPFQ[a1, ..., ap, b1, ..., bq, z]
returns pFq(a1, ..., ap; b1, ..., bq; z).

>> HypergeometricPFQ[{2}, {2}, 1]
E

Result is symbollicaly simplified by default:

>> HypergeometricPFQ[{3}, {2}, 1]
3E
2

681

https://en.wikipedia.org/wiki/Generalized_hypergeometric_function
https://mpmath.org/doc/current/functions/hypergeometric.html#hyper
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.hyper.hyper
https://reference.wolfram.com/language/ref/HypergeometricPFQ.html

unless a numerical evaluation is explicitly requested:

>> HypergeometricPFQ[{3}, {2}, 1] // N
4.07742

>> HypergeometricPFQ[{3}, {2}, 1.]
4.07742

>> Plot[HypergeometricPFQ[{1, 1}, {3, 3, 3}, x], {x, -30, 30}]

−30 −20 −10 10 20 30

0.5

1.0

1.5

2.0

2.5

3.0

3.5

>> HypergeometricPFQ[{1, 1, 2}, {3, 3}, z]
−4PolyLog [2, z]

z2 +
4Log [1− z]

z2 − 4Log [1− z]
z

+
8
z

The following special cases are handled:

>> HypergeometricPFQ[{}, {}, z]
Ez

>> HypergeometricPFQ[{0}, {b}, z]
1

>> HypergeometricPFQ[{1, 1, 3}, {2, 2}, x]

−Log [1− x]
2x

− 1
−2 + 2x

HypergeometricPFQ evaluates to a polynomial if any of the parameters ak is a non-positive integer:

>> HypergeometricPFQ[{-2, a}, {b}, x]

−2ax (1 + b) + ax2 (1 + a) + b (1 + b)
b (1 + b)

Value at origin:

>> HypergeometricPFQ[{a1, b2, a3}, {b1, b2, b3}, 0]
1

51.6.4. HypergeometricU

Confluent hypergeometric function (mpmath, WMA)

682

https://en.wikipedia.org/wiki/Confluent_hypergeometric_function
https://mpmath.org/doc/current/functions/bessel.html#mpmath.hyperu
https://reference.wolfram.com/language/ref/HypergeometricU.html

HypergeometricU[a, b, z]
returns U(a, b, z). Re-

sult is symbollicaly simplified, where possible:

>> HypergeometricU[3, 2, 1]
MeĳerG

[
{{−2} , {}} , {{−1, 0} , {}} , 1

]
2

>> HypergeometricU[1,4,8]
HypergeometricU [1, 4, 8]

unless a numerical evaluation is explicitly requested:

>> HypergeometricU[3, 2, 1] // N
0.105479

>> HypergeometricU[3, 2, 1.]
0.105479

Plot U[3, 2, x] from 0 to 10 in steps of 0.5:

>> Plot[HypergeometricU[3, 2, x], {x, 0.5, 10}]

2 4 6 8 10

0.02

0.04

0.06

0.08

0.1

We handle this special case:

>> HypergeometricU[0, b, z]
1

51.6.5. MeijerG

Meĳer G-function (mpmath, SymPy, WMA)

MeijerG[a1, ..., an, an+1, ..., ap, b1, ..., bm, bm+1, ..., aq, z]
returns Gm,n

p,q (z|a1, ..., ap; b1, ..., bq). Re-

sult is symbollicaly simplified by default:

683

https://en.wikipedia.org/wiki/Meijer_G-function
https://mpmath.org/doc/current/functions/hypergeometric.html#meijerg
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.hyper.meijerg
https://reference.wolfram.com/language/ref/MeijerG.html

>> MeijerG[{{1, 2}, {}}, {{3}, {}}, 1]
MeĳerG

[
{{1, 2} , {}} , {{3} , {}} , 1

]
unless a numerical evaluation is explicitly requested:

>> MeijerG[{{1, 2},{}}, {{3},{}}, 1] // N
0.210958

>> MeijerG[{{1, 2},{}}, {{3},{}}, 1.]
0.210958

51.7. Orthogonal Polynomials

See also Chapters 18.3 Classical Orthogonal Polynomials in the Digital Library of Mathematical Func-
tions.

51.7.1. ChebyshevT

Chebyshev polynomial of the first kind (Sympy, WMA)

ChebyshevT[n, x]
returns the Chebyshev polynomial of the first kind Tn(x).

>> ChebyshevT[8, x]

1− 32x2 + 160x4 − 256x6 + 128x8

>> ChebyshevT[1 - I, 0.5]
0.800143 + 1.08198I

51.7.2. ChebyshevU

Chebyshev polynomial of the second kind (Sympy, WMA)

ChebyshevU[n, x]
returns the Chebyshev polynomial of the second kind Un(x).

>> ChebyshevU[8, x]

1− 40x2 + 240x4 − 448x6 + 256x8

>> ChebyshevU[1 - I, 0.5]
1.60029 + 0.721322I

684

https://dlmf.nist.gov/18.3
https://dlmf.nist.gov/18.3
https://en.wikipedia.org/wiki/Chebyshev_polynomials
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.polynomials.chebyshevt
https://reference.wolfram.com/language/ref/ChebyshevT.html
https://en.wikipedia.org/wiki/Chebyshev_polynomials
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.polynomials.chebyshevu
https://reference.wolfram.com/language/ref/ChebyshevU.html

51.7.3. GegenbauerC

Gegenbauer polynomials (SymPy, WMA)

GegenbauerC[n, m, x]
returns the Gegenbauer polynomial C(m)

n (x).

>> GegenbauerC[6, 1, x]

−1 + 24x2 − 80x4 + 64x6

>> GegenbauerC[4 - I, 1 + 2 I, 0.7]
− 3.2621− 24.9739I

51.7.4. HermiteH

Hermite polynomial (SymPy, WMA)

HermiteH[n, x]
returns the Hermite polynomial Hn(x).

>> HermiteH[8, x]
1680− 13 440x2 + 13440x4 − 3 584x6 + 256x8

>> HermiteH[3, 1 + I]
−28 + 4I

>> HermiteH[4.2, 2]
77.5291

51.7.5. JacobiP

Jacobi polynomials (SymPy, WMA)

JacobiP[n, a, b, x]
returns the Jacobi polynomial P(a,b)

n (x).

>> JacobiP[1, a, b, z]
a
2
− b

2
+ z
(

1 +
a
2

+
b
2

)
>> JacobiP[3.5 + I, 3, 2, 4 - I]

1410.02 + 5797.3I

685

https://en.wikipedia.org/wiki/Gegenbauer_polynomials
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.polynomials.gegenbauer
https://reference.wolfram.com/language/ref/GegenbauerC.html
https://en.wikipedia.org/wiki/Hermite_polynomials
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.polynomials.hermite
https://reference.wolfram.com/language/ref/HermiteH.html
https://en.wikipedia.org/wiki/Jacobi_polynomials
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.polynomials.jacobi
https://reference.wolfram.com/language/ref/JacobiP.html

51.7.6. LaguerreL

Laguerre polynomials (SymPy, WMA)

LaguerreL[n, x]
returns the Laguerre polynomial Ln(x).

LaguerreL[n, a, x]
returns the generalised Laguerre polynomial of order n and index a, La

n(x).

>> LaguerreL[8, x]

1− 8x + 14x2 − 28x3

3
+

35x4

12
− 7x5

15
+

7x6

180
− x7

630
+

x8

40320

>> LaguerreL[3/2, 1.7]
− 0.947134

>> LaguerreL[5, 2, x]

21− 35x +
35x2

2
− 7x3

2
+

7x4

24
− x5

120

51.7.7. LegendreP

Lengendre polynomials (SymPy, WMA)

LegendreP[n, x]
returns the Legendre polynomial Pn(x).

LegendreP[n, m, x]
returns the associated Legendre polynomial Pm

n (x).

>> LegendreP[4, x]

3
8
− 15x2

4
+

35x4

8

>> LegendreP[5/2, 1.5]
4.17762

>> LegendreP[1.75, 1.4, 0.53]
− 1.32619

>> LegendreP[1.6, 3.1, 1.5]
− 0.303998− 1.91937I

LegendreP can be used to draw generalized Lissajous figures:

686

https://en.wikipedia.org/wiki/Laguerre_polynomials
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.polynomials.leguarre_poly
https://reference.wolfram.com/language/ref/LeguerreL.html
https://en.wikipedia.org/wiki/Legendre_polynomials
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.polynomials.legendre
https://reference.wolfram.com/language/ref/LegendreP

>> ParametricPlot[{LegendreP[7, x], LegendreP[5, x]}, {x, -1, 1}]

−0.4 −0.2 0.2 0.4

−0.6

−0.4

−0.2

0.2

0.4

0.6

51.7.8. LegendreQ

Legendre functions of the second kind (mpmath, WMA)

LegendreQ[n, x]
returns the Legendre function of the second kind Qn(x).

LegendreQ[n, m, x]
returns the associated Legendre function of the second Qm

n (x).

>> LegendreQ[5/2, 1.5]
0.036211− 6.56219I

>> LegendreQ[1.75, 1.4, 0.53]
2.05499

>> LegendreQ[1.6, 3.1, 1.5]
− 1.71931− 7.70273I

51.7.9. SphericalHarmonicY

Spherical Harmonic https (mpmath, WMA)

SphericalHarmonicY[l, m, θ, ϕ]
returns the spherical harmonic function Ym

l (θ, ϕ).

>> SphericalHarmonicY[3/4, 0.5, Pi/5, Pi/3]
0.254247 + 0.14679I

>> SphericalHarmonicY[3, 1, theta, phi]
√

21
(

1− 5Cos [theta]2
)

EIphiSin [theta]

8
√

π

687

https://mathworld.wolfram.com/LegendreFunctionoftheSecondKind.html
https://mpmath.org/doc/current/functions/orthogonal.html#mpmath.legenq
https://reference.wolfram.com/language/ref/LegendreQ
//mathworld.wolfram.com/SphericalHarmonic.html
https://mpmath.org/doc/current/functions/orthogonal.html#mpmath.spherharm
https://reference.wolfram.com/language/ref/SphericalHarmonicY.html

51.8. Zeta Functions and Polylogarithms

See also Chapters 25 Zeta and Related Functions in the Digital Library of Mathematical Functions.

51.8.1. LerchPhi

Lerch transcendent (WMA)

LerchPhi[z,s,a]
gives the Lerch transcendent Φ(z, s, a).

>> LerchPhi[2, 3, -1.5]
19.3893− 2.1346I

>> LerchPhi[1, 2, 1/4] == 8 Catalan + Pi^2
True

Plot between between -1 and 1:

>> Plot[LerchPhi[x, 1, 2], {x, -1, 1}]

−1.0 −0.5 0.5 1.0

0.5

1.0

1.5

51.8.2. PolyLog

Polylogarithm (WMA)

PolyLog[n, z]
returns the polylogarithm function Lin(z).

>> PolyLog[s, 1]
Zeta [s]

>> PolyLog[-7, I] //Chop
136.

Dilogarithm function Li2(x):

688

https://dlmf.nist.gov/25
https://en.wikipedia.org/wiki/Lerch_transcendent
https://reference.wolfram.com/language/ref/LerchPhi.html
https://en.wikipedia.org/wiki/Polylogarithm
https://reference.wolfram.com/language/ref/PolyLog.html

>> Plot[PolyLog[2,x], {x, -20, 1}]

−20 −15 −10 −5

−6

−5

−4

−3

−2

−1

51.8.3. Zeta

Riemenn zeta function (WMA)

Zeta[z]
returns the Riemann zeta function of z.

>> Zeta[2]
π2

6

>> Zeta[-2.5 + I]
0.0235936 + 0.0014078I

>> Plot[Zeta[z], {z, -20, 10}]

−20 −15 −10 −5 5 10

−5

5

689

https://en.wikipedia.org/wiki/Riemann_zeta_function
https://reference.wolfram.com/language/ref/Zeta.html

52. Strings and Characters

Contents

52.1. Character Codes 690
52.1.1. FromCharacterCode 690
52.1.2. ToCharacterCode 691

52.2. Characters in Strings 692
52.2.1. CharacterRange 692
52.2.2. Characters 692
52.2.3. LowerCaseQ 692
52.2.4. ToLowerCase 693
52.2.5. ToUpperCase 693
52.2.6. UpperCaseQ 693

52.3. Operations on Strings 694
52.3.1. StringDrop 694
52.3.2. StringInsert 694
52.3.3. StringJoin (<>) 695
52.3.4. StringLength 696
52.3.5. StringPosition 696
52.3.6. StringReplace 697
52.3.7. StringReverse 698

52.3.8. StringRiffle 698
52.3.9. StringSplit 698
52.3.10. StringTake 699
52.3.11. StringTrim 700

52.4. Regular Expressions 700
52.4.1. RegularExpression 700

52.5. String Patterns 701
52.5.1. DigitCharacter 701
52.5.2. EndOfLine 701
52.5.3. EndOfString 702
52.5.4. LetterCharacter 702
52.5.5. StartOfLine 702
52.5.6. StartOfString 703
52.5.7. StringCases 703
52.5.8. StringExpression (~~) 704
52.5.9. WhitespaceCharacter 704
52.5.10. WordBoundary 705
52.5.11. WordCharacter 705

52.1. Character Codes

52.1.1. FromCharacterCode

WMA link

FromCharacterCode[n]
returns the character corresponding to Unicode codepoint n.

FromCharacterCode[{n1, n2, ...}]
returns a string with characters corresponding to ni.

FromCharacterCode[{{n11, n12, ...}, {n21, n22, ...}, ...}]
returns a list of strings.

>> FromCharacterCode[100]
d

>> FromCharacterCode[228, "ISO8859-1"]
ä

690

https://reference.wolfram.com/language/ref/FromCharacterCode.html

>> FromCharacterCode[{100, 101, 102}]
def

>> ToCharacterCode[%]
{100, 101, 102}

>> FromCharacterCode[{{97, 98, 99}, {100, 101, 102}}]
{abc, def}

>> ToCharacterCode["abc 123"] // FromCharacterCode
abc 123

52.1.2. ToCharacterCode

WMA link

ToCharacterCode[“string”]
converts the string to a list of character codes (Unicode codepoints).

ToCharacterCode[{“string1”, “string2”, ...}]
converts a list of strings to character codes.

>> ToCharacterCode["abc"]
{97, 98, 99}

>> FromCharacterCode[%]
abc

>> ToCharacterCode["\[Alpha]\[Beta]\[Gamma]"]
{945, 946, 947}

>> ToCharacterCode["ä", "UTF8"]
{195, 164}

>> ToCharacterCode["ä", "ISO8859-1"]
{228}

>> ToCharacterCode[{"ab", "c"}]
{{97, 98} , {99}}

>> ToCharacterCode[{"ab", x}]
String or list of strings expected at position 1 in
ToCharacterCode[{ab, x}].
ToCharacterCode

[
{ab, x}

]

691

https://reference.wolfram.com/language/ref/ToCharacterCode.html

>> ListPlot[ToCharacterCode["plot this string"], Filling -> Axis]

5 10 15

20

40

60

80

100

52.2. Characters in Strings

52.2.1. CharacterRange

WMA link

CharacterRange[“a”, “b”]
returns a list of the Unicode characters from a to b inclusive.

>> CharacterRange["a", "e"]
{a, b, c, d, e}

>> CharacterRange["b", "a"]
{}

52.2.2. Characters

WMA link

Characters[“string”]
returns a list of the characters in string.

>> Characters["abc"]
{a, b, c}

52.2.3. LowerCaseQ

WMA link

692

https://reference.wolfram.com/language/ref/CharacterRange.html
https://reference.wolfram.com/language/ref/Characters.html
https://reference.wolfram.com/language/ref/LowerCaseQ.html

LowerCaseQ[s]
returns True if s consists wholly of lower case characters.

>> LowerCaseQ["abc"]
True

An empty string returns True.

>> LowerCaseQ[""]
True

52.2.4. ToLowerCase

WMA link

ToLowerCase[s]
returns s in all lower case.

>> ToLowerCase["New York"]
new york

52.2.5. ToUpperCase

WMA link

ToUpperCase[s]
returns s in all upper case.

>> ToUpperCase["New York"]
NEW YORK

52.2.6. UpperCaseQ

WMA link

UpperCaseQ[s]
returns True if s consists wholly of upper case characters.

>> UpperCaseQ["ABC"]
True

693

https://reference.wolfram.com/language/ref/ToLowerCase.html
https://reference.wolfram.com/language/ref/ToUpperCase.html
https://reference.wolfram.com/language/ref/UpperCaseQ.html

An empty string returns True.

>> UpperCaseQ[""]
True

52.3. Operations on Strings

52.3.1. StringDrop

WMA link

StringDrop[“string”, n]
gives string with the first n characters dropped.

StringDrop[“string”, -n]
gives string with the last n characters dropped.

StringDrop[“string”, {n}]
gives string with the n-th character dropped.

StringDrop[“string”, {m, n}]
gives string with the characters m through n dropped.

>> StringDrop["abcde", 2]
cde

>> StringDrop["abcde", -2]
abc

>> StringDrop["abcde", {2}]
acde

>> StringDrop["abcde", {2,3}]
ade

>> StringDrop["abcd",{3,2}]
abcd

>> StringDrop["abcd",0]
abcd

52.3.2. StringInsert

WMA link

694

https://reference.wolfram.com/language/ref/StringDrop.html
https://reference.wolfram.com/language/ref/StringInsert.html

StringInsert[“string”, “snew”, n]
yields a string with snew inserted starting at position n in string.

StringInsert[“string”, “snew”, -n]
inserts a at position n from the end of “string”.

StringInsert[“string”, “snew”, {n1, n2, ...}]
inserts a copy of snew at each position ni in string; the ni are taken before any insertion is
done.

StringInsert[{s1, s2, ...}, “snew”, n]
gives the list of results for each of the si.

>> StringInsert["noting", "h", 4]
nothing

>> StringInsert["note", "d", -1]
noted

>> StringInsert["here", "t", -5]
there

>> StringInsert["adac", "he", {1, 5}]
headache

>> StringInsert[{"something", "sometimes"}, " ", 5]
{some thing, some times}

Insert dot as millar separators

>> StringInsert["1234567890123456", ".", Range[-16, -4, 3]]
1.234.567.890.123.456

52.3.3. StringJoin (<>)

WMA link

StringJoin[“s1”, “s2”, ...]
returns the concatenation of the strings s1, s2, .

>> StringJoin["a", "b", "c"]
abc

>> "a" <> "b" <> "c" // InputForm
“abc”

StringJoin flattens lists out:

>> StringJoin[{"a", "b"}] // InputForm
“ab”

695

https://reference.wolfram.com/language/ref/StringJoin.html

>> Print[StringJoin[{"Hello", " ", {"world"}}, "!"]]
Hello world!

52.3.4. StringLength

WMA link

StringLength[“string”]
gives the length of string.

>> StringLength["abc"]
3

StringLength is listable:

>> StringLength[{"a", "bc"}]
{1, 2}

>> StringLength[x]
String expected.
StringLength [x]

52.3.5. StringPosition

WMA link

StringPosition[“string”, patt]
gives a list of starting and ending positions where patt matches “string”.

StringPosition[“string”, patt, n]
returns the first n matches only.

StringPosition[“string”, {patt1, patt2, ...}, n]
matches multiple patterns.

StringPosition[{s1, s2, ...}, patt]
returns a list of matches for multiple strings.

>> StringPosition["123ABCxyABCzzzABCABC", "ABC"]
{{4, 6} , {9, 11} , {15, 17} , {18, 20}}

>> StringPosition["123ABCxyABCzzzABCABC", "ABC", 2]
{{4, 6} , {9, 11}}

StringPosition can be useful for searching through text.

>> data = Import["ExampleData/EinsteinSzilLetter.txt", CharacterEncoding
->"UTF8"];

696

https://reference.wolfram.com/language/ref/StringLength.html
https://reference.wolfram.com/language/ref/StringPosition.html

>> StringPosition[data, "uranium"]
{{299, 305} , {870, 876} , {1538, 1544} , {1671, 1677} , {2300, 2306} , {2784, 2790} , {3093, 3099}}

52.3.6. StringReplace

WMA link

StringReplace[“string”, “a”->“b”]
replaces each occurrence of old with new in string.

StringReplace[“string”, {“s1”->“sp1”, “s2”->“sp2”}]
performs multiple replacements of each si by the corresponding spi in string.

StringReplace[“string”, srules, n]
only performs the first n replacements.

StringReplace[{“string1”, “string2”, ...}, srules]
performs the replacements specified by srules on a list of strings.

StringReplace replaces all occurrences of one substring with another:

>> StringReplace["xyxyxyyyxxxyyxy", "xy" -> "A"]
AAAyyxxAyA

Multiple replacements can be supplied:

>> StringReplace["xyzwxyzwxxyzxyzw", {"xyz" -> "A", "w" -> "BCD"}]
ABCDABCDxAABCD

Only replace the first 2 occurrences:

>> StringReplace["xyxyxyyyxxxyyxy", "xy" -> "A", 2]
AAxyyyxxxyyxy

Also works for multiple rules:

>> StringReplace["abba", {"a" -> "A", "b" -> "B"}, 2]
ABba

StringReplace acts on lists of strings too:

>> StringReplace[{"xyxyxxy", "yxyxyxxxyyxy"}, "xy" -> "A"]
{AAxA, yAAxxAyA}

StringReplace also can be used as an operator:

>> StringReplace["y" -> "ies"]["city"]
cities

697

https://reference.wolfram.com/language/ref/StringReplace.html

52.3.7. StringReverse

WMA link

StringReverse[“string”]
reverses the order of the characters in “string”.

>> StringReverse["live"]
evil

52.3.8. StringRiffle

WMA link

StringRiffle[{s1, s2, s3, ...}]
returns a new string by concatenating all the si, with spaces inserted between them.

StringRiffle[list, sep]
inserts the separator sep between all elements in list.

StringRiffle[list, {``left', ``sep'', ``right''}]'
use le f t and right as delimiters after concatenation.

>> StringRiffle[{"a", "b", "c", "d", "e"}]
a b c d e

>> StringRiffle[{"a", "b", "c", "d", "e"}, ", "]
a, b, c, d, e

>> StringRiffle[{"a", "b", "c", "d", "e"}, {"(", " ", ")"}]
(a b c d e)

52.3.9. StringSplit

WMA link

StringSplit[s]
splits the string s at whitespace, discarding the whitespace and returning a list of strings.

StringSplit[s, pattern]
splits s into substrings separated by delimiters matching the string expression pattern.

StringSplit[s, {p1, p2, ...}]
splits s at any of the pi patterns.

StringSplit[{s1, s2, ...}, {d1, d2, ...}]
returns a list with the result of applying the function to each element.

>> StringSplit["abc,123", ","]
{abc, 123}

698

https://reference.wolfram.com/language/ref/StringReverse.html
https://reference.wolfram.com/language/ref/StringRiffle.html
https://reference.wolfram.com/language/ref/StringSplit.html

By default any number of whitespace characters are used to at a delimiter:

>> StringSplit[" abc 123 "]
{abc, 123}

However if youwant instead to use only a single character for each delimiter, use WhiteSpaceCharacter:

>> StringSplit[" abc 123 ", WhitespaceCharacter]
{, , abc, , , , 123, , }

>> StringSplit["abc,123.456", {",", "."}]
{abc, 123, 456}

>> StringSplit["a b c", RegularExpression[" +"]]
{a, b, c}

>> StringSplit[{"a b", "c d"}, RegularExpression[" +"]]
{{a, b} , {c, d}}

>> StringSplit["x", "x"]
{}

Split using a delimiter that has nonzero list of 12’s

>> StringSplit["12312123", "12"..]
{3, 3}

52.3.10. StringTake

WMA link

StringTake[“string”, n]
gives the first n characters in string.

StringTake[“string”, -n]
gives the last n characters in string.

StringTake[“string”, {n}]
gives the nth character in string.

StringTake[“string”, {m, n}]
gives characters m through n in string.

StringTake[“string”, {m, n, s}]
gives characters m through n in steps of s.

StringTake[{s1, s2, ...} spec}]
gives the list of results for each of the si.

>> StringTake["abcde", 2]
ab

>> StringTake["abcde", 0]

699

https://reference.wolfram.com/language/ref/StringTake.html

>> StringTake["abcde", -2]
de

>> StringTake["abcde", {2}]
b

>> StringTake["abcd", {2,3}]
bc

>> StringTake["abcdefgh", {1, 5, 2}]
ace

Take the last 2 characters from several strings:

>> StringTake[{"abcdef", "stuv", "xyzw"}, -2]
{ef, uv, zw}

StringTake also supports standard sequence specifications

>> StringTake["abcdef", All]
abcdef

52.3.11. StringTrim

WMA link

StringTrim[s]
returns a version of s with whitespace removed from start and end.

>> StringJoin["a", StringTrim[" \tb\n "], "c"]
abc

>> StringTrim["ababaxababyaabab", RegularExpression["(ab)+"]]
axababya

52.4. Regular Expressions

52.4.1. RegularExpression

WMA link

RegularExpression[``regex']'
represents the regex specified by the string “regex”.

700

https://reference.wolfram.com/language/ref/StringTrim.html
https://reference.wolfram.com/language/ref/RegularExpression.html

>> StringSplit["1.23, 4.56 7.89", RegularExpression["(\\s|,)+"]]
{1.23, 4.56, 7.89}

RegularExpression just wraps a string to be interpreted as a regular expression, but are not evaluated
as stand alone expressions:

>> RegularExpression["[abc]"]
RegularExpression [[abc]]

52.5. String Patterns

52.5.1. DigitCharacter

WMA link

DigitCharacter
represents the digits 0-9.

>> StringMatchQ["1", DigitCharacter]
True

>> StringMatchQ["a", DigitCharacter]
False

>> StringMatchQ["12", DigitCharacter]
False

>> StringMatchQ["123245", DigitCharacter..]
True

52.5.2. EndOfLine

WMA link

EndOfLine
represents the end of a line in a string.

>> StringReplace["aba\nbba\na\nab", "a" ~~EndOfLine -> "c"]
abc
bbc
c
ab

701

https://reference.wolfram.com/language/ref/DigitCharacter.html
https://reference.wolfram.com/language/ref/EndOfLine.html

>> StringSplit["abc\ndef\nhij", EndOfLine]
{abc,
def,
hĳ}

52.5.3. EndOfString

WMA link

EndOfString
represents the end of a string.

Test whether strings end with “e”:

>> StringMatchQ[#, __ ~~"e" ~~EndOfString] &/@ {"apple", "banana", "
artichoke"}

{True, False, True}

>> StringReplace["aab\nabb", "b" ~~EndOfString -> "c"]
aab
abc

52.5.4. LetterCharacter

WMA link

LetterCharacter
represents letters.

>> StringMatchQ[#, LetterCharacter] & /@ {"a", "1", "A", " ", "."}
{True, False, True, False, False}

LetterCharacter also matches unicode characters.

>> StringMatchQ["\[Lambda]", LetterCharacter]
True

52.5.5. StartOfLine

WMA link

702

https://reference.wolfram.com/language/ref/EndOfString.html
https://reference.wolfram.com/language/ref/LetterCharacter.html
https://reference.wolfram.com/language/ref/StartOfLine.html

StartOfLine
represents the start of a line in a string.

>> StringReplace["aba\nbba\na\nab", StartOfLine ~~"a" -> "c"]
cba
bba
c
cb

>> StringSplit["abc\ndef\nhij", StartOfLine]
{abc

, def
, hĳ}

52.5.6. StartOfString

WMA link

StartOfString
represents the start of a string.

Test whether strings start with “a”:

>> StringMatchQ[#, StartOfString ~~"a" ~~__] &/@ {"apple", "banana", "
artichoke"}

{True, False, True}

>> StringReplace["aba\nabb", StartOfString ~~"a" -> "c"]
cba
abb

52.5.7. StringCases

WMA link

StringCases[“string”, pattern]
gives all occurrences of pattern in string.

StringReplace[“string”, pattern -> f orm]
gives all instances of f orm that stem from occurrences of pattern in string.

StringCases[“string”, {pattern1, pattern2, ...}]
gives all occurrences of pattern1, pattern2,

StringReplace[“string”, pattern, n]
gives only the first n occurrences.

StringReplace[{“string1”, “string2”, ...}, pattern]
gives occurrences in string1, string2, ...

703

https://reference.wolfram.com/language/ref/StartOfString.html
https://reference.wolfram.com/language/ref/StringCases.html

>> StringCases["axbaxxb", "a" ~~x_ ~~"b"]
{axb}

>> StringCases["axbaxxb", "a" ~~x__ ~~"b"]
{axbaxxb}

>> StringCases["axbaxxb", Shortest["a" ~~x__ ~~"b"]]
{axb, axxb}

>> StringCases["-abc- def -uvw- xyz", Shortest["-" ~~x__ ~~"-"] -> x]
{abc, uvw}

>> StringCases["-öhi- -abc- -.-", "-" ~~x : WordCharacter .. ~~"-" -> x]
{öhi, abc}

>> StringCases["abc-abc xyz-uvw", Shortest[x : WordCharacter .. ~~"-" ~~
x_] -> x]

{abc}

>> StringCases["abba", {"a" -> 10, "b" -> 20}, 2]
{10, 20}

>> StringCases["a#ä_123", WordCharacter]
{a, ä, 1, 2, 3}

>> StringCases["a#ä_123", LetterCharacter]
{a, ä}

52.5.8. StringExpression (~~)

WMA link

StringExpression[s_1, s_2, ...]
represents a sequence of strings and symbolic string objects si.

>> "a" ~~"b" // FullForm
“ab”

52.5.9. WhitespaceCharacter

WMA link

WhitespaceCharacter
represents a single whitespace character.

704

https://reference.wolfram.com/language/ref/StringExpression.html
https://reference.wolfram.com/language/ref/WhitespaceCharacter.html

>> StringMatchQ["\n", WhitespaceCharacter]
True

>> StringSplit["a\nb\r\nc\rd", WhitespaceCharacter]
{a, b, , c, d}

For sequences of whitespace characters use Whitespace:

>> StringMatchQ[" \n", WhitespaceCharacter]
False

>> StringMatchQ[" \n", Whitespace]
True

52.5.10. WordBoundary

WMA link

WordBoundary
represents the boundary between words.

>> StringReplace["apple banana orange artichoke", "e" ~~WordBoundary ->
"E"]

applE banana orangE artichokE

52.5.11. WordCharacter

WMA link

WordCharacter
represents a single letter or digit character.

>> StringMatchQ[#, WordCharacter] &/@ {"1", "a", "A", ",", " "}
{True, True, True, False, False}

Test whether a string is alphanumeric:

>> StringMatchQ["abc123DEF", WordCharacter..]
True

>> StringMatchQ["$b;123", WordCharacter..]
False

705

https://reference.wolfram.com/language/ref/WordBoundary.html
https://reference.wolfram.com/language/ref/WordCharacter.html

53. Symbolic Execution History

In order to debug and understand program execution, the execution history can be saved.

706

54. Tensors

A tensor is an algebraic object that describes a (multilinear) relationship between sets of algebraic objects
related to a vector space. Objects that tensors may map between include vectors and scalars, and even
other tensors.

There are many types of tensors, including scalars and vectors (which are the simplest tensors), dual
vectors, multilinear maps between vector spaces, and even some operations such as the dot product.
Tensors are defined independent of any basis, although they are often referred to by their components
in a basis related to a particular coordinate system.

Mathics3 represents tensors of vectors and matrices as lists; tensors of any rank can be handled.

Contents

54.1. ArrayDepth 707
54.2. ConjugateTranspose 707
54.3. Dimensions 708
54.4. Dot (.) 708
54.5. Inner 709
54.6. LeviCivitaTensor 710
54.7. Outer 710

54.8. RotationTransform 712
54.9. ScalingTransform 712
54.10. ShearingTransform 712
54.11. TransformationFunction 712
54.12. TranslationTransform 713
54.13. Transpose 713

54.1. ArrayDepth

WMA link

ArrayDepth[a]
returns the depth of the non-ragged array a, defined as Length[Dimensions[a]].

>> ArrayDepth[{{a,b},{c,d}}]
2

>> ArrayDepth[x]
0

54.2. ConjugateTranspose

Conjugate transpose (WMA)

707

https://en.wikipedia.org/wiki/Tensor
https://reference.wolfram.com/language/ref/ArrayDepth.html
https://en.wikipedia.org/wiki/Conjugate_transpose
https://reference.wolfram.com/language/ref/ConjugateTranspose.html

ConjugateTranspose[m]
gives the conjugate transpose of m.

>> ConjugateTranspose[{{0, I}, {0, 0}}]
{{0, 0} , {−I, 0}}

>> ConjugateTranspose[{{1, 2 I, 3}, {3 + 4 I, 5, I}}]
{{1, 3− 4I} , {−2I, 5} , {3,−I}}

54.3. Dimensions

WMA

Dimensions[expr]
returns a list of the dimensions of the expression expr.

A vector of length 3:

>> Dimensions[{a, b, c}]
{3}

A 3x2 matrix:

>> Dimensions[{{a, b}, {c, d}, {e, f}}]
{3, 2}

Ragged arrays are not taken into account:

>> Dimensions[{{a, b}, {b, c}, {c, d, e}}]
{3}

The expression can have any head:

>> Dimensions[f[f[a, b, c]]]
{1, 3}

54.4. Dot (.)

Dot product (WMA link)

708

https://reference.wolfram.com/language/ref/Dimensions.html
https://en.wikipedia.org/wiki/Dot_product
https://reference.wolfram.com/language/ref/Dot.html

Dot[x, y]
x . y

computes the vector dot product or matrix product x . y.

Scalar product of vectors:

>> {a, b, c} . {x, y, z}
ax + by + cz

Product of matrices and vectors:

>> {{a, b}, {c, d}} . {x, y}
{ax + by, cx + dy}

Matrix product:

>> {{a, b}, {c, d}} . {{r, s}, {t, u}}
{{ar + bt, as + bu} , {cr + dt, cs + du}}

>> a . b
a.b

54.5. Inner

WMA link

Inner[f , x, y, g]
computes a generalised inner product of x and y, using a multiplication function f and
an addition function g.

>> Inner[f, {a, b}, {x, y}, g]
g
[

f [a, x] , f
[
b, y
]]

Inner can be used to compute a dot product:

>> Inner[Times, {a, b}, {c, d}, Plus] == {a, b} . {c, d}
True

The inner product of two boolean matrices:

>> Inner[And, {{False, False}, {False, True}}, {{True, False}, {True,
True}}, Or]

{{False, False} , {True, True}}

Inner works with tensors of any depth:

709

https://reference.wolfram.com/language/ref/Inner.html

>> Inner[f, {{{a, b}}, {{c, d}}}, {{1}, {2}}, g]{{{
g
[

f [a, 1] , f [b, 2]
]}}

,
{{

g
[

f [c, 1] , f [d, 2]
]}}}

54.6. LeviCivitaTensor

Levi-Civita tensor (WMA link)

LeviCivitaTensor[d]
gives the d-dimensional Levi-Civita totally antisymmetric tensor.

>> LeviCivitaTensor[3]
SparseArray

[
Automatic, {3, 3, 3} , 0, {{1, 2, 3}− > 1, {1, 3, 2}− >

−1, {2, 1, 3}− > −1, {2, 3, 1}− > 1, {3, 1, 2}− > 1, {3, 2, 1}− > −1}
]

>> LeviCivitaTensor[3, List]
{{{0, 0, 0} , {0, 0, 1} , {0,−1, 0}} , {{0, 0,−1} , {0, 0, 0} , {1, 0, 0}} , {{0, 1, 0} , {−1, 0, 0} , {0, 0, 0}}}

54.7. Outer

Outer product (WMA link)

Outer[f , x, y]
computes a generalised outer product of x and y, using the function f in place of multi-
plication.

>> Outer[f, {a, b}, {1, 2, 3}]
{{ f [a, 1] , f [a, 2] , f [a, 3]} , { f [b, 1] , f [b, 2] , f [b, 3]}}

Outer product of two matrices:

>> Outer[Times, {{a, b}, {c, d}}, {{1, 2}, {3, 4}}]
{{{{a, 2a} , {3a, 4a}} , {{b, 2b} , {3b, 4b}}} , {{{c, 2c} , {3c, 4c}} , {{d, 2d} , {3d, 4d}}}}

Outer product of two sparse arrays:

>> Outer[Times, SparseArray[{{1, 2} -> a, {2, 1} -> b}], SparseArray
[{{1, 2} -> c, {2, 1} -> d}]]

SparseArray
[
Automatic, {2, 2, 2, 2} , 0, {{1, 2, 1, 2}

− > ac, {1, 2, 2, 1}− > ad, {2, 1, 1, 2}− > bc, {2, 1, 2, 1}− > bd}
]

Outer of multiple lists:

710

https://en.wikipedia.org/wiki/Levi-Civita_symbol
https://reference.wolfram.com/language/ref/LeviCivitaTensor.html
https://en.wikipedia.org/wiki/Outer_product
https://reference.wolfram.com/language/ref/Outer.html

>> Outer[f, {a, b}, {x, y, z}, {1, 2}]{{
{ f [a, x, 1] , f [a, x, 2]} ,

{
f
[
a, y, 1

]
, f
[
a, y, 2

]}
, { f [a, z, 1] , f [a, z, 2]}

}
,
{
{ f [

b, x, 1] , f [b, x, 2]} ,
{

f
[
b, y, 1

]
, f
[
b, y, 2

]}
, { f [b, z, 1] , f [b, z, 2]}

}}
Outer converts input sparse arrays to lists if f=!=Times, or if the input is a mixture of sparse arrays and
lists:

>> Outer[f, SparseArray[{{1, 2} -> a, {2, 1} -> b}], SparseArray[{{1, 2}
-> c, {2, 1} -> d}]]

{{{{ f [0, 0] , f [0, c]} , { f [0, d] , f [0, 0]}} , {{ f [a, 0] , f [
a, c]} , { f [a, d] , f [a, 0]}}} , {{{ f [b, 0] , f [b, c]} , { f [
b, d] , f [b, 0]}} , {{ f [0, 0] , f [0, c]} , { f [0, d] , f [0, 0]}}}}

>> Outer[Times, SparseArray[{{1, 2} -> a, {2, 1} -> b}], {c, d}]
{{{0, 0} , {ac, ad}} , {{bc, bd} , {0, 0}}}

Arrays can be ragged:

>> Outer[Times, {{1, 2}}, {{a, b}, {c, d, e}}]
{{{{a, b} , {c, d, e}} , {{2a, 2b} , {2c, 2d, 2e}}}}

Word combinations:

>> Outer[StringJoin, {"", "re", "un"}, {"cover", "draw", "wind"}, {"", "
ing", "s"}] // InputForm

{{{“cover”, “covering”, “covers”} , {“draw”, “drawing”, “draws”} ,
{“wind”, “winding”, “winds”}} , {{“recover”, “recovering”, “recovers”} ,
{“redraw”, “redrawing”, “redraws”} , {“rewind”, “rewinding”,
“rewinds”}} , {{“uncover”, “uncovering”, “uncovers”} , {“undraw”,
“undrawing”, “undraws”} , {“unwind”, “unwinding”, “unwinds”}}}

Compositions of trigonometric functions:

>> trigs = Outer[Composition, {Sin, Cos, Tan}, {ArcSin, ArcCos, ArcTan}]
{{Composition [Sin, ArcSin] , Composition [Sin, ArcCos] , Composition [
Sin, ArcTan]} , {Composition [Cos, ArcSin] , Composition [
Cos, ArcCos] , Composition [Cos, ArcTan]} , {Composition [
Tan, ArcSin] , Composition [Tan, ArcCos] , Composition [Tan, ArcTan]}}

Evaluate at 0:

>> Map[#[0] &, trigs, {2}]
{{0, 1, 0} , {1, 0, 1} , {0, ComplexInfinity, 0}}

711

54.8. RotationTransform

WMA link

RotationTransform[phi]
gives a rotation by phi.

RotationTransform[phi, p]
gives a rotation by phi around the point p.

54.9. ScalingTransform

WMA link

ScalingTransform[v]
gives a scaling transform of v. v may be a scalar or a vector.

ScalingTransform[phi, p]
gives a scaling transform of v that is centered at the point p.

54.10. ShearingTransform

WMA link

ShearingTransform[phi, {1, 0}, {0, 1}]
gives a horizontal shear by the angle phi.

ShearingTransform[phi, {0, 1}, {1, 0}]
gives a vertical shear by the angle phi.

ShearingTransform[phi, u, u, p]
gives a shear centered at the point p.

54.11. TransformationFunction

WMA link

TransformationFunction[m]
represents a transformation.

>> RotationTransform[Pi].TranslationTransform[{1, -1}]
TransformationFunction

[
{{−1, 0,−1} , {0,−1, 1} , {0, 0, 1}}

]

712

https://reference.wolfram.com/language/ref/RotationTransform.html
https://reference.wolfram.com/language/ref/ScalingTransform.html
https://reference.wolfram.com/language/ref/ShearingTransform.html
https://reference.wolfram.com/language/ref/TransformationFunction.html

>> TranslationTransform[{1, -1}].RotationTransform[Pi]
TransformationFunction

[
{{−1, 0, 1} , {0,−1,−1} , {0, 0, 1}}

]

54.12. TranslationTransform

WMA link

TranslationTransform[v]
gives a TransformationFunction that translates points by vector v.

>> t = TranslationTransform[{x0, y0}]
TransformationFunction

[
{{1, 0, x0} , {0, 1, y0} , {0, 0, 1}}

]
>> t[{x, y}]

{x + x0, y + y0}

From Creating a Sierpinsky gasket with the missing triangles filled in:

>> Show[Graphics[Table[Polygon[TranslationTransform[{Sqrt[3] (i - j/2),
3 j/2}] /@ {{Sqrt[3]/2, -1/2}, {0, 1}, {-Sqrt[3]/2, -1/2}}], {i, 7},
{j, i}]]]

54.13. Transpose

Transpose (SymPy, WMA)

Transpose[list]
transposes the first two levels in list. The rank of list should be less than 4.

713

https://reference.wolfram.com/language/ref/TranslationTransform.html
"https://mathematica.stackexchange.com/questions/7360/creating-a-sierpinski-gasket-with-the-missing-triangles-filled-in/7361#7361
https://en.wikipedia.org/wiki/Transpose
https://docs.sympy.org/latest/modules/matrices/expressions.html#sympy.matrices.expressions.Transpose
https://reference.wolfram.com/language/ref/Transpose.html

>> square = {{1, 2, 3}, {4, 5, 6}}; Transpose[square]
{{1, 4} , {2, 5} , {3, 6}}

>> MatrixForm[%] 1 4
2 5
3 6


>> matrix = {{1, 2}, {3, 4}, {5, 6}}; MatrixForm[Transpose[matrix]](

1 3 5
2 4 6

)
>> matrix3D = {{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}}; Transpose[matrix3D]

{{{1, 2} , {5, 6}} , {{3, 4} , {7, 8}}}

Transpose is its own inverse. Transposing a matrix twice will give you back the same thing you started
out with:

>> Transpose[Transpose[matrix]] == matrix
True

>> Transpose[Transpose[matrix3D]] == matrix3D
True

If the rank of the list is 0 or 1, you get the list back

>> Transpose[{}]
{}

>> Transpose[{a, b, c}]
{a, b, c}

714

55. Testing Expressions

There are a number of functions for testing Expressions.

Functions that “ask a question” have names that end in “Q”. They return True for an explicit answer,
and False otherwise.

Contents

55.1. Equality and Inequality 716
55.1.1. Between 716
55.1.2. BooleanQ 716
55.1.3. Equal (==) 717
55.1.4. Greater (>) 719
55.1.5. GreaterEqual (≥) 719
55.1.6. Inequality 720
55.1.7. Less (<) 720
55.1.8. LessEqual (≤) 721
55.1.9. Max 721
55.1.10. Min 722
55.1.11. SameQ (===) 722
55.1.12. TrueQ 723
55.1.13. Unequal (̸=) 724
55.1.14. UnsameQ (=!=) 725

55.2. Expression Tests 725
55.2.1. ListQ 725
55.2.2. MatchQ 726
55.2.3. Order 726
55.2.4. OrderedQ 727
55.2.5. PatternsOrderedQ 727

55.3. List-Oriented Tests 727
55.3.1. ArrayQ 727
55.3.2. DisjointQ 728
55.3.3. IntersectingQ 728
55.3.4. LevelQ 728
55.3.5. MatrixQ 729
55.3.6. MemberQ 730
55.3.7. NotListQ 730
55.3.8. SubsetQ 731
55.3.9. VectorQ 731

55.4. Logical Combinations 732
55.4.1. AllTrue 732
55.4.2. And (&) 732

55.4.3. AnyTrue 732
55.4.4. Equivalent (\[Equivalent]) . . 733
55.4.5. False 733
55.4.6. Implies 734
55.4.7. Nand 734
55.4.8. NoneTrue 734
55.4.9. Nor (Ù) 735
55.4.10. Not (!) 735
55.4.11. Or (|) 735
55.4.12. True 736
55.4.13. Xor (⊕) 736

55.5. Numerical Properties 736
55.5.1. CoprimeQ 736
55.5.2. EvenQ 737
55.5.3. ExactNumberQ 737
55.5.4. InexactNumberQ 738
55.5.5. IntegerQ 738
55.5.6. MachineNumberQ 739
55.5.7. Negative 739
55.5.8. NonNegative 740
55.5.9. NonPositive 740
55.5.10. NumberQ 740
55.5.11. NumericQ 741
55.5.12. OddQ 741
55.5.13. Positive 742
55.5.14. PossibleZeroQ 742
55.5.15. PrimeQ 743

55.6. String Tests 744
55.6.1. DigitQ 744
55.6.2. LetterQ 744
55.6.3. StringFreeQ 745
55.6.4. StringMatchQ 745
55.6.5. StringQ 746
55.6.6. SyntaxQ 746

715

55.1. Equality and Inequality

55.1.1. Between

WMA link

Between[x, {min, max}]
equivalent to min <= x <= max.

Between[x, { {min1, max1}, {min2, max2}, ...]
equivalent to min1 <= x <= max1 || min2 <= x <= max2 ...

Between[range]
operator form that yields Between[x, range] when applied to expression x.

Check that 6 is in range 4..10:

>> Between[6, {4, 10}]
True

Same as above in operator form:

>> Between[{4, 10}][6]
True

Between works with irrational numbers:

>> Between[2, {E, Pi}]
False

If more than an interval is given, Between returns True if x belongs to one of them:

>> {Between[3, {1, 2}, {4, 6}], Between[5, {1, 2}, {4, 6}]}
{False, True}

55.1.2. BooleanQ

WMA link

BooleanQ[expr]
returns True if expr is either True or False.

>> BooleanQ[True]
True

>> BooleanQ[False]
True

716

https://reference.wolfram.com/language/ref/Between.html
https://reference.wolfram.com/language/ref/BooleanQ.html

>> BooleanQ[a]
False

>> BooleanQ[1 < 2]
True

55.1.3. Equal (==)

WMA link

Equal[x, y]
x == y

is True if x and y are known to be equal, or False if x and y are known to be unequal, in
which case case, Not[x == y] will be True.

Commutative properties apply, so if x == y then y == x.
For any expression x and y, Equal[x, y] == Not[Unequal[x, y]].
For any expression SameQ[x, y] implies Equal[x, y].
x == y == z == ...

express a chain of equalities.

Numerical Equalities:

>> 1 == 1.
True

>> 5/3 == 3/2
False

Comparisons are done using the lower precision:

>> N[E, 100] == N[E, 150]
True

Compare an exact numeric expression and its corresponding approximate number:

>> Pi == N[Pi, 20]
True

Symbolic constants are compared numerically:

>> Pi == 3.14
False

Compare two exact numeric expressions; a numeric test may suffice to disprove equality:

>> Pi ^ E == E ^ Pi
False

Compare an exact expression against an approximate real number:

717

https://reference.wolfram.com/language/ref/Equal.html

>> Pi == 3.1415``4
True

Real values are considered equal if they only differ in their last digits:

>> 0.739085133215160642 == 0.739085133215160641
True

>> 0.73908513321516064200000000 == 0.73908513321516064100000000
False

Numeric evaluation using Equal:

>> {Mod[6, 2] == 0, Mod[6, 4] == 0}
{True, False}

String equalities:

>> Equal["11", "11"]
True

>> Equal["121", "11"]
False

When we have symbols without values, the values are equal only if the symbols are equal:

>> Clear[a, b]; a == b
a==b

>> a == a
True

>> a = b; a == b
True

Comparison to mismatched types is False:

>> Equal[11, "11"]
False

Lists are compared based on their elements:

>> {{1}, {2}} == {{1}, {2}}
True

>> {1, 2} == {1, 2, 3}
False

For chains of equalities, the comparison is done amongst all the pairs. The evaluation is successful only
if the equality is satisfied over all the pairs:

>> g[1] == g[1] == g[1]
True

718

>> g[1] == g[1] == g[r]
g [1]==g [1]==g [r]

Equality can also be combined with other inequality expressions, like:

>> g[1] == g[2] != g[3]
g [1]==g [2]&&g [2] !=g [3]

>> g[1] == g[2] <= g[3]
g [1]==g [2]&&g [2]<=g [3]

Equal with no parameter or an empty list is True:

>> Equal[] == True
True

Equal on one parameter or list element is also True

>> {Equal[x], Equal[1], Equal["a"]}
{True, True, True}

This degenerate behavior is the same for Unequal; empty or single-element lists are both Equal and
Unequal.

55.1.4. Greater (>)

WMA link

Greater[x, y] or x > y
yields True if x is known to be greater than y.

Symbolic constants are compared numerically:

>> E > 1
True

Greater operator can be chained:

>> a > b > c //FullForm
Greater [a, b, c]

>> 3 > 2 > 1
True

55.1.5. GreaterEqual (≥)

WMA link

719

https://reference.wolfram.com/language/ref/Greater.html
https://reference.wolfram.com/language/ref/GreaterEqual.html

GreaterEqual[x, y]
x ≥ y or x >= y

yields True if x is known to be greater than or equal to y.

55.1.6. Inequality

WMA link

Inequality
is the head of expressions involving different inequality operators (at least temporarily).
Thus, it is possible to write chains of inequalities.

>> a < b <= c
a < b&&b<=c

>> Inequality[a, Greater, b, LessEqual, c]
a > b&&b<=c

>> 1 < 2 <= 3
True

>> 1 < 2 > 0
True

>> 1 < 2 < -1
False

55.1.7. Less (<)

WMA link

Less[x, y] or x < y
yields True if x is known to be less than y.

>> 1 < 0
False

LessEqual operator can be chained:

>> 2/18 < 1/5 < Pi/10
True

Using less on an undefined symbol value:

>> 1 < 3 < x < 2
1 < 3 < x < 2

720

https://reference.wolfram.com/language/ref/Inequality.html
https://reference.wolfram.com/language/ref/Less.html

55.1.8. LessEqual (≤)

WMA link

LessEqual[x, y, ...] or x <= y or x ≤ y
yields True if x is known to be less than or equal to y.

LessEqual operator can be chained:

>> LessEqual[1, 3, 3, 2]
False

>> 1 <= 3 <= 3
True

55.1.9. Max

WMA link

Max[e1, e2, ..., ei]
returns the expression with the greatest value among the ei.

Maximum of a series of values:

>> Max[4, -8, 1]
4

>> Max[E - Pi, Pi, E + Pi, 2 E]
E + π

Max flattens lists in its arguments:

>> Max[{1,2},3,{-3,3.5,-Infinity},{{1/2}}]
3.5

Max with symbolic arguments remains in symbolic form:

>> Max[x, y]
Max

[
x, y
]

>> Max[5, x, -3, y, 40]
Max

[
40, x, y

]
With no arguments, Max gives -Infinity:

>> Max[]
−∞

721

https://reference.wolfram.com/language/ref/LessEqual.html
https://reference.wolfram.com/language/ref/Max.html

Max does not compare strings or symbols:

>> Max[-1.37, 2, "a", b]
Max [2, a, b]

55.1.10. Min

WMA link

Min[e1, e2, ..., ei]
returns the expression with the lowest value among the ei.

Minimum of a series of values:

>> Min[4, -8, 1]
−8

>> Min[E - Pi, Pi, E + Pi, 2 E]
E − π

Min flattens lists in its arguments:

>> Min[{1,2},3,{-3,3.5,-Infinity},{{1/2}}]
−∞

Min with symbolic arguments remains in symbolic form:

>> Min[x, y]
Min

[
x, y
]

>> Min[5, x, -3, y, 40]
Min

[
− 3, x, y

]
With no arguments, Min gives Infinity:

>> Min[]
∞

55.1.11. SameQ (===)

WMA link

SameQ[x, y]
x === y

returns True if x and y are structurally identical. Commutative properties apply, so if x
=== y then y === x.

722

https://reference.wolfram.com/language/ref/Min.html
https://reference.wolfram.com/language/ref/SameQ.html

• SameQ requires exact correspondence between expressions, expect that it still considers Real num-
bers equal if they differ in their last binary digit.

• e1 === e2 === e3 gives True if all the ei’s are identical.

• SameQ[] and SameQ[$expr$] always yield True.

Any object is the same as itself:

>> a === a
True

Degenerate cases of SameQ showing off how you can chain ===:

>> SameQ[a] === SameQ[] === True
True

Unlike Equal, SameQ only yields True if x and y have the same type:

>> {1==1., 1===1.}
{True, False}

>> 2./9. === .2222222222222222`15.9546
True

The comparison consider just the lowest precision

>> .2222222`6 === .2222`3
True

Notice the extra decimal in the rhs. Because the internal representation, 0.222‘3 is not equivalent to
0.2222‘3:

>> .2222222`6 === .222`3
False

15.9546 is the value of $MaxPrecision

55.1.12. TrueQ

WMA link

TrueQ[expr]
returns True if and only if expr is True.

>> TrueQ[True]
True

>> TrueQ[False]
False

723

https://reference.wolfram.com/language/ref/TrueQ.html

>> TrueQ[a]
False

55.1.13. Unequal (̸=)

WMA link

Unequal[x, y] or x != y or x ̸= y
is False if x and y are known to be equal, or True if x and y are known to be unequal.

Commutative properties apply so if x != y then y != x.
For any expression x and y, Unequal[x, y] == Not[Equal[x, y]].

>> 1 != 1.
False

Comparisons can be chained:

>> 1 != 2 != 3
True

>> 1 != 2 != x
1!=2!=x

Strings are allowed:

>> Unequal["11", "11"]
False

Comparison to mismatched types is True:

>> Unequal[11, "11"]
True

Lists are compared based on their elements:

>> {1} != {2}
True

>> {1, 2} != {1, 2}
False

>> {a} != {a}
False

>> "a" != "b"
True

>> "a" != "a"
False

Unequal using an empty parameter or list, or a list with one element is True. This is the same as ’Equal”.

724

https://reference.wolfram.com/language/ref/Unequal.html

>> {Unequal[], Unequal[x], Unequal[1]}
{True, True, True}

55.1.14. UnsameQ (=!=)

WMA link

UnsameQ[x, y]
x =!= y

returns True if x and y are not structurally identical. Commutative properties apply, so
if x =!= y, then y =!= x.

>> a =!= a
False

>> 1 =!= 1.
True

UnsameQ accepts any number of arguments and returns True if all expressions are structurally distinct:

>> 1 =!= 2 =!= 3 =!= 4
True

UnsameQ returns False if any expression is identical to another:

>> 1 =!= 2 =!= 1 =!= 4
False

UnsameQ[] and UnsameQ[expr] return True:

>> UnsameQ[]
True

>> UnsameQ[expr]
True

55.2. Expression Tests

55.2.1. ListQ

WMA link

ListQ[expr]
tests whether expr is a List.

725

https://reference.wolfram.com/language/ref/UnsameQ.html
https://reference.wolfram.com/language/ref/ListQ.html

>> ListQ[{1, 2, 3}]
True

>> ListQ[{{1, 2}, {3, 4}}]
True

>> ListQ[x]
False

55.2.2. MatchQ

WMA link

MatchQ[expr, f orm]
tests whether expr matches f orm.

>> MatchQ[123, _Integer]
True

>> MatchQ[123, _Real]
False

>> MatchQ[_Integer][123]
True

>> MatchQ[3, Pattern[3]]
First element in pattern Pattern[3] is not a valid pattern name.
False

See also ’Cases’ 35.3.3.

55.2.3. Order

WMA link

Order[x, y]
returns a number indicating the canonical ordering of x and y. 1 indicates that x is before
y, and -1 that y is before x. 0 indicates that there is no specific ordering. Uses the same
order as Sort.

>> Order[7, 11]
1

>> Order[100, 10]
−1

>> Order[x, z]
1

726

https://reference.wolfram.com/language/ref/MatchQ.html
https://reference.wolfram.com/language/ref/Order.html

>> Order[x, x]
0

55.2.4. OrderedQ

WMA link

OrderedQ[{a, b}]
is True if a sorts before b according to canonical ordering.

>> OrderedQ[{a, b}]
True

>> OrderedQ[{b, a}]
False

55.2.5. PatternsOrderedQ

PatternsOrderedQ[patt1, patt2]
returns True if pattern patt1 would be applied before patt2 according to canonical pattern
ordering.

>> PatternsOrderedQ[x__, x_]
False

>> PatternsOrderedQ[x_, x__]
True

>> PatternsOrderedQ[b, a]
True

55.3. List-Oriented Tests

55.3.1. ArrayQ

WMA

727

https://reference.wolfram.com/language/ref/OrderedQ.html
https://reference.wolfram.com/language/ref/ArrayQ.html

ArrayQ[expr]
tests whether expr is a full array.

ArrayQ[expr, pattern]
also tests whether the array depth of expr matches pattern.

ArrayQ[expr, pattern, test]
furthermore tests whether test yields True for all elements of expr. ArrayQ[$expr$] is
equivalent to ArrayQ[$expr$, _, True&].

>> ArrayQ[a]
False

>> ArrayQ[{a}]
True

>> ArrayQ[{{{a}},{{b,c}}}]
False

>> ArrayQ[{{a, b}, {c, d}}, 2, SymbolQ]
True

55.3.2. DisjointQ

WMA link

DisjointQ[a, b]
gives True if a and b are disjoint, or False if a and b have any common elements.

55.3.3. IntersectingQ

WMA link

IntersectingQ[a, b]
gives True if there are any common elements in a and b, or False if a and b are disjoint.

55.3.4. LevelQ

LevelQ[expr]
testswhether expr is a valid level specification. This function is primarily used in function
patterns for specifying type of a parameter.

>> LevelQ[2]
True

728

https://reference.wolfram.com/language/ref/DisjointQ.html
https://reference.wolfram.com/language/ref/IntersectingQ.html

>> LevelQ[{2, 4}]
True

>> LevelQ[Infinity]
True

>> LevelQ[a + b]
False

We will define MyMap with the “level” parameter as a synonym for the Builtin Map equivalent:

>> MyMap[f_, expr_, Pattern[levelspec, _?LevelQ]] := Map[f, expr,
levelspec]

>> MyMap[f, {{a, b}, {c, d}}, {2}]
{{ f [a] , f [b]} , { f [c] , f [d]}}

>> Map[f, {{a, b}, {c, d}}, {2}]
{{ f [a] , f [b]} , { f [c] , f [d]}}

But notice that when we pass an invalid level specification, MyMap does not match and therefore does
not pass the arguments through to Map. So we do not see the error message that Map would normally
produce

>> Map[f, {{a, b}, {c, d}}, x]
Level specification x is not of the form n, {n}, or {m, n}.

Map
[

f , {{a, b} , {c, d}} , x
]

>> MyMap[f, {{a, b}, {c, d}}, {1, 2, 3}]
MyMap

[
f , {{a, b} , {c, d}} , {1, 2, 3}

]

55.3.5. MatrixQ

WMA link

MatrixQ[m]
gives True if m is a list of equal-length lists.

MatrixQ[m, f]
gives True only if f[x] returns True for when applied to element x of the matrix m.

>> MatrixQ[{{1, 3}, {4.0, 3/2}}, NumberQ]
True

These are not matrices:

>> MatrixQ[{{1}, {1, 2}}] (* first row should have length two *)
False

729

https://reference.wolfram.com/language/ref/MatrixQ.html

>> MatrixQ[Array[a, {1, 1, 2}]]
False

Supply a test function parameter to generalize and specialize:

>> MatrixQ[{{1, 2}, {3, 4 + 5}}, Positive]
True

>> MatrixQ[{{1, 2 I}, {3, 4 + 5}}, Positive]
False

55.3.6. MemberQ

WMA link

MemberQ[list, pattern]
returns True if pattern matches any element of list, or False otherwise.

>> MemberQ[{a, b, c}, b]
True

>> MemberQ[{a, b, c}, d]
False

>> MemberQ[{"a", b, f[x]}, _?NumericQ]
False

>> MemberQ[_List][{{}}]
True

55.3.7. NotListQ

NotListQ[expr]
returns True if expr is not a list. This function is primarily used in function patterns for
specifying type of a parameter.

Consider this definition for taking the deriviate Sin of a function:

>> MyD[Sin[f_],x_?NotListQ] := D[f,x]*Cos[f]

=

We use “MyD” above to distinguish it from the Builtin D. Now let’s try it:

>> MyD[Sin[2 x], x]
2Cos [2x]

730

https://reference.wolfram.com/language/ref/MemberQ.html

And compare it with the Builtin deriviative function D:

>> D[Sin[2 x], x]
2Cos [2x]

Note however the pattern only matches if the x parameter is not a list:

>> MyD[{Sin[2], Sin[4]}, {1, 2}]
MyD

[
{Sin [2] , Sin [4]} , {1, 2}

]

55.3.8. SubsetQ

WMA link

SubsetQ[list1, list2]
returns True if list2 is a subset of list1, and False otherwise.

>> SubsetQ[{1, 2, 3}, {3, 1}]
True

The empty list is a subset of every list:

>> SubsetQ[{}, {}]
True

>> SubsetQ[{1, 2, 3}, {}]
True

Every list is a subset of itself:

>> SubsetQ[{1, 2, 3}, {1, 2, 3}]
True

55.3.9. VectorQ

WMA link

VectorQ[v]
returns True if v is a list of elements which are not themselves lists.

VectorQ[v, f]
returns True if v is a vector and f[x] returns True for each element x of v.

>> VectorQ[{a, b, c}]
True

731

https://reference.wolfram.com/language/ref/SubsetQ.html
https://reference.wolfram.com/language/ref/VectorQ.html

55.4. Logical Combinations

55.4.1. AllTrue

WMA link

AllTrue[{expr1, expr2, ...}, test]
returns True if all applications of test to expr1, expr2, ... evaluate to True.

AllTrue[list, test, level]
returns True if all applications of test to items of list at level evaluate to True.

AllTrue[test]
gives an operator that may be applied to expressions.

>> AllTrue[{2, 4, 6}, EvenQ]
True

>> AllTrue[{2, 4, 7}, EvenQ]
False

55.4.2. And (&)

WMA link

And[expr1, expr2, ...]
$expr_1$ && $expr_2$ && ...

evaluates each expression in turn, returning False as soon as an expression evaluates to
False. If all expressions evaluate to True, And returns True.

>> True && True && False
False

If an expression does not evaluate to True or False, And returns a result in symbolic form:

>> a && b && True && c
a&&b&&c

55.4.3. AnyTrue

WMA link

732

https://reference.wolfram.com/language/ref/AllTrue.html
https://reference.wolfram.com/language/ref/And.html
https://reference.wolfram.com/language/ref/AnyTrue.html

AnyTrue[{expr1, expr2, ...}, test]
returns True if any application of test to expr1, expr2, ... evaluates to True.

AnyTrue[list, test, level]
returns True if any application of test to items of list at level evaluates to True.

AnyTrue[test]
gives an operator that may be applied to expressions.

>> AnyTrue[{1, 3, 5}, EvenQ]
False

>> AnyTrue[{1, 4, 5}, EvenQ]
True

55.4.4. Equivalent (\[Equivalent])

WMA link

Equivalent[expr1, expr2, ...]
expr1 \[Equivalent] expr2 \[Equivalent] ...

is equivalent to (expr1 && expr2 && ...) || (!expr1 && !expr2 && ...)

>> Equivalent[True, True, False]
False

If all expressions do not evaluate to True or False, Equivalent returns a result in symbolic form:

>> Equivalent[a, b, c]
a\[Equivalent]b\[Equivalent]c

Otherwise, Equivalent returns a result in DNF

>> Equivalent[a, b, True, c]
a&&b&&c

55.4.5. False

WMA link

False
represents the Boolean false value.

733

https://reference.wolfram.com/language/ref/Equivalent.html
https://reference.wolfram.com/language/ref/False.html

55.4.6. Implies

WMA link

Implies[expr1, expr2]
expr1 � expr2

evaluates each expression in turn, returning True as soon as the first expression evaluates
to False. If the first expression evaluates to True, Implies returns the second expression.

>> Implies[False, a]
True

>> Implies[True, a]
a

If an expression does not evaluate to True or False, Implies returns a result in symbolic form:

>> Implies[a, Implies[b, Implies[True, c]]]
aImpliesbImpliesc

55.4.7. Nand

WMA link

Nand[expr1, expr2, ...]
expr1 � expr2 � ...

Implements the logical NAND function. The same as Not[And[expr1, expr2, ...]]

>> Nand[True, False]
True

55.4.8. NoneTrue

WMA link

NoneTrue[{expr1, expr2, ...}, test]
returns True if no application of test to expr1, expr2, ... evaluates to True.

NoneTrue[list, test, level]
returns True if no application of test to items of list at level evaluates to True.

NoneTrue[test]
gives an operator that may be applied to expressions.

>> NoneTrue[{1, 3, 5}, EvenQ]
True

734

https://reference.wolfram.com/language/ref/Implies.html
https://reference.wolfram.com/language/ref/Nand.html
https://reference.wolfram.com/language/ref/NoneTrue.html

>> NoneTrue[{1, 4, 5}, EvenQ]
False

55.4.9. Nor (Ù)

WMA link

Nor[expr1, expr2, ...]
expr1 Ù expr2 Ù ...

Implements the logical NOR function. The same as Not[Or[expr1, expr2, ...]]

>> Nor[True, False]
False

55.4.10. Not (!)

WMA link

Not[expr]
!$expr$

negates the logical expression expr.

>> !True
False

>> !False
True

>> !b
! b

55.4.11. Or (|)

WMA link

Or[expr1, expr2, ...]
$expr_1$ || $expr_2$ || ...

evaluates each expression in turn, returning True as soon as an expression evaluates to
True. If all expressions evaluate to False, Or returns False.

>> False || True
True

735

https://reference.wolfram.com/language/ref/Nor.html
https://reference.wolfram.com/language/ref/Not.html
https://reference.wolfram.com/language/ref/Or.html

If an expression does not evaluate to True or False, Or returns a result in symbolic form:

>> a || False || b
a||b

55.4.12. True

WMA link

True
represents the Boolean true value.

55.4.13. Xor (⊕)

WMA link

Xor[expr1, expr2, ...]
expr1 ⊕ expr2 ⊕ ...

evaluates each expression in turn, returning True as soon as not all expressions evaluate
to the same value. If all expressions evaluate to the same value, Xor returns False.

>> Xor[False, True]
True

>> Xor[True, True]
False

If an expression does not evaluate to True or False, Xor returns a result in symbolic form:

>> Xor[a, False, b]
a\[Xor]b

55.5. Numerical Properties

55.5.1. CoprimeQ

WMA link

CoprimeQ[x, y]
tests whether x and y are coprime by computing their greatest common divisor.

736

https://reference.wolfram.com/language/ref/True.html
https://reference.wolfram.com/language/ref/Xor.html
https://reference.wolfram.com/language/ref/CoprimeQ.html

>> CoprimeQ[7, 9]
True

>> CoprimeQ[-4, 9]
True

>> CoprimeQ[12, 15]
False

For more than two arguments, CoprimeQ checks if any pair or arguments are coprime:

>> CoprimeQ[2, 3, 5]
True

In this case, since 2 divides 4, the result is False:

>> CoprimeQ[2, 4, 5]
False

55.5.2. EvenQ

WMA link

EvenQ[x]
returns True if x is even, and False otherwise.

>> EvenQ[4]
True

>> EvenQ[-3]
False

>> EvenQ[n]
False

55.5.3. ExactNumberQ

WMA link

ExactNumberQ[expr]
returns True if expr is an exact real or complex number, and returns False otherwise.

>> ExactNumberQ[10]
True

ExactNumber[] of a Real or MachineReal is False

737

https://reference.wolfram.com/language/ref/EvenQ.html
https://reference.wolfram.com/language/ref/ExactNumberQ.html

>> ExactNumberQ[10.0]
False

ExactNumberQ for complex numbers:

>> ExactNumberQ[I]
True

>> ExactNumberQ[1 + I]
True

but not when composed with a Real:

>> ExactNumberQ[1. + I]
False

ExactNumber[] is True for Rational numbers:

>> ExactNumberQ[5/6]
True

>> ExactNumberQ[4 * I + 5/6]
True

55.5.4. InexactNumberQ

WMA link

InexactNumberQ[expr]
returns True if expr is not an exact real or complex number number, and False otherwise.

>> InexactNumberQ[a]
False

>> InexactNumberQ[3.0]
True

>> InexactNumberQ[2/3]
False

InexactNumberQ is True for complex numbers:

>> InexactNumberQ[4.0+I]
True

55.5.5. IntegerQ

WMA link

738

https://reference.wolfram.com/language/ref/InexactNumberQ.html
https://reference.wolfram.com/language/ref/IntegerQ.html

IntegerQ[expr]
returns True if expr is an integer, and False otherwise.

>> IntegerQ[3]
True

>> IntegerQ[Pi]
False

55.5.6. MachineNumberQ

WMA link

MachineNumberQ[expr]
returns True if expr is a machine-precision real or complex number.

= True

>> MachineNumberQ[3.14159265358979324]
False

>> MachineNumberQ[1.5 + 2.3 I]
True

>> MachineNumberQ[2.71828182845904524 + 3.14159265358979324 I]
False

55.5.7. Negative

WMA link

Negative[x]
returns True if x is a negative real number.

>> Negative[0]
False

>> Negative[-3]
True

>> Negative[10/7]
False

>> Negative[1+2I]
False

739

https://reference.wolfram.com/language/ref/MachineNumberQ.html
https://reference.wolfram.com/language/ref/Negative.html

>> Negative[a + b]
Negative [a + b]

55.5.8. NonNegative

WMA link

NonNegative[x]
returns True if x is a positive real number or zero.

>> {Positive[0], NonNegative[0]}
{False, True}

55.5.9. NonPositive

WMA link

NonPositive[x]
returns True if x is a negative real number or zero.

>> {Negative[0], NonPositive[0]}
{False, True}

55.5.10. NumberQ

WMA link

NumberQ[expr]
returns True if expr is an explicit number, and False otherwise.

>> NumberQ[3+I]
True

>> NumberQ[5!]
True

>> NumberQ[Pi]
False

740

https://reference.wolfram.com/language/ref/NonNegative.html
https://reference.wolfram.com/language/ref/NonPositive.html
https://reference.wolfram.com/language/ref/NumberQ.html

55.5.11. NumericQ

WMA link

NumericQ[expr]
tests whether expr represents a numeric quantity.

>> NumericQ[2]
True

>> NumericQ[Sqrt[Pi]]
True

>> NumberQ[Sqrt[Pi]]
False

It is possible to set that a symbol is numeric or not by assign a boolean value to “NumericQ“

>> NumericQ[a]=True
True

>> NumericQ[a]
True

>> NumericQ[Sin[a]]
True

Clear and ClearAll do not restore the default value.

>> Clear[a]; NumericQ[a]
True

>> ClearAll[a]; NumericQ[a]
True

>> NumericQ[a]=False; NumericQ[a]
False

NumericQ can only set to True or False

>> NumericQ[a] = 37
Cannot set NumericQ[a] to 37; the lhs argument must be a symbol and
the rhs must be True or False.
37

55.5.12. OddQ

WMA link

741

https://reference.wolfram.com/language/ref/NumericQ.html
https://reference.wolfram.com/language/ref/OddQ.html

OddQ[x]
returns True if x is odd, and False otherwise.

>> OddQ[-3]
True

>> OddQ[0]
False

55.5.13. Positive

WMA link

Positive[x]
returns True if x is a positive real number.

>> Positive[1]
True

Positive returns False if x is zero or a complex number:

>> Positive[0]
False

>> Positive[1 + 2 I]
False

55.5.14. PossibleZeroQ

WMA link

PossibleZeroQ[expr]
returns True if basic symbolic and numerical methods suggest that expr has value zero,
and False otherwise.

Test whether a numeric expression is zero:

>> PossibleZeroQ[E^(I Pi/4)- (-1)^(1/4)]
True

The determination is approximate.

Test whether a symbolic expression is likely to be identically zero:

>> PossibleZeroQ[(x + 1)(x - 1)- x^2 + 1]
True

742

https://reference.wolfram.com/language/ref/Positive.html
https://reference.wolfram.com/language/ref/PossibleZeroQ.html

>> PossibleZeroQ[(E + Pi)^2 - E^2 - Pi^2 - 2 E Pi]
True

Show that a numeric expression is nonzero:

>> PossibleZeroQ[E^Pi - Pi^E]
False

>> PossibleZeroQ[1/x + 1/y - (x + y)/(x y)]
True

Decide that a numeric expression is zero, based on approximate computations:

>> PossibleZeroQ[2^(2 I)- 2^(-2 I)- 2 I Sin[Log[4]]]
True

>> PossibleZeroQ[Sqrt[x^2] - x]
False

55.5.15. PrimeQ

WMA link

PrimeQ[n]
returns True if n is a prime number.

For very large numbers, PrimeQ uses probabilistic prime testing, so it might be wrong sometimes (a
number might be composite even though PrimeQ says it is prime). The algorithm might be changed in
the future.

>> PrimeQ[2]
True

>> PrimeQ[-3]
True

>> PrimeQ[137]
True

>> PrimeQ[2 ^ 127 - 1]
True

All prime numbers between 1 and 100:

>> Select[Range[100], PrimeQ]
{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}

PrimeQ has attribute Listable:

743

https://reference.wolfram.com/language/ref/PrimeQ.html

>> PrimeQ[Range[20]]
{False, True, True, False, True, False, True, False, False, False, True, False, True, False, False, False, True, False, True, False}

55.6. String Tests

55.6.1. DigitQ

WMA link

DigitQ[string]
yields True if all the characters in the string are digits, and yields False otherwise.

>> DigitQ["9"]
True

>> DigitQ["a"]
False

>> DigitQ["01001101011000010111010001101000011010010110001101110011"]
True

>> DigitQ["-123456789"]
False

55.6.2. LetterQ

WMA link

LetterQ[string]
yields True if all the characters in the string are letters, and yields False otherwise.

>> LetterQ["m"]
True

>> LetterQ["9"]
False

>> LetterQ["Mathics"]
True

>> LetterQ["Welcome to Mathics"]
False

744

https://reference.wolfram.com/language/ref/DigitQ.html
https://reference.wolfram.com/language/ref/LetterQ.html

55.6.3. StringFreeQ

WMA link

StringFreeQ[“string”, patt]
returns True if no substring in string matches the string expression patt, and returns False
otherwise.

StringFreeQ[{``s1', ``s2'', ...}, patt]'
returns the list of results for each element of string list.

StringFreeQ[``string', {p1, p2, ...}]'
returns True if no substring matches any of the pi.

StringFreeQ[patt]
represents an operator form of StringFreeQ that can be applied to an expression.

>> StringFreeQ["mathics", "m" ~~__ ~~"s"]
False

>> StringFreeQ["mathics", "a" ~~__ ~~"m"]
True

>> StringFreeQ["Mathics", "MA" , IgnoreCase -> True]
False

>> StringFreeQ[{"g", "a", "laxy", "universe", "sun"}, "u"]
{True, True, True, False, False}

>> StringFreeQ["e" ~~___ ~~"u"] /@ {"The Sun", "Mercury", "Venus", "
Earth", "Mars", "Jupiter", "Saturn", "Uranus", "Neptune"}

{False, False, False, True, True, True, True, True, False}

>> StringFreeQ[{"A", "Galaxy", "Far", "Far", "Away"}, {"F" ~~__ ~~"r", "
aw" ~~___}, IgnoreCase -> True]

{True, True, False, False, False}

55.6.4. StringMatchQ

WMA link

StringMatchQ[“string”, pattern]
checks is “string” matches pattern

>> StringMatchQ["abc", "abc"]
True

>> StringMatchQ["abc", "abd"]
False

>> StringMatchQ["15a94xcZ6", (DigitCharacter | LetterCharacter)..]
True

745

https://reference.wolfram.com/language/ref/StringFreeQ.html
https://reference.wolfram.com/language/ref/StringMatchQ.html

Use StringMatchQ as an operator

>> StringMatchQ[LetterCharacter]["a"]
True

55.6.5. StringQ

WMA link

StringQ[expr]
returns True if expr is a String, or False otherwise.

>> StringQ["abc"]
True

>> StringQ[1.5]
False

>> Select[{"12", 1, 3, 5, "yz", x, y}, StringQ]
{12, yz}

55.6.6. SyntaxQ

WMA link

SyntaxQ[``string']'
returns True if “string” corresponds to a syntactically correct input for aMathics3 expres-
sion, or False otherwise.

>> SyntaxQ["a[b"]
False

>> SyntaxQ["a[b]"]
True

746

https://reference.wolfram.com/language/ref/StringQ.html
https://reference.wolfram.com/language/ref/SyntaxQ.html

56. The Main Loop

An interactive session operates a loop, called the “main loop” in this way:

• read input

• process input

• format and print results

• repeat

As part of this loop, various global objects in this section are consulted.

There are a variety of “hooks” that allow you to insert functions to be applied to the expressions at
various stages in the main loop.

If you assign a function to the global variable $PreRead it will be applied with the input that is read in
the first step listed above.

Similarly, if you assign a function to global variable $Pre, it will be applied with the input before pro-
cessing the input, the second step listed above.

Contents

56.1. $HistoryLength 747
56.2. $Line 748
56.3. $Post 748
56.4. $Pre 749

56.5. $PrePrint 749
56.6. $PreRead 749
56.7. $SyntaxHandler 750
56.8. In 750

56.1. $HistoryLength

WMA

$HistoryLength
specifies the maximum number of In and Out entries.

>> $HistoryLength
100

>> $HistoryLength = 1;

>> 42
42

747

https://reference.wolfram.com/language/ref/$HistoryLength

>> %
42

>> %%
%3

>> $HistoryLength = 0;

>> 42
42

>> %
%7

56.2. $Line

WMA

$Line
holds the current input line number.

>> $Line
1

>> $Line
2

>> $Line = 12;

>> 2 * 5
10

>> Out[13]
10

>> $Line = -1;
Non-negative integer expected.

56.3. $Post

WMA

$Post
is a global variable whose value, if set, is applied to every output expression.

748

https://reference.wolfram.com/language/ref/$Line
https://reference.wolfram.com/language/ref/$Post

56.4. $Pre

WMA

$Pre
is a global variable whose value, if set, is applied to every input expression.

Set Timing as the $Pre function, stores the elapsed time in a variable, stores just the result in Out[$Line]
and print a formatted version showing the elapsed time

>> $Pre := (Print["[Processing input...]"];#1)&

>> $Post := (Print["[Storing result...]"]; #1)&
[Processing input...]

[Storing result...]

>> $PrePrint := (Print["The result is:"]; {TimeUsed[], #1})&
[Processing input...]

[Storing result...]

>> 2 + 2
[Processing input...]

[Storing result...]

The result is:

{193.065, 4}

>> $Pre = .; $Post = .; $PrePrint = .; $ElapsedTime = .;
[Processing input...]

>> 2 + 2
4

56.5. $PrePrint

WMA

$PrePrint
is a global variable whose value, if set, is applied to every output expression before it is
printed.

56.6. $PreRead

WMA

749

https://reference.wolfram.com/language/ref/$Pre
https://reference.wolfram.com/language/ref/$PrePrint
https://reference.wolfram.com/language/ref/$PreRead

$PreRead
is a global variable whose value, if set, is applied to the text or box form of every input
expression before it is fed to the parser.

(Not implemented yet)

56.7. $SyntaxHandler

WMA

$SyntaxHandler
is a global variable whose value, if set, is applied to any input string that is found to
contain a syntax error.

(Not implemented yet)

56.8. In

WMA

In[k]
gives the k-th line of input.

>> x = 1
1

>> x = x + 1
2

>> Do[In[2], {3}]

>> x
5

>> In[-1]
5

>> Definition[In]
Attributes [In] = {Listable, Protected}

In [6] = Definition [In]
In [5] = In [− 1]
In [4] = x
In [3] = Do

[
In [2] , {3}

]
In [2] = x = x + 1
In [1] = x = 1

750

https://reference.wolfram.com/language/ref/$SyntaxHandler
https://reference.wolfram.com/language/ref/In

57. Tracing and Profiling

The Trace builtins provide a Mathics3-oriented trace of what is getting evaluated and where the time is
spent in evaluation.

With this, it may be possible for both users and implementers to follow how Mathics3 arrives at its
results, or guide how to speed up expression evaluation.

Python CProfile profiling is available via PythonCProfileEvaluation.

Contents

57.1. $TraceBuiltins 751
57.2. $TraceEvaluation 752
57.3. $TrackLocations 753
57.4. ClearTrace 753

57.5. PrintTrace 754
57.6. PythonCProfileEvaluation 754
57.7. TraceBuiltins 755
57.8. TraceEvaluation 757

57.1. $TraceBuiltins

$TraceBuiltins
A Boolean Built-in variable when True collects function evaluation statistics.

Setting this variable True will enable statistics collection for Built-in functions that are evaluated. In
contrast to TraceBuiltins[] statistics are accumulated and over several inputs,and are not shown after
each input is evaluated.

By default, this setting is False.

>> $TraceBuiltins = True
True

Tracing is enabled, so the expressions entered and evaluated will have statistics collected for the evalu-
ations.

>> x
x

To print the statistics collected, use PrintTrace[]:

751

https://docs.python.org/3/library/profile.html

>> PrintTrace[]
count ms Builtin name
274 158 CompoundExpression
230 0 Rule_
182 0 List
162 59 SetDelayed
152 16 Set
148 17 MPMathFunction
92 8 Unprotect
92 0 ClearAttributes
88 7 Protect
88 0 SetAttributes
66 10 Power
48 0 RuleDelayed
44 0 Function
38 0 Path
38 0 RegisterImport
38 1 Times
34 0 Append
34 35 Block
34 0 Length
34 0 SameQ
34 26 If
34 0 Last
34 0 Most
30 0 RegisterExport
22 0 DirectedInfinity
18 0 I_
4 0 Map
3 0 MakeBoxes
2 3 TeXForm
2 0 RowBox
1 0 TraceBuiltinsVariable

1 0 PrintTrace

To clear statistics collected use ClearTrace[]:

>> ClearTrace[]

$TraceBuiltins cannot be set to a non-boolean value.

>> $TraceBuiltins = x
x should be True or False.
x

57.2. $TraceEvaluation

$TraceEvaluation
A Boolean variable which when set True traces Expression evaluation calls and returns.

>> $TraceEvaluation = True
True

>> a + a
2a

Setting it to False again recovers the normal behaviour:

>> $TraceEvaluation = False
False

>> $TraceEvaluation
False

>> a + a
2a

752

$TraceEvaluation cannot be set to a non-boolean value.

>> $TraceEvaluation = x
x should be True or False.
x

57.3. $TrackLocations

$TrackLocations
specifies whether we should track source-text location information during evaluation.
This can be helpful in debugging when there is a failure.

57.4. ClearTrace

ClearTrace[]
Clear the statistics collected for Built-in Functions

First, set up Builtin-function tracing:

>> $TraceBuiltins = True
True

Dump Builtin-Function statistics gathered in running that assignment:

>> PrintTrace[]
count ms Builtin name
137 76 CompoundExpression
115 0 Rule_
91 0 List
81 25 SetDelayed
76 8 Set
74 5 MPMathFunction
46 4 Unprotect
46 0 ClearAttributes
44 3 Protect
44 0 SetAttributes
33 4 Power
24 0 RuleDelayed
22 0 Function
19 0 Path
19 0 RegisterImport
19 0 Times
17 0 Append
17 15 Block
17 0 Length
17 0 SameQ
17 11 If
17 0 Last
17 0 Most
15 0 RegisterExport
11 0 DirectedInfinity
9 0 I_
2 0 Map
1 0 TraceBuiltinsVariable
1 1 TeXForm
1 0 MakeBoxes
1 0 RowBox

1 0 PrintTrace

>> ClearTrace[]

753

57.5. PrintTrace

PrintTrace[]
Print statistics collected for Built-in Functions

Sort Options:

• count

• name

• time

Note that in a browser the information only appears in a console.

Note: before $TraceBuiltins is set to True, PrintTrace[] will print an empty list.

>> PrintTrace[]
count ms Builtin name
28 0 MakeBoxes
2 19 PrintTrace
2 18 TableForm
2 0 DirectedInfinity
2 0 TraceBuiltinsVariable

1 0 Rule_

>> $TraceBuiltins = True
True

>> PrintTrace[SortBy -> "time"]
count ms Builtin name
137 74 CompoundExpression
81 25 SetDelayed
3 19 PrintTrace
2 18 TableForm
17 16 Block
17 11 If
76 8 Set
74 5 MPMathFunction
33 4 Power
46 4 Unprotect
44 3 Protect
1 1 TeXForm
19 0 Times
46 0 ClearAttributes
13 0 DirectedInfinity
91 0 List
44 0 SetAttributes
19 0 Path
17 0 Append
17 0 Most
22 0 Function
117 0 Rule_
19 0 RegisterImport
29 0 MakeBoxes
2 0 Map
15 0 RegisterExport
9 0 I_
17 0 Length
17 0 Last
17 0 SameQ
24 0 RuleDelayed
1 0 RowBox

2 0 TraceBuiltinsVariable

57.6. PythonCProfileEvaluation

Python

754

https://docs.python.org/3/library/profile.html

PythonProfileEvaluation[expr]
profile expr with the Python’s cProfiler.

57.7. TraceBuiltins

TraceBuiltins[expr]
Evaluate expr and then print a list of the Built-in Functions called in evaluating expr along
with the number of times is each called, and combined elapsed time inmilliseconds spent
in each.

Sort Options:

• count

• name

• time

>> TraceBuiltins[Graphics3D[Tetrahedron[]]]
count ms Builtin name
137 75 CompoundExpression
115 0 Rule_
91 0 List
81 26 SetDelayed
76 7 Set
74 5 MPMathFunction
46 4 Unprotect
46 0 ClearAttributes
44 3 Protect
44 0 SetAttributes
33 5 Power
24 0 RuleDelayed
22 0 Function
19 0 Path
19 0 RegisterImport
19 0 Times
17 0 Append
17 16 Block
17 0 Length
17 0 SameQ
17 12 If
17 0 Last
17 0 Most
15 0 RegisterExport
11 0 DirectedInfinity
9 0 I_

2 0 Map

755

By default, the output is sorted by the name:

>> TraceBuiltins[Times[x, x]]
count ms Builtin name
137 77 CompoundExpression
115 0 Rule_
91 0 List
81 27 SetDelayed
76 8 Set
74 6 MPMathFunction
46 4 Unprotect
46 0 ClearAttributes
44 3 Protect
44 0 SetAttributes
33 4 Power
24 0 RuleDelayed
22 0 Function
19 0 Path
19 0 RegisterImport
19 0 Times
17 0 Append
17 15 Block
17 0 Length
17 0 SameQ
17 11 If
17 0 Last
17 0 Most
15 0 RegisterExport
11 0 DirectedInfinity
9 0 I_

2 0 Map

x2

By default, the output is sorted by the number of calls of the builtin from highest to lowest:

>> TraceBuiltins[Times[x, x], SortBy->"count"]
count ms Builtin name
137 80 CompoundExpression
115 0 Rule_
91 0 List
81 26 SetDelayed
76 8 Set
74 5 MPMathFunction
46 4 Unprotect
46 0 ClearAttributes
44 3 Protect
44 0 SetAttributes
33 4 Power
24 0 RuleDelayed
22 0 Function
19 0 Path
19 0 RegisterImport
19 0 Times
17 0 Append
17 16 Block
17 0 Length
17 0 SameQ
17 11 If
17 0 Last
17 0 Most
15 0 RegisterExport
11 0 DirectedInfinity
9 0 I_

2 0 Map

x2

You can have results ordered by name, or time.

Trace an expression and list the result by time from highest to lowest.

756

>> TraceBuiltins[Times[x, x], SortBy->"time"]
count ms Builtin name
137 78 CompoundExpression
81 29 SetDelayed
17 16 Block
17 11 If
76 7 Set
74 5 MPMathFunction
33 4 Power
46 4 Unprotect
44 3 Protect
19 0 Times
46 0 ClearAttributes
44 0 SetAttributes
91 0 List
11 0 DirectedInfinity
19 0 Path
17 0 Append
17 0 Most
19 0 RegisterImport
115 0 Rule_
22 0 Function
2 0 Map
9 0 I_
15 0 RegisterExport
17 0 Length
17 0 SameQ
17 0 Last

24 0 RuleDelayed

x2

57.8. TraceEvaluation

TraceEvaluation[expr, options]
Evaluate expr and print each step of the evaluation.

Options adjust output and filtering behavior

ShowTimeBySteps
Print the elapsed time before an evaluation occurs. default is False.

ShowEvaluation
Show evaluation calls and returns. The default is True.

ShowRewrite
Show the effect of rewrite rules. The default is True.

Note: It does not make sense to set both ShowRewrite and ShowEvaluation to False.

>> TraceEvaluation[(x + x)^2]
4x2

>> TraceEvaluation[(x + x)^2, ShowTimeBySteps->True]

4x2

Now consider this function which consists of a function call that involves a rewrite rule:

>> TraceEvaluation[BesselK[0, 0]]
−∞

Sometimes, TraceEvaluation traces can get quite large. To reduce the size, it may be helpful to filter on
either the evaluations or the replacement rules.

757

To see just the evaluations and return values, but not rewrite that occurs:

>> TraceEvaluation[BesselK[0, 0], ShowRewrite-> False]
−∞

To see just the rewrite that occurs, which tends to summarizes even more:

>> TraceEvaluation[BesselK[0, 0], ShowEvaluation-> False]
−∞

758

58. Units and Quantities

Contents

58.1. KnownUnitQ 759
58.2. Quantity 759
58.3. QuantityMagnitude 760

58.4. QuantityQ 761
58.5. QuantityUnit 761
58.6. UnitConvert 761

58.1. KnownUnitQ

WMA link

KnownUnitQ[unit]
returns True if unit is a canonical unit, and False otherwise.

>> KnownUnitQ["Feet"]
True

>> KnownUnitQ["Foo"]
False

>> KnownUnitQ["meter"^2/"second"]
True

58.2. Quantity

WMA link

Quantity[magnitude, unit]
represents a quantity with size magnitude and unit specified by unit.

Quantity[unit]
assumes the magnitude of the specified unit to be 1.

>> Quantity["Kilogram"]
1 kilogram

>> Quantity[10, "Meters"]
10 meter

759

https://reference.wolfram.com/language/ref/KnownUnitQ.html
https://reference.wolfram.com/language/ref/Quantity.html

If the first argument is an array, then the unit is distributed on each element

>> Quantity[{10, 20}, "Meters"]
{10 meter, 20 meter}

If the second argument is a number, then the expression is evaluated to the product of the magnitude
and that number

>> Quantity[2, 3/2]
3

Notice that units are specified as Strings. If the unit is not a Symbol or a Number, the expression is not
interpreted as a Quantity object:

>> QuantityQ[Quantity[2, Second]]
Unable to interpret unit specification Second.
False

Quantities can be multiplied and raised to integer powers:

>> Quantity[3, "centimeter"] / Quantity[2, "second"]^2
3
4

centimeter
second2

Quantities of the same kind can be added:

>> Quantity[6, "meter"] + Quantity[3, "centimeter"]
603 centimeter

Quantities of different kind can not:

>> Quantity[6, "meter"] + Quantity[3, "second"]
second and meter are incompatible units.
3 second + 6 meter

See also ’QuantityQ’ 58.4.

58.3. QuantityMagnitude

WMA link

QuantityMagnitude[quantity]
gives the amount of the specified quantity.

QuantityMagnitude[quantity, unit]
gives the value corresponding to quantity when converted to unit.

760

https://reference.wolfram.com/language/ref/QuantityMagnitude.html

>> QuantityMagnitude[Quantity["Kilogram"]]
1

>> QuantityMagnitude[Quantity[10, "Meters"]]
10

>> QuantityMagnitude[Quantity[{10,20}, "Meters"]]
{10, 20}

58.4. QuantityQ

WMA link

QuantityQ[expr]
return True if expr is a valid Quantity 58.2 with valid arguments, and False otherwise.

>> QuantityQ[Quantity[3, "Meters"]]
True

>> QuantityQ[Quantity[3, "Maters"]]
Unable to interpret unit specification Maters.
False

58.5. QuantityUnit

WMA link

QuantityUnit[quantity]
returns the unit associated with the specified quantity.

>> QuantityUnit[Quantity["Kilogram"]]
kilogram

>> QuantityUnit[Quantity[10, "Meters"]]
meter

>> QuantityUnit[Quantity[{10,20}, "Meters"]]
{meter, meter}

58.6. UnitConvert

WMA link

761

https://reference.wolfram.com/language/ref/QuantityQ.html
https://reference.wolfram.com/language/ref/QuantityUnit.html
https://reference.wolfram.com/language/ref/UnitConvert.html

UnitConvert[$quantity$, $targetunit$]
converts the specified quantity to the specified targetunit.

UnitConvert[quantity]
converts the specified quantity to its “SIBase” units.

Convert from miles to kilometers:

>> UnitConvert[Quantity[5.2, "miles"], "kilometers"]
8.36859 kilometer

Convert a Quantity object to the appropriate SI base units:

>> UnitConvert[Quantity[3.8, "Pounds"]]
1.72365 kilogram

762

Part III.

Mathics3 Modules

763

59. Graphs - Vertices and Edges

A Graph is a tuple of a set of Nodes and Edges.

Mathics3 Module that provides functions and variables for working with graphs.

Examples:

>> LoadModule["pymathics.graph"]
pymathics.graph

>> BinomialTree[3, DirectedEdges->True]

>> BalancedTree[3, 3]

764

>> g = Graph[{1 -> 2, 2 -> 3, 3 <-> 4}, VertexLabels->True]

>> ConnectedComponents[g]
{{3, 4} , {2} , {1}}

>> WeaklyConnectedComponents[g]
{{1, 2, 3, 4}}

>> GraphDistance[g, 1, 4]
3

>> GraphDistance[g, 3, 2]
∞

NetworkX does the heavy lifting here.

Contents

59.1. Centralities 766
59.1.1. BetweennessCentrality 766
59.1.2. ClosenessCentrality 767
59.1.3. DegreeCentrality 768
59.1.4. EigenvectorCentrality 769
59.1.5. HITSCentrality 770
59.1.6. KatzCentrality 770
59.1.7. PageRankCentrality 771

59.2. Core routines for working with
Graphs. 771

59.2.1. AdjacencyList 771
59.2.2. DirectedEdge (→) 772
59.2.3. EdgeConnectivity 772
59.2.4. EdgeDelete 773
59.2.5. EdgeIndex 773
59.2.6. EdgeList 773
59.2.7. EdgeRules 773
59.2.8. FindShortestPath 774
59.2.9. FindVertexCut 774
59.2.10. Graph 775

59.2.11. HighlightGraph 776
59.2.12. Property 776
59.2.13. PropertyValue 776
59.2.14. UndirectedEdge (↔) 776
59.2.15. VertexAdd 777
59.2.16. VertexConnectivity 778
59.2.17. VertexDelete 778
59.2.18. VertexIndex 780
59.2.19. VertexList 780

59.3. Curated Graphs 780
59.3.1. GraphData 780

59.4. Graph Components and Connectivity 781
59.4.1. ConnectedComponents . . . 781
59.4.2. WeaklyConnectedComponents 782

59.5. Graph Measures and Metrics 784
59.5.1. EdgeCount 784
59.5.2. GraphDistance 784
59.5.3. VertexCount 786
59.5.4. VertexDegree 786

59.6. Graph Operations and Modifications 786
59.6.1. FindSpanningTree 786

765

https://networkx.org

59.7. Graph Properties and Measurements 787
59.7.1. AcyclicGraphQ 787
59.7.2. ConnectedGraphQ 788
59.7.3. DirectedGraphQ 788
59.7.4. GraphQ 788
59.7.5. LoopFreeGraphQ 789
59.7.6. MixedGraphQ 789
59.7.7. MultigraphQ 790
59.7.8. PathGraphQ 790
59.7.9. PlanarGraphQ 790
59.7.10. SimpleGraphQ 791

59.8. Parametric Graphs 791
59.8.1. BalancedTree 791
59.8.2. BarbellGraph 792
59.8.3. BinomialTree 792
59.8.4. CompleteGraph 793

59.8.5. CompleteKaryTree 794
59.8.6. CycleGraph 794
59.8.7. GraphAtlas 795
59.8.8. HknHararyGraph 795
59.8.9. HmnHararyGraph 796
59.8.10. KaryTree 797
59.8.11. LadderGraph 798
59.8.12. PathGraph 798
59.8.13. RandomTree 799
59.8.14. StarGraph 799

59.9. Random Graphs 800
59.9.1. RandomGraph 800

59.10. Trees 800
59.10.1. TreeGraph 800
59.10.2. TreeGraphQ 801

59.1. Centralities

Centralities

Routines to evaluate centralities of a graph.

In graph theory and network analysis, the centrality is a ranking between pairs of node according some
metric.

59.1.1. BetweennessCentrality

Betweenness centrality (NetworkX, WMA)

BetweennessCentrality[g]
gives a list of betweenness centralities for the vertices in a Graph or a list of edges g.

766

https://en.wikipedia.org/wiki/Centrality
https://en.wikipedia.org/wiki/Betweenness_centrality
https://networkx.org/documentation/networkx-2.8.8/reference/algorithms/generated/networkx.algorithms.centrality.betweenness_centrality.html
https://reference.wolfram.com/language/ref/BetweennessCentrality.html

>> g = Graph[{a -> b, b -> c, d -> c, d -> a, e -> c, d -> b}]

>> BetweennessCentrality[g]
{0., 1., 0., 0., 0.}

>> g = Graph[{a -> b, b -> c, c -> d, d -> e, e -> c, e -> a}]

>> BetweennessCentrality[g]
{3., 3., 6., 6., 6.}

59.1.2. ClosenessCentrality

Betweenness centrality (NetworkX, WMA)

ClosenessCentrality[g]
gives a list of closeness centralities for the vertices in a Graph or a list of edges g.

767

https://en.wikipedia.org/wiki/Closeness_centrality
https://networkx.org/documentation/networkx-2.8.8/reference/algorithms/generated/networkx.algorithms.centrality.closeness_centrality.html
https://reference.wolfram.com/language/ref/ClosenessCentrality.html

>> g = Graph[{a -> b, b -> c, d -> c, d -> a, e -> c, d -> b}]

>> ClosenessCentrality[g]
{0.666667, 1., 0., 1., 1.}

>> g = Graph[{a -> b, b -> c, c -> d, d -> e, e -> c, e -> a}]

>> ClosenessCentrality[g]
{0.4, 0.4, 0.4, 0.5, 0.666667}

59.1.3. DegreeCentrality

Degree centrality (NetworkX, WMA)

DegreeCentrality[g]
gives a list of degree centralities for the vertices in a Graph or a list of edges g.

768

https://en.wikipedia.org/wiki/Degree_centrality
https://networkx.org/documentation/networkx-2.8.8/reference/algorithms/generated/networkx.algorithms.centrality.degree_centrality.html
https://reference.wolfram.com/language/ref/DegreeCentrality.html

>> g = Graph[{a -> b, b <-> c, d -> c, d -> a, e <-> c, d -> b}]

>> DegreeCentrality[g]
{2, 4, 3, 5, 2}

>> DegreeCentrality[g, "In"]
{1, 3, 0, 3, 1}

>> DegreeCentrality[g, "Out"]
{1, 1, 3, 2, 1}

59.1.4. EigenvectorCentrality

Eigenvector Centrality (NetworkX,WMA)

EigenvectorCentrality[g]
gives a list of eigenvector centralities for the vertices in the graph g.

EigenvectorCentrality[g, “In”]
gives a list of eigenvector in-centralities for the vertices in the graph g.

EigenvectorCentrality[g, “Out”]
gives a list of eigenvector out-centralities for the vertices in the graph g.

>> g = Graph[{a -> b, b -> c, c -> d, d -> e, e -> c, e -> a}];
EigenvectorCentrality[g, "In"]

{0.16238, 0.136013, 0.276307, 0.23144, 0.193859}

>> EigenvectorCentrality[g, "Out"]
{0.136013, 0.16238, 0.193859, 0.23144, 0.276307}

>> g = Graph[{a <-> b, b <-> c, c <-> d, d <-> e, e <-> c, e <-> a}];
EigenvectorCentrality[g]

{0.162435, 0.162435, 0.240597, 0.193937, 0.240597}

769

https://en.wikipedia.org/wiki/Eigenvector_centrality
https://networkx.org/documentation/networkx-2.8.8/reference/algorithms/generated/networkx.algorithms.centrality.eigenvector_centrality.html
https://reference.wolfram.com/language/ref/EgenvectorCentrality.html

>> g = Graph[{a <-> b, b <-> c, a <-> c, d <-> e, e <-> f, f <-> d, e
<-> d}]; EigenvectorCentrality[g]

{0.166667, 0.166667, 0.166667, 0.183013, 0.183013, 0.133975}

>> g = Graph[{a -> b, b -> c, c -> d, b -> e, a -> e, c -> a}];
EigenvectorCentrality[g]

{0.333333, 0.333333, 0.333333, 0., 0.}

59.1.5. HITSCentrality

NetworkX, WMA

HITSCentrality[g]
gives a list of authority and hub centralities for the vertices in the graph g.

59.1.6. KatzCentrality

Katz Centrality (NetworkX, WMA)

KatzCentrality[g, alpha]
gives a list of Katz centralities for the vertices in the graph g and weight alpha.

KatzCentrality[g, alpha, beta]
gives a list of Katz centralities for the vertices in the graph g and weight alpha and initial
centralities beta.

>> g = Graph[{a -> b, b -> c, c -> d, d -> e, e -> c, e -> a}]

>> KatzCentrality[g, 0.2]
{1.25202, 1.2504, 1.5021, 1.30042, 1.26008}

770

https://networkx.org/documentation/networkx-2.8.8/reference/algorithms/generated/networkx.algorithms.link_analysis.hits_alg.hits.html
https://reference.wolfram.com/language/ref/HITSCentrality.html
https://en.wikipedia.org/wiki/Katz_centrality
https://networkx.org/documentation/networkx-2.8.8/reference/algorithms/generated/networkx.algorithms.centrality.katz_centrality.html#networkx.algorithms.centrality.katz_centrality
https://reference.wolfram.com/language/ref/KatzCentrality.html

>> g = Graph[{a <-> b, b <-> c, a <-> c, d <-> e, e <-> f, f <-> d, e
<-> d}]

>> KatzCentrality[g, 0.1]
{1.25, 1.25, 1.25, 1.41026, 1.41026, 1.28205}

59.1.7. PageRankCentrality

Pagerank Centrality (NetworkX, WMA)

PageRankCentrality[g, alpha]
gives a list of page rank centralities for the vertices in the graph g and weight alpha.

PageRankCentrality[g, alpha, beta]
gives a list of page rank centralities for the vertices in the graph g and weight alpha and
initial centralities beta.

>> g = Graph[{a -> d, b -> c, d -> c, d -> a, e -> c, d -> c}];
PageRankCentrality[g, 0.2]

{0.184502, 0.207565, 0.170664, 0.266605, 0.170664}

59.2. Core routines for working with Graphs.

59.2.1. AdjacencyList

Adjacency list (NetworkX, WMA)

AdjacencyList[graph, v]
gives a list of vertices adjacent to v in a Graph or a list of edges g.

AdjacencyList[graph, pattern]
gives a list of vertices adjacent to vertices matching pattern.

771

https://en.wikipedia.org/wiki/Pagerank
https://networkx.org/documentation/networkx-2.8.8/reference/algorithms/generated/networkx.algorithms.link_analysis.pagerank_alg.pagerank.html
https://reference.wolfram.com/language/ref/PageRankCentrality.html
https://en.wikipedia.org/wiki/Adjacency_list
https://networkx.org/documentation/networkx-2.8.8/reference/readwrite/adjlist.html
https://reference.wolfram.com/language/ref/AdjacencyList.html

>> AdjacencyList[{1 -> 2, 2 -> 3}, 3]
{2}

>> AdjacencyList[{1 -> 2, 2 -> 3}, _?EvenQ]
{1, 3}

>> AdjacencyList[{x -> 2, x -> 3, x -> 4, 2 -> 10, 2 -> 11, 4 -> 20, 4
-> 21, 10 -> 100}, 10, 2]

{2, 11, 100, x}

59.2.2. DirectedEdge (→)

Edge of a Directed graph (WMA)

DirectedEdge[u, v]
create a directed edge from u to v.

>> DirectedEdge[x, y, z]
x → y→ z

>> a \[DirectedEdge] b
a→ b

59.2.3. EdgeConnectivity

Edge connectivity (NetworkX, WMA)

EdgeConnectivity[g]
gives the edge connectivity of the graph g.

>> EdgeConnectivity[{1 <-> 2, 2 <-> 3}]
1

>> EdgeConnectivity[{1 -> 2, 2 -> 3}]
0

>> EdgeConnectivity[{1 -> 2, 2 -> 3, 3 -> 1}]
1

>> EdgeConnectivity[{1 <-> 2, 2 <-> 3, 1 <-> 3}]
2

>> EdgeConnectivity[{1 <-> 2, 3 <-> 4}]
0

772

https://en.wikipedia.org/wiki/Directed_graph
https://reference.wolfram.com/language/ref/DirectedEdge.html
https://en.wikipedia.org/wiki/Directed_graph#Directed_graph_connectivity
https://networkx.org/documentation/networkx-2.8.8/reference/algorithms/generated/networkx.algorithms.connectivity.connectivity.edge_connectivity.html
https://reference.wolfram.com/language/ref/EdgeConnectivity.html

59.2.4. EdgeDelete

Delete an Edge (WMA)

EdgeDelete[g, edge]
remove the edge edge.

>> g = Graph[{1 -> 2, 2 -> 3, 3 -> 1}, VertexLabels->True]

>> EdgeList[EdgeDelete[g, 2 -> 3]]
{{1, 2} , {3, 1}}

59.2.5. EdgeIndex

WMA link

EdgeIndex[graph, edge]
gives the position of the edge in the list of edges associated to the graph.

59.2.6. EdgeList

WMA link

EdgeList[g]
gives the list of edges that defines g

59.2.7. EdgeRules

WMA link

773

https://reference.wolfram.com/language/ref/EdgeDelete.html
https://reference.wolfram.com/language/ref/EdgeIndex.html
https://reference.wolfram.com/language/ref/EdgeList.html
https://reference.wolfram.com/language/ref/EdgeRules.html

EdgeRules[g]
gives the list of edge rules for the graph g.

59.2.8. FindShortestPath

Shortest path problem (NetworkX, WMA)

FindShortestPath[g, src, tgt]
List the vertices in the shortest path connecting the source src with the target tgt in the
graph g.

>> FindShortestPath[{1 <-> 2, 2 <-> 3, 3 <-> 4, 2 <-> 4, 4 -> 5}, 1, 5]
{1, 2, 4, 5}

>> FindShortestPath[{1 <-> 2, 2 <-> 3, 3 <-> 4, 4 -> 2, 4 -> 5}, 1, 5]
{1, 2, 3, 4, 5}

>> FindShortestPath[{1 <-> 2, 2 <-> 3, 4 -> 3, 4 -> 2, 4 -> 5}, 1, 5]
{}

>> g = Graph[{1 -> 2, 2 -> 3, 1 -> 3}, EdgeWeight -> {0.5, a, 3}];

59.2.9. FindVertexCut

Minimum cut (NetworkX, WMA)

FindVertexCut[g]
finds a set of vertices of minimum cardinality that, if removed, renders g disconnected.

FindVertexCut[g, s, t]
finds a vertex cut that disconnects all paths from s to t.

>> g = Graph[{1 -> 2, 2 -> 3}]; FindVertexCut[g]
{}

>> g = Graph[{1 <-> 2, 2 <-> 3}]; FindVertexCut[g]
{2}

>> g = Graph[{1 <-> x, x <-> 2, 1 <-> y, y <-> 2, x <-> y}];
FindVertexCut[g]

{x, y}

774

https://en.wikipedia.org/wiki/Shortest_path_problem
https://networkx.org/documentation/networkx-2.8.8/reference/algorithms/generated/networkx.algorithms.shortest_paths.generic.shortest_path.html
https://reference.wolfram.com/language/ref/FindShortestPath.html
https://en.wikipedia.org/wiki/Minimum_cut
https://networkx.org/documentation/networkx-2.8.8/reference/algorithms/generated/networkx.algorithms.connectivity.cuts.minimum_node_cut.html
https://reference.wolfram.com/language/ref/FindVertexCut.html

59.2.10. Graph

Graph (WMA)

Graph[{e1,e2, ...}]
returns a graph with edges ej.

Graph[{v1, v2, ...}, {e1,e2, ...}]
returns a graph with vertices vi and edges ej.

>> Graph[{1->2, 2->3, 3->1}]

#» Graph[{1->2, 2->3, 3->1}, EdgeStyle -> {Red, Blue, Green}] # = -Graph-

>> Graph[{1->2, Property[2->3, EdgeStyle -> Thick], 3->1}]

» Graph[{1->2, 2->3, 3->1}, VertexStyle -> {1 -> Green, 3 -> Blue}] # = -Graph-

>> Graph[x]
Graph [x]

775

https://en.wikipedia.org/wiki/graph
https://reference.wolfram.com/language/ref/Graph.html

>> Graph[{1}]
Graph

[
{1}

]
>> Graph[{{1 -> 2}}]

Graph
[
{{1− > 2}}

]

59.2.11. HighlightGraph

WMA link

HighlightGraph[graph, what]
highlight in graph the elements enumerated in what by adding style marks.

59.2.12. Property

WMA link

Property[item, {name, val}]
associate a property called name with value val to item.

59.2.13. PropertyValue

WMA link

PropertyValue[{obj, item}, name]
gives the value of a property associated with the name name for item in the object obj.

>> g = Graph[{a <-> b, Property[b <-> c, SomeKey -> 123]}];

>> PropertyValue[{g, b <-> c}, SomeKey]
123

>> PropertyValue[{g, b <-> c}, SomeUnknownKey]
$Failed

59.2.14. UndirectedEdge (↔)

Edge of a Undirected graph WMA link

776

https://reference.wolfram.com/language/ref/HighlightGraph.html
https://reference.wolfram.com/language/ref/Property.html
https://reference.wolfram.com/language/ref/PropertyValue.html
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)#Undirected_graph
https://reference.wolfram.com/language/ref/UndirectedEdge.html

UndirectedEdge[u, v]
create an undirected edge between u and v.

>> a <-> b
a↔ b

59.2.15. VertexAdd

WMA link

VertexAdd[g, ver]
create a new graph from g, by adding the vertex ver.

>> g1 = Graph[{1 -> 2, 2 -> 3}];

>> g2 = VertexAdd[g1, 4]

>> g3 = VertexAdd[g2, {5, 10}]

777

https://reference.wolfram.com/language/ref/VertexAdd.html

>> VertexAdd[{a -> b}, c]

59.2.16. VertexConnectivity

WMA link

VertexConnectivity[g]
gives the vertex connectivity of the graph g.

>> VertexConnectivity[{1 <-> 2, 2 <-> 3}]
1

>> VertexConnectivity[{1 -> 2, 2 -> 3}]
0

>> VertexConnectivity[{1 -> 2, 2 -> 3, 3 -> 1}]
1

>> VertexConnectivity[{1 <-> 2, 2 <-> 3, 1 <-> 3}]
2

>> VertexConnectivity[{1 <-> 2, 3 <-> 4}]
0

59.2.17. VertexDelete

WMA link

VertexDelete[g, vert]
remove the vertex vert and their associated edges.

>> g1 = Graph[{1 -> 2, 2 -> 3, 3 -> 4}];

778

https://reference.wolfram.com/language/ref/VertexConnectivity.html
https://reference.wolfram.com/language/ref/VertexDelete.html

>> VertexDelete[g1, 3]

>> VertexDelete[{a -> b, b -> c, c -> d, d -> a}, {a, c}]

>> VertexDelete[{1 -> 2, 2 -> 3, 3 -> 4, 4 -> 6, 6 -> 8, 8 -> 2}, _?OddQ
]

779

59.2.18. VertexIndex

WMA link

VertexIndex[g, v]
gives the integer index of the vertex v in the graph g.

>> a=.;

>> VertexIndex[{c <-> d, d <-> a}, a]
3

59.2.19. VertexList

WMA link

VertexList[edgelist]
list the vertices from a list of directed edges.

>> a=.;

>> VertexList[{1 -> 2, 2 -> 3}]
{1, 2, 3}

>> VertexList[{a -> c, c -> b}]
{a, c, b}

>> VertexList[{a -> c, 5 -> b}, _Integer -> 10]
{10}

59.3. Curated Graphs

59.3.1. GraphData

WMA link

GraphData[name]
Returns a graph with the specified name.

780

https://reference.wolfram.com/language/ref/VertexIndex.html
https://reference.wolfram.com/language/ref/VertexList.html
https://reference.wolfram.com/language/ref/GraphData.html

>> GraphData["PappusGraph"]

59.4. Graph Components and Connectivity

59.4.1. ConnectedComponents

Strongly connected components (NetworkX, WMA)

ConnectedComponents[g]
gives the connected components of the graph g.

>> g = Graph[{1 -> 2, 2 -> 3, 3 <-> 4}, VertexLabels->True]

>> ConnectedComponents[g]
{{3, 4} , {2} , {1}}

781

https://en.wikipedia.org/wiki/Strongly_connected_component
https://networkx.org/documentation/networkx-2.8.8/reference/algorithms/generated/networkx.algorithms.components.strongly_connected_components.html
https://reference.wolfram.com/language/ref/ConnectedComponents.html

>> g = Graph[{1 -> 2, 2 -> 3, 3 -> 1}, VertexLabels->True]

>> ConnectedComponents[g]
{{1, 2, 3}}

>> g = Graph[{1 <-> 2, 2 <-> 3, 3 -> 4, 4 <-> 5}, VertexLabels->True]

>> ConnectedComponents[g]
{{4, 5} , {1, 2, 3}}

59.4.2. WeaklyConnectedComponents

Weak components (NetworkX, WMA)

WeaklyConnectedComponents[g]
gives the weakly connected components of the graph g.

782

https://en.wikipedia.org/wiki/Weak_component
https://networkx.org/documentation/networkx-2.8.8/reference/algorithms/generated/networkx.algorithms.components.weakly_connected_components.html
https://reference.wolfram.com/language/ref/WeaklyConnectedComponents.html

>> g = Graph[{1 -> 2, 2 -> 3, 3 <-> 4}, VertexLabels->True]

>> WeaklyConnectedComponents[g]
{{1, 2, 3, 4}}

>> g = Graph[{1 -> 2, 2 -> 3, 3 -> 1}, VertexLabels->True]

>> WeaklyConnectedComponents[g]
{{1, 2, 3}}

783

>> g = Graph[{1 <-> 2, 2 <-> 3, 3 -> 4, 4 <-> 5, 6 <-> 7, 7 <-> 8},
VertexLabels->True]

>> WeaklyConnectedComponents[g]
{{1, 2, 3, 4, 5} , {6, 7, 8}}

59.5. Graph Measures and Metrics

Measures include basic measures, such as the number of vertices and edges, connectivity, degree mea-
sures, centrality, and so on.

59.5.1. EdgeCount

NetworkX, WMA

EdgeCount[g]
returns a count of the number of edges in graph g.

EdgeCount[g, patt]
returns the number of edges that match the pattern patt.

EdgeCount[{v->w}, ...}, ...]
uses rules v->w to specify the graph g.

>> EdgeCount[{1 -> 2, 2 -> 3}]
2

59.5.2. GraphDistance

NetworkX, WMA

784

https://networkx.org/documentation/latest/reference/generated/networkx.classes.function.edges.html#edges
https://reference.wolfram.com/language/ref/EdgeCount.html
https://networkx.org/documentation/latest/reference/algorithms/generated/networkx.algorithms.shortest_paths.generic.shortest_path_length.html
https://reference.wolfram.com/language/ref/GraphDistance.html

GraphDistance[g, s, t]
returns the distance from source vertex s to target vertex t in the graph g.

GraphDistance[g, s]
returns the distance from source vertex s to all vertices in the graph g.

GraphDistance[{v->w, ...}, ...]
use rules v->w to specify the graph g.

>> g = Graph[{1 -> 2, 2 <-> 3, 4 -> 3, 2 <-> 4, 4 -> 5}, VertexLabels->
True]

>> GraphDistance[g, 1, 5]
3

>> GraphDistance[g, 4, 2]
1

>> GraphDistance[g, 5, 4]
∞

>> GraphDistance[g, 5]
{∞, ∞, ∞, ∞, 0}

>> GraphDistance[g, 3]
{∞, 1, 2, 0, 3}

>> GraphDistance[g, 4]
{∞, 1, 0, 1, 1}

785

59.5.3. VertexCount

NetworkX, WMA

VertexCount[g]
returns a count of the number of vertices in graph g.

VertexCount[g, patt]
returns the number of vertices that match the pattern patt.

VertexCount[{v->w}, ...}, ...]
uses rules v->w to specify the graph g.

>> VertexCount[{1 -> 2, 2 -> 3}]
3

>> VertexCount[{1 -> x, x -> 3}, _Integer]
2

59.5.4. VertexDegree

NetworkX, WMA

VertexDegree[g]
returns a list of the degrees of each of the vertices in graph g.

EdgeCount[g, patt]
returns the number of edges that match the pattern patt.

EdgeCount[{v->w}, ...}, ...]
uses rules v->w to specify the graph g.

>> VertexDegree[{1 <-> 2, 2 <-> 3, 2 <-> 4}]
{1, 3, 1, 1}

59.6. Graph Operations and Modifications

59.6.1. FindSpanningTree

Spanning Tree (NetworkX, WMA)

FindSpanningTree[g]
finds a spanning tree of the graph g.

786

https://networkx.org/documentation/latest/reference/generated/networkx.classes.function.nodes.html
https://reference.wolfram.com/language/ref/VertexCount.html
https://networkx.org/documentation/latest/reference/classes/generated/networkx.Graph.degree.html
https://reference.wolfram.com/language/ref/VertexDegree.html
https://en.wikipedia.org/wiki/Spanning_tree
https://networkx.org/documentation/networkx-2.8.8/reference/algorithms/generated/networkx.algorithms.tree.mst.minimum_spanning_edges.html
https://reference.wolfram.com/language/ref/FindSpanningTree.html

>> FindSpanningTree[CycleGraph[4]]

59.7. Graph Properties and Measurements

59.7.1. AcyclicGraphQ

Acyclic graph test (NetworkX, WMA)

AcyclicGraphQ[graph]
check if graph is an acyclic graph.

Create a directed graph with a cycle in it:

>> g = Graph[{1 -> 2, 2 -> 3, 5 -> 2, 3 -> 4, 3 -> 5}, VertexLabels->
True]

>> AcyclicGraphQ[g]
False

Remove a cycle edge:

787

https://en.wikipedia.org/wiki/Acyclic_graph
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.cycles.find_cycle.html
https://reference.wolfram.com/language/ref/AcyclicGraphQ.html

>> g = EdgeDelete[g, 5 -> 2]; EdgeList[g]
{{1, 2} , {2, 3} , {3, 4} , {3, 5}}

>> AcyclicGraphQ[g]
True

59.7.2. ConnectedGraphQ

Connected graph test (NetworkX, WMA)

ConnectedGraphQ[graph]
check if graph is a connected graph.

>> g = Graph[{1 -> 2, 2 -> 3}]; ConnectedGraphQ[g]
False

>> g = Graph[{1 -> 2, 2 -> 3, 3 -> 1}]; ConnectedGraphQ[g]
True

>> g = Graph[{1 <-> 2, 2 <-> 3}]; ConnectedGraphQ[g]
True

>> g = Graph[{1 <-> 2, 2 <-> 3, 4 <-> 5}]; ConnectedGraphQ[g]
False

59.7.3. DirectedGraphQ

Directed graph test (NetworkX, WMA)

DirectedGraphQ[graph]
True if graph is a Graph and all the edges are directed.

>> g = Graph[{1 -> 2, 2 -> 3}]; DirectedGraphQ[g]
True

>> g = Graph[{1 -> 2, 2 <-> 3}]; DirectedGraphQ[g]
False

59.7.4. GraphQ

WMA link

788

https://en.wikipedia.org/wiki/Connectivity_(graph_theory)#Connected_vertices_and_graphs
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.components.is_connected.html
https://reference.wolfram.com/language/ref/ConnectedGraphQ.html
https://en.wikipedia.org/wiki/Directed_graph
https://networkx.org/documentation/stable/reference/generated/networkx.classes.function.is_directed.html
https://reference.wolfram.com/language/ref/DirectedGraphQ.html
https://reference.wolfram.com/language/ref/GraphQ.html

GraphQ[graph]
True if graph is a Graph.

A graph with one one node and one self-looping edge:

>> GraphQ[{1 -> 2, 2 -> 3, 3 -> 1}]
True

>> GraphQ[{1, 2, 3}]
False

59.7.5. LoopFreeGraphQ

Loop-Free graph test (NetworkX, WMA)

LoopFreeGraphQ[graph]
True if graph is a Graph and the edges do not close any loop.

>> g = Graph[{1 -> 2, 2 -> 3}]; LoopFreeGraphQ[g]
True

>> g = Graph[{1 -> 2, 2 -> 3, 1 -> 1}]; LoopFreeGraphQ[g]
False

59.7.6. MixedGraphQ

Mixed Graph test (WMA)

MixedGraphQ[graph]
returns True if graph is a Graph with both directed and undirected edges, and False
otherwise.

>> MixedGraphQ[Graph[{1 -> 2, 2 -> 3}]]
False

>> MixedGraphQ[Graph[{1 -> 2, 2 <-> 3}]]
True

>> MixedGraphQ[Graph[{}]]
False

>> MixedGraphQ["abc"]
False

789

https://en.wikipedia.org/wiki/Loop_(graph_theory)
https://networkx.org/documentation/stable/reference/generated/networkx.classes.function.nodes_with_selfloops.html
https://reference.wolfram.com/language/ref/LoopFreeGraphQ.html
https://en.wikipedia.org/wiki/Mixed_graph
https://reference.wolfram.com/language/ref/MixedGraphQ.html

59.7.7. MultigraphQ

Multigraph test (NetworkX, WMA)

MultigraphQ[graph]
True if graph is a Graph and there vertices connected by more than one edge.

>> g = Graph[{1 -> 2, 2 -> 3}]; MultigraphQ[g]
False

>> g = Graph[{1 -> 2, 2 -> 3, 1 -> 2}]; MultigraphQ[g]
True

59.7.8. PathGraphQ

Path graph test (WMA)

LoopFreeGraphQ[graph]
True if graph is a Graph and it becomes disconnected by removing a single edge.

>> PathGraphQ[Graph[{1 -> 2, 2 -> 3}]]
True

>> PathGraphQ[Graph[{1 -> 2, 2 <-> 3}]]
False

>> PathGraphQ[Graph[{1 -> 2, 3 -> 2}]]
False

>> PathGraphQ[Graph[{1 -> 2, 2 -> 3, 2 -> 4}]]
False

>> PathGraphQ[Graph[{1 -> 2, 3 -> 2, 2 -> 4}]]
False

>> PathGraphQ[Graph[{1 -> 2, 2 -> 3, 2 -> 3}]]
False

59.7.9. PlanarGraphQ

Planar Graph test (NetworkX, WMA)

PlanarGraphQ[g]
Returns True if g is a planar graph and False otherwise.

790

https://en.wikipedia.org/wiki/Multigraph
https://networkx.org/documentation/stable/reference/classes/multigraph.html
https://reference.wolfram.com/language/ref/MulitGraphQ.html
https://en.wikipedia.org/wiki/Path_graph
https://reference.wolfram.com/language/ref/PathGraphQ.html
https://en.wikipedia.org/wiki/Planar_graph
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.planarity.check_planarity.html
https://reference.wolfram.com/language/ref/PlanaGraphQ.html

>> PlanarGraphQ[CycleGraph[4]]
True

>> PlanarGraphQ[CompleteGraph[5]]
False

>> PlanarGraphQ["abc"]
Expected a graph at position 1 in PlanarGraphQ[abc].
False

59.7.10. SimpleGraphQ

Simple (not multigraph) graph test (WMA)

SimpleGraphQ[graph]
True if graph is a Graph, loop-free and each pair of vertices are connected at most by a
single edge.

>> g = Graph[{1 -> 2, 2 -> 3, 3 <-> 4}]; SimpleGraphQ[g]
True

>> g = Graph[{1 -> 2, 2 -> 3, 1 -> 1}]; SimpleGraphQ[g]
False

>> g = Graph[{1 -> 2, 2 -> 3, 1 -> 2}]; SimpleGraphQ[g]
False

59.8. Parametric Graphs

59.8.1. BalancedTree

WMA

BalancedTree[r, h]
Returns the perfectly balanced r-ary tree of height h.

In this tree produced, all non-leaf nodes will have r children and the height of the path from
root r to any leaf will be h.

791

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)#Graph
https://reference.wolfram.com/language/ref/SimpleGraphQ.html
https://reference.wolfram.com/language/ref/BalancedTree.html

>> BalancedTree[2, 3]

59.8.2. BarbellGraph

Barbell graph (NetworkX, Wolfram MathWorld)

BarbellGraph[m1, m2]
Barbell Graph: two complete graphs connected by a path.

>> BarbellGraph[4, 1]

59.8.3. BinomialTree

Binomial tree (NetworkX, WMA)

792

https://en.wikipedia.org/wiki/Barbell_graph
https://networkx.org/documentation/networkx-2.8.8/reference/generated/networkx.generators.classic.barbell_graph.html
https://mathworld.wolfram.com/BarbellGraph.html
https://en.wikipedia.org/wiki/Binomial_heap
https://networkx.org/documentation/networkx-2.8.8/reference/generated/networkx.generators.classic.binomial_tree.html
https://reference.wolfram.com/language/ref/BinomialTree.html

BinomialTree[n]
Returns the Binomial Tree of order n.

The binomial tree of order n with root R is defined as:
If k=0, B[k] = B[0] = {R}. i.e., the binomial tree of order zero consists of a single node, R.
If k>0, B[k] = {R, B[0], B[1] ... B[k]}, i.e., the binomial tree of order k>0 comprises the
root R, and k binomial subtrees, B[0] to B[k].
Binomial trees are the underlying data structure in Binomial heaps.

>> BinomialTree[3]

59.8.4. CompleteGraph

Complete Multipartite Graph (NetworkX, WMA)

CompleteGraph[n]
Returns the complete graph with n vertices, Kn.

>> CompleteGraph[8]

793

https://en.wikipedia.org/wiki/Binomial_heap#Binomial_tree
https://en.wikipedia.org/wiki/Multipartite_graph
https://networkx.org/documentation/networkx-2.8.8/reference/generated/networkx.generators.classic.complete_multipartite_graph.html
https://reference.wolfram.com/language/ref/CompleteGraph.html

59.8.5. CompleteKaryTree

M-ary Tree (NetworkX, WMA)

CompleteKaryTree[n, k]
Creates a complete k-ary tree of n levels.

In the returned tree, with n nodes, the from root R to any leaf be k.

>> CompleteKaryTree[2, 3]

>> CompleteKaryTree[3]

59.8.6. CycleGraph

Cycle Graph (WMA)

CycleGraph[n]
Returns the cycle graph with n vertices Cn.

794

https://en.wikipedia.org/wiki/M-ary_tree
https://networkx.org/documentation/networkx-2.8.8/reference/generated/networkx.generators.classic.full_rary_tree.html
https://reference.wolfram.com/language/ref/CompleteKaryTree.html
https://en.wikipedia.org/wiki/Cycle_graph
https://reference.wolfram.com/language/ref/CycleGraph.html

>> CycleGraph[5, PlotLabel -> "C_i"]

59.8.7. GraphAtlas

NetworkX

GraphAtlas[n]
Returns graph number i from the NetworkX’s Graph Atlas. There are about 1200 of them
and get large as i increases.

>> GraphAtlas[1000]

59.8.8. HknHararyGraph

NetworkX, WMA

795

https://networkx.org/documentation/networkx-2.8.8/reference/generated/networkx.generators.atlas.graph_atlas.html
https://networkx.org/documentation/networkx-2.8.8/reference/generated/networkx.generators.harary_graph.hkn_harary_graph.html#hkn-harary-graph
https://reference.wolfram.com/language/ref/HknHararyGraph.html

HknHararyGraph[k, n]
Returns the Harary graph with given node connectivity and node number.

This second generator gives the Harary graph that minimizes the number of edges in the
graph with given node connectivity and number of nodes.
Harary, F. The Maximum Connectivity of a Graph. Proc. Nat. Acad. Sci. USA 48, 1142-1146,
1962.

>> HknHararyGraph[3, 10]

59.8.9. HmnHararyGraph

NetworkX, WMA

HmnHararyGraph[m, n]
Returns the Harary graph with given numbers of nodes and edges.

This generator gives the Harary graph that maximizes the node connectivity with given num-
ber of nodes and given number of edges.
Harary, F. The Maximum Connectivity of a Graph. Proc. Nat. Acad. Sci. USA 48, 1142-1146,
1962.

796

https://networkx.org/documentation/networkx-2.8.8/reference/generated/networkx.generators.harary_graph.hnm_harary_graph.html
https://reference.wolfram.com/language/ref/HmnHararyGraph.html

>> HmnHararyGraph[5, 10]

59.8.10. KaryTree

M-ary Tree

KaryTree[r, n]
Creates binary tree of n vertices.

KaryTree[n, k]
Creates k-ary tree with n vertices.

>> KaryTree[10]

797

https://en.wikipedia.org/wiki/M-ary_tree

>> KaryTree[3, 10]

59.8.11. LadderGraph

Ladder graph (NetworkX)

LadderGraph[n]
Returns the Ladder graph of length n.

>> LadderGraph[8]

59.8.12. PathGraph

Path graph (WMA)

PathGraph[{v1, v2, ...}]
Returns a Graph with a path with vertices vi and edges between v− i and vi + 1 .

798

https://en.wikipedia.org/wiki/Ladder_graph
https://networkx.org/documentation/networkx-2.8.8/reference/generated/networkx.generators.classic.ladder_graph.html
https://en.wikipedia.org/wiki/Path_graph
https://reference.wolfram.com/language/ref/PathGraph.html

>> PathGraph[{1, 2, 3}]

59.8.13. RandomTree

NetworkX, WMA

RandomTree[n]
Returns a uniformly random tree on n nodes.

>> RandomTree[3]

59.8.14. StarGraph

Star graph(NetworkX, WMA)

StarGraph[n]
Returns a star graph with n vertices.

799

https://networkx.org/documentation/networkx-2.8.8/reference/generated/networkx.generators.trees.random_labeled_tree.html
https://reference.wolfram.com/language/ref/RandomTree.html
https://en.wikipedia.org/wiki/Star_graph
https://networkx.org/documentation/networkx-2.8.8/reference/generated/networkx.generators.classic.star_graph.html
https://reference.wolfram.com/language/ref/StarGraph.html

>> StarGraph[8]

59.9. Random Graphs

59.9.1. RandomGraph

WMA link

RandomGraph[{n, m}]
Returns a pseudorandom graph with n vertices and m edges.

RandomGraph[{n, m}, k]
Returns list of k RandomGraph[{n, m}].

59.10. Trees

59.10.1. TreeGraph

Tree Graph (WMA)

TreeGraph[edges]
Build a Tree-like graph from the list of edges edges.

TreeGraph[vert, edges]
build a Tree-like graph from the list of vertices vert and edges edges.

800

https://reference.wolfram.com/language/ref/RandomGraph.html
https://en.wikipedia.org/wiki/Tree_(graph_theory)
https://reference.wolfram.com/language/ref/TreeGraph.html

>> TreeGraph[{1->2, 2->3, 2->4}]

If the edges does not match with a tree-like pattern, the evaluation fails:

>> TreeGraph[{1->2, 2->3, 3->1}]
Graph is not a tree.

TreeGraph
[
{1− > 2, 2− > 3, 3− > 1}

]

59.10.2. TreeGraphQ

Tree Graph (WMA)

TreeGraphQ[g]
returns True if the graph g is a tree and False otherwise.

>> TreeGraphQ[StarGraph[3]]
True

>> TreeGraphQ[CompleteGraph[2]]
True

>> TreeGraphQ[CompleteGraph[3]]
False

801

https://en.wikipedia.org/wiki/Tree_(graph_theory)
https://reference.wolfram.com/language/ref/TreeGraphQ.html

60. ICU — International Components for
Unicode

Functions which provide information from the Python ICU library icu library.

Examples:

Load in Mathics3 Module:

>> LoadModule["pymathics.icu"]
pymathics.icu

Show the language in effect:

>> $Language
English

Get the alphabet for that language:

>> Alphabet[]
{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z}

Get the alphabet for that locale “es” (Spanish):

>> Alphabet["es"]
{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, á, é, í, ñ, ó, ú, ü}

You can also specify an alphabet using a name:

>> Alphabet["Ukrainian"]
{�, �}

Contents

60.1. Languages - Human-Language
Alphabets and Locales via PyICU. . . 803

60.1.1. Alphabet 803

60.1.2. AlphabeticOrder 803
60.1.3. $Language 804

802

https://pypi.org/project/pyicu/

60.1. Languages - Human-Language Alphabets and Locales via
PyICU.

60.1.1. Alphabet

Basic lowercase alphabet via Unicode and PyICU

Alphabet[]
gives the list of lowercase letters a-z in the English alphabet.

Alphabet[$type$]
gives the alphabet for the language or class type.

>> Alphabet["Ukrainian"]
{�, �}

The alphabet when nothing is specified, “English” is used:

>> Alphabet[]
{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z}

Instead of a language name, you can give a local value:

>> Alphabet["es"]
{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, á, é, í, ñ, ó, ú, ü}

Many locales are the same basic set of letters.

>> Alphabet["en_NZ"] == Alphabet["en"]
True

60.1.2. AlphabeticOrder

WMA

AlphabetOrder[string1, string2]
gives 1 if string1 appears before string2 in alphabetical order, -1 if it is after, and 0 if it is
identical.

>> AlphabeticOrder["apple", "banana"]
1

>> AlphabeticOrder["parrot", "parrot"]
0

When words are the same but only differ in case, usually lowercase letters come first:

803

https://home.unicode.org/
https://pypi.org/project/PyICU/
https://reference.wolfram.com/language/ref/AlphabeticOrder.html

>> AlphabeticOrder["A", "a"]
−1

Longer words follow their prefixes:

>> AlphabeticOrder["Papagayo", "Papa", "Spanish"]
−1

But accented letters usually appear at the end of the alphabet:

>> AlphabeticOrder["Papá", "Papa", "Spanish"]
−1

>> AlphabeticOrder["Papá", "Papagayo", "Spanish"]
1

60.1.3. $Language

WMA link

$Language
is a settable global variable for the default language used in Mathics3.

See the language in effect used for functions like Alphabet[]:

By setting its value, The letters of Alphabet[] are changed:

>> $Language = "German"; Alphabet[]
{a, ä, b, c, d, e, f, g, h, i, j, k, l, m, n, o, ö, p, q, r, s, ß, t, u, ü, v, w, x, y, z}

See also Alphabet 60.1.1.

804

https://reference.wolfram.com/language/ref/$Language.html

61. Natural Language Processing

Mathics3 Module module provides functions and variables to work with expressions in natural lan-
guage, using the Python libraries:

• spacy for parsing natural languages</url>

• nltk for functions using WordNet-related builtins

• pyenchant and pycountry for language identification

Examples:

>> LoadModule["pymathics.natlang"]
pymathics.natlang

>> Pluralize["try"]
tries

>> LanguageIdentify["eins zwei drei"]
German

>> WordFrequency["Apple Tree and apple", "apple", IgnoreCase -> True]
0.5

>> TextCases["I was in London last year.", "Pronoun"]
{I}

>> DeleteStopwords["There was an Old Man of Apulia, whose conduct was
very peculiar"]

Old Man Apulia, conduct peculiar

Contents

61.1. Linguistic Data 806
61.1.1. DictionaryLookup 806
61.1.2. DictionaryWordQ 806
61.1.3. RandomWord 806
61.1.4. WordData 807
61.1.5. WordDefinition 808
61.1.6. WordList 808

61.2. Text Analysis 808
61.2.1. Containing 808
61.2.2. SpellingCorrectionList 809
61.2.3. WordCount 809
61.2.4. WordFrequency 809

61.2.5. WordSimilarity 810
61.2.6. WordStem 810

61.3. Text Normalization 811
61.3.1. DeleteStopwords 811
61.3.2. TextCases 811
61.3.3. TextPosition 811
61.3.4. TextSentences 812
61.3.5. TextStructure 812
61.3.6. TextWords 812

61.4. Word manipulation 813
61.4.1. Pluralize 813

805

https://spacy.io/
https://www.nltk.org/
https://pyenchant.github.io/pyenchant/
https://pypi.org/project/pycountry/

61.1. Linguistic Data

See the corresponding WMA guide.

61.1.1. DictionaryLookup

WMA link

DictionaryLookup[word]
lookup words that match the given word or pattern.

DictionaryLookup[word, n]
lookup first n words that match the given word or pattern.

>> DictionaryLookup["baker" ~~___]
{baker, baker’s dozen, baker’s eczema, baker’s yeast, bakersfield, bakery}

>> DictionaryLookup["baker" ~~___, 3]
{baker, baker’s dozen, baker’s eczema}

61.1.2. DictionaryWordQ

WMA link

DictionaryWordQ[word]
returns True if word is a word usually found in dictionaries, and False otherwise.

>> DictionaryWordQ["couch"]
True

>> DictionaryWordQ["meep-meep"]
False

61.1.3. RandomWord

WMA link

806

https://reference.wolfram.com/language/guide/LinguisticData.html
https://reference.wolfram.com/language/ref/DictionaryLookup.html
https://reference.wolfram.com/language/ref/DictionaryWordQ.html
https://reference.wolfram.com/language/ref/RandomWord.html

RandomWord[]
returns a random word.

RandomWord[type]
returns a random word of the given type, e.g. of type “Noun” or “Adverb”.

RandomWord[type, n]
returns n random words of the given type.

>> RandomWord["Noun"]
eastern desert

>> RandomWord["Noun", 3]
{ground-controlled approach, garbage heap, valence}

61.1.4. WordData

WMA link

WordData[word]
returns a list of possible senses of a word.

WordData[word, property]
returns detailed information about a word regarding property, e.g. “Definitions” or “Ex-
amples”.

The following are valid properties:

• Definitions, Examples

• InflectedForms

• Synonyms, Antonyms

• BroaderTerms, NarrowerTerms

• WholeTerms, PartTerms, MaterialTerms

• EntailedTerms, CausesTerms

• UsageField

• WordNetID

• Lookup

>> WordData["riverside", "Definitions"]
{{riverside, Noun, Bank}− > the bank of a river}

>> WordData[{"fish", "Verb", "Angle"}, "Examples"]
{{fish, Verb, Angle}− > {fish for compliments}}

807

https://reference.wolfram.com/language/ref/WordData.html

61.1.5. WordDefinition

WMA link

WordDefinition[word]
returns a definition of word or Missing[“Available”] if word is not known.

>> WordDefinition["gram"]
{a metric unit of weight equal to one thousandth of a kilogram}

61.1.6. WordList

WMA link

WordList[]
returns a list of common words.

WordList[type]
returns a list of common words of type type.

Evaluate the average length over all the words in the dictionary:

>> N[Mean[StringLength /@ WordList[]], 3]
11.6

Now, restricted to adjectives:

>> N[Mean[StringLength /@ WordList["Adjective"]], 2]
9.3

61.2. Text Analysis

See the corresponding WMA guide.

61.2.1. Containing

WMA link

Containing[outer, inner]
represents an object of the type outer containing objects of type inner.

Containing can be used as the second parameter in TextCases and TextPosition.

808

https://reference.wolfram.com/language/ref/WordDefinition.html
https://reference.wolfram.com/language/ref/WordList.html
https://reference.wolfram.com/language/guide/TextAnalysis.html
https://reference.wolfram.com/language/ref/Containing.html

Supported outer strings are in {“Word”, “Sentence”, “Paragraph”, “Line”, “URL”, “EmailAddress”}.

Supported inner strings are in {“Person”, “Company”, “Quantity”, “Number”, “CurrencyAmount”,
“Country”, “City”}.

The implementation of this symbol is based on ‘spacy‘.

>> TextCases["This is a pencil. This is another pencil from England.",
Containing["Sentence", "Country"]]

{This is another pencil from England.}

>> TextPosition["This is a pencil. This is another pencil from England
.", Containing["Sentence", "Country"]]

{{19, 54}}

61.2.2. SpellingCorrectionList

WMA link

SpellingCorrectionList[word]
returns a list of suggestions for spelling corrected versions of word.

Results may differ depending on which dictionaries can be found by enchant.

>> SpellingCorrectionList["hipopotamus"]
{hippopotamus, hippopotamus’s, hippopotamuses}

61.2.3. WordCount

WMA link

WordCount[string]
returns the number of words in string.

>> WordCount["A long time ago"]
4

61.2.4. WordFrequency

WMA link

WordFrequency[text, word]
returns the relative frequency of word in text.

809

https://reference.wolfram.com/language/ref/SpellingCorrectionList.html
https://reference.wolfram.com/language/ref/WordCount.html
https://reference.wolfram.com/language/ref/WordFrequency.html

word may also specify multiple words using a | b | ...

>> text = "I have a dairy cow, it's not just any cow. She gives me
milkshake, oh what a salty cow. She is the best cow in the county.";

>> WordFrequency[text, "a" | "the"]
0.121212

>> WordFrequency["Apple Tree", "apple", IgnoreCase -> True]
0.5

61.2.5. WordSimilarity

WMA link

WordSimilarity[text1, text2]
returns a real-valued measure of semantic similarity of two texts or words.

WordSimilarity[{text1, i1}, {text2, j1}]
returns a measure of similarity of two words within two texts.

WordSimilarity[{text1, {i1, i2, ...}}, {text2, {j1, j2, ...}}]
returns a measure of similarity of multiple words within two texts.

>> NumberForm[WordSimilarity["car", "train"], 3]
0.169

>> NumberForm[WordSimilarity["car", "hedgehog"], 3]
0.0173

>> NumberForm[WordSimilarity[{"An ocean full of water.", {2, 2}}, { "A
desert full of sand.", {2, 5}}], 3]

{0.127, 0.256}

61.2.6. WordStem

WMA link

WordStem[word]
returns a stemmed form of word, thereby reducing an inflected form to its root.

WordStem[{word1, word2, ...}]
returns a stemmed form for list of word, thereby reducing an inflected form to its root.

>> WordStem["towers"]
tower

>> WordStem[{"heroes", "roses", "knights", "queens"}]
{hero, rose, knight, queen}

810

https://reference.wolfram.com/language/ref/WordSimilarity.html
https://reference.wolfram.com/language/ref/WordStem.html

61.3. Text Normalization

See the corresponding WMA guide.

This module uses spacy as a backend.

61.3.1. DeleteStopwords

Delete stop words(WMA)

DeleteStopwords[list]
returns the words in list without stopwords.

DeleteStopwords[string]
returns string without stopwords.

>> DeleteStopwords[{"Somewhere", "over", "the", "rainbow"}]
{Somewhere, over, the, rainbow}

>> DeleteStopwords["There was an Old Man of Apulia, whose conduct was
very peculiar"]

Old Man Apulia, conduct peculiar

61.3.2. TextCases

WMA link

TextCases[text, f orm]
returns all elements of type f orm in text in order of their appearance.

>> TextCases["I was in London last year.", "Pronoun"]
{I}

>> TextCases["I was in London last year.", "City"]
{London}

>> TextCases["Saul, Peter and Mr Johnes say hello.", "Person",
3][[2;;3]]

{Peter, Johnes}

61.3.3. TextPosition

WMA link

811

https://reference.wolfram.com/language/guide/TextNormalization.html
https://en.wikipedia.org/wiki/Stop_word
https://reference.wolfram.com/language/ref/DeleteStopwords.html
https://reference.wolfram.com/language/ref/TextCases.html
https://reference.wolfram.com/language/ref/TextPosition.html

TextPosition[text, f orm]
returns the positions of elements of type f orm in text in order of their appearance.

>> TextPosition["Liverpool and London are two English cities.", "City"]
{{1, 9} , {15, 20}}

61.3.4. TextSentences

Sentences in a text (WMA)

TextSentences[string]
returns the sentences in string.

TextSentences[string, n]
returns the first n sentences in string

>> TextSentences["Night and day. Day and night."]
{Night and day., Day and night.}

>> TextSentences["Night and day. Day and night.", 1]
{Night and day.}

>> TextSentences["Mr. Jones met Mrs. Jones."]
{Mr. Jones met Mrs. Jones.}

61.3.5. TextStructure

WMA link

TextStructure[text, f orm]
returns the grammatical structure of text as f orm.

>> TextStructure["The cat sat on the mat.", "ConstituentString"]
{(Sentence, ((Verb Phrase, (Noun Phrase, (Determiner, The),
(Noun, cat)), (Verb, sat), (Prepositional Phrase, (Preposition, on),
(Noun Phrase, (Determiner, the), (Noun, mat))), (Punctuation, .))))}

61.3.6. TextWords

WMA link

812

https://en.wikipedia.org/wiki/Sentence_(linguistics)
https://reference.wolfram.com/language/ref/TextSentences.html
https://reference.wolfram.com/language/ref/TextStructure.html
https://reference.wolfram.com/language/ref/TextWords.html

TextWords[string]
returns the words in string.

TextWords[string, n]
returns the first n words in string

>> TextWords["Hickory, dickory, dock! The mouse ran up the clock."]
{Hickory, dickory, dock, The, mouse, ran, up, the, clock}

>> TextWords["Bruder Jakob, Schläfst du noch?", 2]
{Bruder, Jakob}

61.4. Word manipulation

This module uses pattern.en to change the form of a word.

61.4.1. Pluralize

WMA link

Pluralize[word]
returns the plural form of word.

>> Pluralize["potato"]
potatoes

813

https://reference.wolfram.com/language/ref/Pluralize.html

Part IV.

License

814

A. GNU General Public License

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

A.1. Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to
share and change the works. By contrast, the GNUGeneral Public License is intended to guarantee your
freedom to share and change all versions of a program—to make sure it remains free software for all its
users. We, the Free Software Foundation, use the GNU General Public License for most of our software;
it applies also to any other work released this way by its authors. You can apply it to your programs,
too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge
for them if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to sur-
render the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or
if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to
the recipients the same freedoms that you received. You must make sure that they, too, receive or can
get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the soft-
ware, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers and authors protection, the GPL clearly explains that there is no warranty for this
free software. For both users and authors sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software in-
side them, although the manufacturer can do so. This is fundamentally incompatible with the aim of
protecting users’ freedom to change the software. The systematic pattern of such abuse occurs in the
area of products for individuals to use, which is precisely where it is most unacceptable. Therefore,
we have designed this version of the GPL to prohibit the practice for those products. If such problems
arise substantially in other domains, we stand ready to extend this provision to those domains in future
versions of the GPL, as needed to protect the freedom of users.

815

http://fsf.org/

Finally, every program is threatened constantly by software patents. States should not allow patents to
restrict development and use of software on general-purpose computers, but in those that do, we wish
to avoid the special danger that patents applied to a free program could make it effectively proprietary.
To prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

A.2. TERMS AND CONDITIONS

A.2.1. 0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed
as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a “modified version”
of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer
or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a con-
venient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (except to the extent that warranties are provided), that
licensees may convey the work under this License, and how to view a copy of this License. If the inter-
face presents a list of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

A.2.2. 1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it.
“Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that
(a) is included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of theworkwith thatMajor Component, or to implement a

816

Standard Interface for which an implementation is available to the public in source code form. A “Major
Component”, in this context, means a major essential component (kernel, window system, and so on) of
the specific operating system (if any) on which the executable work runs, or a compiler used to produce
the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to gener-
ate, install, and (for an executable work) run the object code and to modify the work, including scripts
to control those activities. However, it does not include the work’s System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source includes interface definition files
associatedwith source files for thework, and the source code for shared libraries and dynamically linked
subprograms that the work is specifically designed to require, such as by intimate data communication
or control flow between those subprograms and other parts of the work.

TheCorresponding Source need not include anything that users can regenerate automatically fromother
parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

A.2.3. 2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which
you do not control copyright. Those thus making or running the covered works for you must do so
exclusively on your behalf, under your direction and control, on terms that prohibit them from making
any copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Subli-
censing is not allowed; section 10 makes it unnecessary.

A.2.4. 3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit operation or modification of the
work as a means of enforcing, against the works users, your or third parties legal rights to forbid
circumvention of technological measures.

817

A.2.5. 4. Conveying Verbatim Copies.

Youmay convey verbatim copies of the Program’s source code as you receive it, in anymedium, provided
that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep
intact all notices stating that this License and any non-permissive terms added in accord with section 7
apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of
this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or
warranty protection for a fee.

A.2.6. 5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in
the form of source code under the terms of section 4, provided that you also meet all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

• b) The work must carry prominent notices stating that it is released under this License and any
conditions added under section 7. This requirementmodifies the requirement in section 4 to “keep
intact all notices”.

• c) You must license the entire work, as a whole, under this License to anyone who comes into pos-
session of a copy. This License will therefore apply, along with any applicable section 7 additional
terms, to the whole of the work, and all its parts, regardless of how they are packaged. This Li-
cense gives no permission to license the work in any other way, but it does not invalidate such
permission if you have separately received it.

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; how-
ever, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their
nature extensions of the covered work, and which are not combined with it such as to form a larger
program, in or on a volume of a storage or distribution medium, is called an “aggregate” if the compila-
tion and its resulting copyright are not used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

A.2.7. 6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that
you also convey the machine-readable Corresponding Source under the terms of this License, in one of
these ways:

• a) Convey the object code in, or embodied in, a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

• b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the

818

object code either (1) a copy of the Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a network server at no charge.

• c) Convey individual copies of the object code with a copy of the written offer to provide the Cor-
responding Source. This alternative is allowed only occasionally and noncommercially, and only
if you received the object code with such an offer, in accord with subsection 6b.

• d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at
no further charge. You need not require recipients to copy the Corresponding Source along with
the object code. If the place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy these requirements.

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers where
the object code and Corresponding Source of the work are being offered to the general public at
no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source
as a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, whichmeans any tangible personal propertywhich
is normally used for personal, family, or household purposes, or (2) anything designed or sold for incor-
poration into a dwelling. In determining whether a product is a consumer product, doubtful cases shall
be resolved in favor of coverage. For a particular product received by a particular user, “normally used”
refers to a typical or common use of that class of product, regardless of the status of the particular user
or of the way in which the particular user actually uses, or expects or is expected to use, the product. A
product is a consumer product regardless of whether the product has substantial commercial, industrial
or non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or
other information required to install and execute modified versions of a covered work in that User Prod-
uct from a modified version of its Corresponding Source. The information must suffice to ensure that
the continued functioning of the modified object code is in no case prevented or interfered with solely
because modification has been made.

If you convey an object codework under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains
the ability to install modified object code on the User Product (for example, the work has been installed
in ROM).

The requirement to provide Installation Information does not include a requirement to continue to pro-
vide support service, warranty, or updates for awork that has beenmodified or installed by the recipient,
or for the User Product in which it has been modified or installed. Access to a network may be denied
when the modification itself materially and adversely affects the operation of the network or violates
the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accordwith this sectionmust
be in a format that is publicly documented (andwith an implementation available to the public in source

819

code form), and must require no special password or key for unpacking, reading or copying.

A.2.8. 7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions
from one or more of its conditions. Additional permissions that are applicable to the entire Program
shall be treated as though they were included in this License, to the extent that they are valid under
applicable law. If additional permissions apply only to part of the Program, that part may be used
separately under those permissions, but the entire Program remains governed by this License without
regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own
removal in certain cases when youmodify thework.) Youmay place additional permissions onmaterial,
added by you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a coveredwork, youmay (if
authorized by the copyright holders of that material) supplement the terms of this License with terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

• b) Requiring preservation of specified reasonable legal notices or author attributions in that mate-
rial or in the Appropriate Legal Notices displayed by works containing it; or

• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions
of such material be marked in reasonable ways as different from the original version; or

• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

• e) Declining to grant rights under trademark law for use of some trade names, trademarks, or
service marks; or

• f) Requiring indemnification of licensors and authors of that material by anyone who conveys the
material (or modified versions of it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on those licensors and authors. All
other non-permissive additional terms are considered “further restrictions” within the meaning
of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further restriction, you may remove that term.
If a license document contains a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms of that license document,
provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source
files, a statement of the additional terms that apply to those files, or a notice indicating where to find the
applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written li-
cense, or stated as exceptions; the above requirements apply either way.

820

A.2.9. 8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of partieswho have received
copies or rights from you under this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same material under section 10.

A.2.10. 9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants
you permission to propagate or modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.

A.2.11. 10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all as-
sets of one, or subdividing an organization, or merging organizations. If propagation of a covered work
results from an entity transaction, each party to that transaction who receives a copy of the work also
receives whatever licenses to the work the party’s predecessor in interest had or could give under the
previous paragraph, plus a right to possession of the Corresponding Source of the work from the pre-
decessor in interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim
in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or
importing the Program or any portion of it.

821

A.2.12. 11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work
onwhich the Program is based. The work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, “control” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To “grant” such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause the
Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent
license for this particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying” means you have
actual knowledge that, but for the patent license, your conveying the covered work in a country, or your
recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving
the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered
work, then the patent license you grant is automatically extended to all recipients of the covered work
and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one ormore of the rights that are specifically granted
under this License. Youmay not convey a coveredwork if you are a party to an arrangement with a third
party that is in the business of distributing software, under which you make payment to the third party
based on the extent of your activity of conveying the work, and under which the third party grants, to
any of the parties who would receive the covered work from you, a discriminatory patent license (a) in
connection with copies of the covered work conveyed by you (or copies made from those copies), or (b)
primarily for and in connection with specific products or compilations that contain the covered work,
unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses
to infringement that may otherwise be available to you under applicable patent law.

A.2.13. 12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot

822

convey a covered work so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to
terms that obligate you to collect a royalty for further conveying from those to whom you convey the
Program, the only way you could satisfy both those terms and this License would be to refrain entirely
from conveying the Program.

A.2.14. 13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any cov-
ered work with a work licensed under version 3 of the GNU Affero General Public License into a single
combinedwork, and to convey the resultingwork. The terms of this License will continue to apply to the
part which is the covered work, but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the combination as such.

A.2.15. 14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License “or any later version” applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published by
the Free Software Foundation. If the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decidewhich future versions of theGNUGeneral Public License
can be used, that proxy’s public statement of acceptance of a version permanently authorizes you to
choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obli-
gations are imposed on any author or copyright holder as a result of your choosing to follow a later
version.

A.2.16. 15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW.

EXCEPTWHENOTHERWISE STATED INWRITING THE COPYRIGHTHOLDERS AND/OROTHER
PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSEDOR IMPLIED, INCLUDING, BUTNOTLIMITEDTO, THE IMPLIEDWARRANTIESOFMER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.

SHOULD THE PROGRAMPROVEDEFECTIVE, YOUASSUME THECOSTOFALLNECESSARY SER-
VICING, REPAIR OR CORRECTION.

823

A.2.17. 16. Limitation of Liability.

INNOEVENTUNLESS REQUIRED BYAPPLICABLE LAWORAGREEDTO INWRITINGWILLANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PRO-
GRAMAS PERMITTEDABOVE, BE LIABLE TO YOU FORDAMAGES, INCLUDINGANYGENERAL,
SPECIAL, INCIDENTALOR CONSEQUENTIAL DAMAGES ARISINGOUTOF THEUSE OR INABIL-
ITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

A.2.18. 17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect
according to their terms, reviewing courts shall apply local law that most closely approximates an ab-
solute waiver of all civil liability in connection with the Program, unless a warranty or assumption of
liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

A.3. How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best
way to achieve this is to make it free software which everyone can redistribute and change under these
terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively state the exclusion of warranty; and each file should have at least the “copyright”
line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation , either version 3 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program. If not, see \href{http://www.gnu.org/licenses/}{
Licenses}.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an

824

interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

The hypothetical commands ‘show w and `show c should show the appropriate parts of the General
Public License. Of course, your program’s commands might be different; for a GUI interface, you would
use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright
disclaimer” for the program, if necessary. For more information on this, and how to apply and follow
the GNU GPL, see Licences.

The GNU General Public License does not permit incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you may consider it more useful to permit linking pro-
prietary applications with the library. If this is what you want to do, use the GNU Lesser General Public
License instead of this License. But first, please read Why you shouldn’t use the Lesser GPL for your
next library.

825

http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html
http://www.gnu.org/philosophy/why-not-lgpl.html

B. Included software and data

B.1. Included data

Mathics3 includes data from Wikipedia that is published under the Creative Commons Attribution-
Sharealike 3.0Unported License and theGNUFreeDocumentation License contributed by the respective
authors that are listed on the websites specified in ”data/elements.txt”.

B.2. MathJax

Copyright © 2009-2010 Design Science, Inc.

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

B.3. mpmath

Copyright (c) 2005-2018 Fredrik Johansson and mpmath contributors

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted pro-
vided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution. Neither the name of the copyright holder nor the names of its con-
tributors may be used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (IN-

826

http://www.apache.org/licenses/LICENSE-2.0

CLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

B.4. Prototype

Copyright © 2005-2010 Sam Stephenson

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, includingwithout
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FORA PARTICULAR PURPOSEANDNONINFRINGEMENT. INNOEVENT SHALL THEAUTHORS
ORCOPYRIGHTHOLDERSBELIABLEFORANYCLAIM,DAMAGESOROTHERLIABILITY,WHETHER
INANACTIONOF CONTRACT, TORTOROTHERWISE, ARISING FROM, OUTOFOR IN CONNEC-
TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

B.5. pymimemagic

Copyright (c) 2009, Xiaohai Lu All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted pro-
vided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

Redistributions in binary formmust reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of the <ORGANIZATION> nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FORANYDIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIALDAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

827

B.6. SciPy

Copyright © 2001, 2002 Enthought, Inc. All rights reserved.

Copyright © 2003-2019 SciPy Developers. All rights reserved. Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the following conditions are
met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

Redistributions in binary formmust reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of Enthought nor the names of the SciPy Developers may be used to endorse or pro-
mote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (IN-
CLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

B.7. Three.js

Copyright © 2010-2020 Three.js authors.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, includingwithout
limitation the rights copies of the Software, and to permit persons to whom the Software is furnished to
do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial por-
tions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FORA PARTICULAR PURPOSEANDNONINFRINGEMENT. INNOEVENT SHALL THEAUTHORS
ORCOPYRIGHTHOLDERSBELIABLEFORANYCLAIM,DAMAGESOROTHERLIABILITY,WHETHER
INANACTIONOF CONTRACT, TORTOROTHERWISE, ARISING FROM, OUTOFOR IN CONNEC-
TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

828

Appendices

829

Index

$Aborted, 525
$Assumptions, 510
$BaseDirectory, 159
$BoxForms, 508
$ByteOrdering, 97
$CharacterEncoding, 79
$CharacterEncodings, 80
$CommandLine, 238
$Context, 644
$ContextPath, 644
$DateStringFormat, 129
$Echo, 329
$ExportFormats, 355
$Failed, 525
$HistoryLength, 747
$HomeDirectory, 160
$ImportFormats, 357
$InitialDirectory, 159
$Input, 334
$InputFileName, 333
$InstallationDirectory, 159
$IterationLimit, 192
$Language, 804
$Line, 748
$Machine, 238
$MachineEpsilon, 74
$MachineName, 239
$MachinePrecision, 75
$MaxLengthIntStringConversion, 239
$MaxMachineNumber, 432
$MaxPrecision, 75
$MinMachineNumber, 433
$MinPrecision, 76
$ModuleNumber, 644
$OperatingSystem, 351
$OutputForms, 219
$Packages, 240
$ParentProcessID, 240
$Path, 161
$PathnameSeparator, 351
$Post, 748
$Pre, 749
$PrePrint, 749
$PreRead, 749
$PrintForms, 219

$ProcessID, 241
$ProcessorType, 241
$PythonImplementation, 241
$RandomState, 451
$RecursionLimit, 192
$RootDirectory, 160
$ScriptCommandLine, 242
$SessionID, 242
$SyntaxHandler, 750
$SystemCharacterEncoding, 83
$SystemID, 242
$SystemMemory, 242
$SystemTimeZone, 129
$SystemWordLength, 243
$TemporaryDirectory, 160
$TimeZone, 130
$TraceBuiltins, 751
$TraceEvaluation, 752
$TrackLocations, 753
$UserBaseDirectory, 161
$UserName, 243
$Version, 243
$VersionNumber, 244

Abort, 619
Abs, 530
AbsoluteFileName, 345
AbsoluteThickness, 170
AbsoluteTime, 130
AbsoluteTiming, 130
Accumulate, 52
Accuracy, 72
AcyclicGraphQ, 787
AddTo, 63
AdjacencyList, 771
AiryAi, 652
AiryAiPrime, 653
AiryAiZero, 653
AiryBi, 654
AiryBiPrime, 654
AiryBiZero, 655
All, 610
AllTrue, 732
Alphabet, 79, 803
AlphabeticOrder, 803
Alternatives, 631

830

And, 732
AngerJ, 655
AnglePath, 452
AngleVector, 539
AnyTrue, 732
Apart, 377
Append, 478
AppendTo, 479
Apply, 221
ArcCos, 453
ArcCosh, 410
ArcCot, 454
ArcCoth, 410
ArcCsc, 454
ArcCsch, 410
ArcSec, 454
ArcSech, 411
ArcSin, 455
ArcSinh, 411
ArcTan, 455
ArcTanh, 411
Arg, 510
Array, 473
ArrayDepth, 707
ArrayQ, 727
Arrow, 171
Arrowheads, 172
Association, 470
AssociationQ, 470
Assuming, 511
AtomQ, 70
Attributes, 137
Automatic, 250
Axes, 250
Axis, 251

Background, 251
Backslash, 549
BalancedTree, 791
BarbellGraph, 792
BarChart, 259
BaseForm, 212
Because, 549
Begin, 645
BeginPackage, 645
BellB, 361
BernoulliB, 372
BernsteinBasis, 281
BesselI, 656
BesselJ, 656
BesselJZero, 657
BesselK, 658
BesselY, 658
BesselYZero, 659
Beta, 673

Between, 716
BetweennessCentrality, 766
BezierCurve, 281
BezierFunction, 283
Binarize, 306
BinaryImageQ, 320
BinaryRead, 93
BinaryReadList, 94
BinaryWrite, 94
Binomial, 362
BinomialTree, 792
BitLength, 416
Black, 112
Blank, 629
BlankNullSequence, 630
BlankSequence, 630
Blend, 107
Block, 645
Blue, 112
Blur, 297
Boole, 512
BooleanQ, 716
Bottom, 252
BoxMatrix, 522
BrayCurtisDistance, 164
Break, 619
Breakpoint, 244
Brown, 113
Byte, 96
ByteArray, 97
ByteCount, 197
ByteOrdering, 97

C, 406
CanberraDistance, 165
Cancel, 377
Cap, 550
CapitalDifferentialD, 608
Cases, 479
Catalan, 428
CatalanNumber, 362
Catch, 620
Catenate, 497
Ceiling, 416
Center, 462
CenterDot, 550
CentralMoment, 150
Character, 331
CharacterRange, 692
Characters, 692
ChartLabels, 253
ChartLegends, 253
ChebyshevT, 684
ChebyshevU, 684
Check, 525

831

CheckAbort, 620
ChessboardDistance, 165
Chop, 531
Circle, 174
CircleDot, 550
CircleMinus, 550
CirclePlus, 551
CircleTimes, 551
Clear, 54
ClearAll, 55
ClearAttributes, 138
ClearTrace, 753
ClebschGordan, 234
Close, 331
ClosenessCentrality, 767
Closing, 323
ClusteringComponents, 162
CMYKColor, 101
Coefficient, 378
CoefficientArrays, 379
CoefficientList, 379
Collect, 380
Colon, 551
ColorConvert, 107
ColorData, 261
ColorDataFunction, 262
ColorDistance, 102
Colorize, 309
ColorNegate, 108
ColorQuantize, 308
ColorSeparate, 309
Compile, 99
CompiledFunction, 100
Complement, 498
CompleteGraph, 793
CompleteKaryTree, 794
Complex, 512
Complexes, 390
ComplexExpand, 412
ComplexInfinity, 429
CompositeQ, 368
Composition, 229
CompoundExpression, 621
Compress, 128
Condition, 642
ConditionalExpression, 512
Cone, 283
Congruent, 552
Conjugate, 513
ConjugateTranspose, 707
ConnectedComponents, 781
ConnectedGraphQ, 788
Constant, 139
ConstantArray, 473
Containing, 808

ContainsOnly, 497
Context, 85
Contexts, 646
Continue, 621
ContinuedFraction, 435
CoprimeQ, 736
Coproduct, 552
CopyDirectory, 346
CopyFile, 346
Correlation, 149
Cos, 455
Cosh, 413
CosineDistance, 165
Cot, 456
Coth, 413
Count, 480
Covariance, 149
CreateDirectory, 158
CreateFile, 346
CreateTemporary, 346
Cross, 540
Csc, 456
Cube, 291
CubeRoot, 46
Cuboid, 285
Cup, 552
CupCap, 553
Curl, 541
Cyan, 114
CycleGraph, 794
Cylinder, 286

D, 390
DamerauLevenshteinDistance, 167
Darker, 108
DateDifference, 131
DateList, 131
DateObject, 132
DatePlus, 132
DateString, 133
Decrement, 63
Default, 611
DefaultValues, 67
Definition, 86
Degree, 429
DegreeCentrality, 768
Del, 608
Delete, 480
DeleteCases, 482
DeleteDirectory, 158
DeleteDuplicates, 498
DeleteFile, 347
DeleteStopwords, 811
Denominator, 381
DensityPlot, 262

832

Depth, 199
Derivative, 392
DesignMatrix, 421
Det, 421
Diagonal, 524
DiagonalMatrix, 522
Diamond, 553
DiamondMatrix, 523
DiceDissimilarity, 362
DictionaryLookup, 806
DictionaryWordQ, 806
DifferentialD, 608
DigitCharacter, 701
DigitCount, 416
DigitQ, 744
Dilation, 324
Dimensions, 708
DirectedEdge, 548, 772
DirectedGraphQ, 788
DirectedInfinity, 514
Directive, 175
Directory, 347
DirectoryName, 156
DirectoryQ, 156
DirectoryStack, 347
DiscreteLimit, 393
DiscretePlot, 264
DisjointQ, 728
Disk, 175
DiskMatrix, 523
Dispatch, 637
Divide, 46
DivideBy, 64
Divisible, 368
Divisors, 436
DivisorSigma, 435
DivisorSum, 436
Do, 621
Dodecahedron, 292
DominantColors, 109
Dot, 708
DotEqual, 553
DoubleDownArrow, 554
DoubleLeftArrow, 554
DoubleLeftRightArrow, 554
DoubleLeftTee, 554
DoubleLongLeftArrow, 555
DoubleLongLeftRightArrow, 555
DoubleLongRightArrow, 555
DoubleRightArrow, 556
DoubleRightTee, 556
DoubleUpArrow, 556
DoubleUpDownArrow, 557
DoubleVerticalBar, 557
DownArrow, 557

DownArrowBar, 558
DownArrowUpArrow, 558
DownLeftRightVector, 558
DownLeftTeeVector, 558
DownLeftVector, 559
DownLeftVectorBar, 559
DownRightTeeVector, 559
DownRightVector, 560
DownRightVectorBar, 560
DownTee, 560
DownTeeArrow, 561
DownValues, 88
Drop, 482
DSolve, 406

E, 430
EasterSunday, 134
EdgeConnectivity, 772
EdgeCount, 784
EdgeDelete, 773
EdgeDetect, 321
EdgeForm, 177
EdgeIndex, 773
EdgeList, 773
EdgeRules, 773
EditDistance, 168
Eigensystem, 421
Eigenvalues, 422
EigenvectorCentrality, 769
Eigenvectors, 422
Element, 514
ElementData, 617
EllipticE, 666
EllipticF, 666
EllipticK, 667
EllipticPi, 667
End, 647
EndOfFile, 332
EndOfLine, 701
EndOfString, 702
EndPackage, 647
Environment, 244
Equal, 717
EqualTilde, 561
Equilibrium, 561
Equivalent, 733
Erf, 668
Erfc, 668
Erosion, 325
EuclideanDistance, 166
EulerE, 363
EulerGamma, 430
EulerPhi, 437
Evaluate, 193
EvenQ, 737

833

ExactNumberQ, 737
Except, 631
Exit, 460
Exp, 407
Expand, 381
ExpandAll, 382
ExpandDenominator, 383
ExpandFileName, 347
ExpIntegralE, 671
ExpIntegralEi, 671
Exponent, 383
Export, 354
ExportString, 355
Expression, 332
Extract, 483

FaceForm, 178
Factor, 384
Factorial, 673
Factorial2, 674
FactorInteger, 438
FactorTermsList, 385
Failure, 526
False, 733
Fibonacci, 372
File, 348
FileBaseName, 348
FileByteCount, 348
FileDate, 209
FileExistsQ, 348
FileExtension, 349
FileFormat, 356
FileHash, 209
FileInformation, 349
FileNameDepth, 157
FileNameDrop, 208
FileNameJoin, 157
FileNames, 350
FileNameSplit, 157
FileNameTake, 349
FilePrint, 332
FileType, 210
FilledCurve, 178
Filling, 253
FilterRules, 612
Find, 332
FindClusters, 163
FindFile, 350
FindList, 211
FindMaximum, 394
FindMinimum, 394
FindRoot, 395
FindShortestPath, 774
FindSpanningTree, 786
FindVertexCut, 774

First, 484
FirstCase, 484
FirstPosition, 485
FittedModel, 423
FixedPoint, 230
FixedPointList, 230
Flat, 139
Flatten, 499
Floor, 417
Fold, 231
FoldList, 231
FontColor, 179
For, 622
Format, 462
FormatValues, 89
FractionalPart, 438
FreeQ, 200
FresnelC, 669
FresnelS, 669
FromCharacterCode, 690
FromContinuedFraction, 438
FromDigits, 418
Full, 254
FullForm, 213
FullSimplify, 385
Function, 226

Gamma, 674
Gather, 499
GatherBy, 500
GaussianFilter, 313
GCD, 369
GegenbauerC, 685
General, 526
Get, 333
GetEnvironment, 245
Glaisher, 430
GoldenRatio, 431
Graph, 775
GraphAtlas, 795
GraphData, 780
GraphDistance, 784
Graphics, 179
Graphics3D, 287
GraphQ, 788
Gray, 114
GrayLevel, 102
Greater, 719
GreaterEqual, 719
GreaterEqualLess, 562
GreaterFullEqual, 562
GreaterGreater, 562
GreaterLess, 562
GreaterSlantEqual, 563
GreaterTilde, 563

834

Green, 115
Grid, 463
Gudermannian, 413

HammingDistance, 169
HankelH1, 659
HankelH2, 660
HarmonicNumber, 373
Hash, 197
Haversine, 456
Head, 71
HermiteH, 685
HexadecimalCharacter, 80
HighlightGraph, 776
Histogram, 265
HITSCentrality, 770
HknHararyGraph, 795
HmnHararyGraph, 796
Hold, 194
HoldAll, 140
HoldAllComplete, 140
HoldComplete, 194
HoldFirst, 140
HoldForm, 194
HoldPattern, 632
HoldRest, 141
HTML‘DataImport, 203
HTML‘FullDataImport, 203
HTML‘HyperlinksImport, 204
HTML‘ImageLinksImport, 204
HTML‘Parser‘HTMLGet, 204
HTML‘Parser‘HTMLGetString, 204
HTML‘PlaintextImport, 204
HTML‘SourceImport, 205
HTML‘TitleImport, 205
HTML‘XMLObjectImport, 205
Hue, 103
HumpDownHump, 563
HumpEqual, 564
Hypergeometric1F1, 678
Hypergeometric2F1, 680
HypergeometricPFQ, 681
HypergeometricU, 682

I, 515
Icosahedron, 293
Identity, 229
IdentityMatrix, 523
If, 623
Im, 515
ImageAdd, 310
ImageAdjust, 299
ImageAspectRatio, 318
ImageChannels, 318
ImageColorSpace, 309

ImageConvolve, 314
ImageData, 319
ImageDimensions, 319
ImageMultiply, 311
ImagePartition, 299
ImageQ, 320
ImageReflect, 302
ImageResize, 303
ImageRotate, 305
ImageSize, 254
ImageSubtract, 311
ImageTake, 326
ImageType, 320
Implies, 734
Import, 356
ImportExport‘RegisterExport, 358
ImportExport‘RegisterImport, 358
ImportString, 357
In, 750
Increment, 64
Indeterminate, 431
Inequality, 720
InexactNumberQ, 738
Infinity, 431
Infix, 464
Information, 89
Inner, 709
InputForm, 213
InputStream, 334
Insert, 485
Inset, 182
Integer, 515
IntegerDigits, 419
IntegerExponent, 73
IntegerLength, 74
IntegerPart, 439
IntegerPartitions, 439
IntegerQ, 738
IntegerReverse, 419
Integers, 396
IntegerString, 420
Integrate, 397
Interrupt, 623
IntersectingQ, 728
Intersection, 500
Inverse, 423
InverseErf, 670
InverseErfc, 670
InverseGudermannian, 414
InverseHaversine, 457
InvisiblePostfixScriptBase, 607
InvisiblePrefixScriptBase, 609

JaccardDissimilarity, 363
JacobiP, 685

835

JacobiSymbol, 440
Join, 500
Joined, 255

KaryTree, 797
KatzCentrality, 770
KelvinBei, 660
KelvinBer, 660
KelvinKei, 661
KelvinKer, 662
Key, 471
Keys, 471
Khinchin, 432
KnownUnitQ, 759
KroneckerProduct, 542
KroneckerSymbol, 440
Kurtosis, 154

LABColor, 104
LadderGraph, 798
LaguerreL, 686
LambertW, 671
Large, 182
Last, 486
LCHColor, 104
LCM, 369
LeafCount, 198
LeastSquares, 423
Left, 464
LeftArrow, 564
LeftArrowBar, 564
LeftArrowRightArrow, 565
LeftDownTeeVector, 565
LeftDownVector, 565
LeftDownVectorBar, 566
LeftRightArrow, 566
LeftRightVector, 566
LeftTee, 566
LeftTeeArrow, 567
LeftTeeVector, 567
LeftTriangle, 567
LeftTriangleBar, 568
LeftTriangleEqual, 568
LeftUpDownVector, 568
LeftUpTeeVector, 569
LeftUpVector, 569
LeftUpVectorBar, 569
LeftVector, 570
LeftVectorBar, 570
LegendreP, 686
LegendreQ, 687
Length, 487
LerchPhi, 688
Less, 720
LessEqual, 721

LessEqualGreater, 570
LessFullEqual, 571
LessGreater, 571
LessLess, 571
LessSlantEqual, 572
LessTilde, 572
LetterCharacter, 702
LetterNumber, 80
LetterQ, 744
Level, 200
LevelQ, 728
LeviCivitaTensor, 710
LightBlue, 116
LightBrown, 117
LightCyan, 117
Lighter, 111
LightGray, 118
LightGreen, 118
LightMagenta, 119
LightOrange, 120
LightPink, 120
LightPurple, 121
LightRed, 121
LightYellow, 122
Limit, 398
Line, 182
LinearModelFit, 424
LinearRecurrence, 373
LinearSolve, 424
List, 473
Listable, 141
ListLinePlot, 266
ListLogPlot, 267
ListPlot, 268
ListQ, 725
ListStepPlot, 269
LoadModule, 57
Locked, 141
Log, 408
Log10, 408
Log2, 409
LogGamma, 676
LogisticSigmoid, 409
LogPlot, 270
Longest, 632
LongLeftArrow, 572
LongLeftRightArrow, 572
LongRightArrow, 573
Lookup, 471
LoopFreeGraphQ, 789
LowerCaseQ, 692
LowerLeftArrow, 573
LowerRightArrow, 573
LucasL, 364
LUVColor, 104

836

MachineNumberQ, 739
MachinePrecision, 75
Magenta, 122
MakeBoxes, 508
ManhattanDistance, 167
MantissaExponent, 441
Map, 222
MapApply, 201
MapAt, 223
MapIndexed, 224
MapThread, 225
MatchingDissimilarity, 364
MatchQ, 726
MathicsVersion, 245
MathMLForm, 214
MatrixExp, 425
MatrixForm, 214
MatrixPower, 425
MatrixQ, 729
MatrixRank, 426
Max, 721
MaxFilter, 315
Maximize, 521
MaxRecursion, 255
Mean, 150
MedianFilter, 316
Medium, 183
MeĳerG, 683
MemberQ, 730
MemoryAvailable, 246
MemoryInUse, 246
MersennePrimeExponent, 441
Mesh, 255
Message, 526
MessageName, 527
Messages, 67
Min, 722
MinFilter, 317
MinimalPolynomial, 386
Minimize, 521
Minus, 47
MinusPlus, 574
Missing, 472
MixedGraphQ, 789
Mod, 370
ModularInverse, 370
Module, 647
MoebiusMu, 441
MorphologicalComponents, 325
Most, 487
MultigraphQ, 790
Multinomial, 364

N, 531
Names, 89

Nand, 734
Nearest, 164
Needs, 351
Negative, 739
Nest, 232
NestedGreaterGreater, 574
NestedLessLess, 574
NestList, 232
NestWhile, 233
NextPrime, 442
NHoldAll, 142
NHoldFirst, 142
NHoldRest, 142
NIntegrate, 399
NonAssociative, 465
None, 612
NoneTrue, 734
NonNegative, 740
NonPositive, 740
Nor, 735
Norm, 541
Normal, 474
Normalize, 543
Not, 735
NotCongruent, 575
NotCupCap, 575
NotDoubleVerticalBar, 575
NotGreater, 576
NotGreaterEqual, 576
NotGreaterFullEqual, 576
NotGreaterGreater, 576
NotGreaterLess, 577
NotGreaterTilde, 577
NotLeftTriangle, 577
NotLeftTriangleEqual, 578
NotLess, 578
NotLessEqual, 578
NotLessFullEqual, 579
NotLessGreater, 579
NotLessTilde, 579
NotListQ, 730
NotOptionQ, 613
NotPrecedes, 580
NotPrecedesSlantEqual, 580
NotPrecedesTilde, 580
NotReverseElement, 580
NotRightTriangle, 581
NotRightTriangleEqual, 581
NotSquareSubsetEqual, 581
NotSquareSupersetEqual, 582
NotSubset, 582
NotSubsetEqual, 582
NotSucceeds, 583
NotSucceedsSlantEqual, 583
NotSucceedsTilde, 583

837

NotSuperset, 584
NotSupersetEqual, 584
NotTilde, 584
NotTildeEqual, 584
NotTildeFullEqual, 585
NotTildeTilde, 585
Now, 134
Null, 202
NullSpace, 426
Number, 334
NumberDigit, 76
NumberForm, 214
NumberLinePlot, 271
NumberQ, 740
NumberString, 81
Numerator, 386
NumericFunction, 143
NumericQ, 741
NValues, 68

O, 399
Octahedron, 294
OddQ, 741
Off, 527
Offset, 183
On, 528
OneIdentity, 143
Opacity, 104
OpenAppend, 335
Opening, 325
OpenRead, 335
OpenWrite, 335
Operate, 198
Optional, 641
OptionQ, 613
Options, 615
OptionsPattern, 632
OptionValue, 614
Or, 735
Orange, 123
Order, 726
OrderedQ, 727
Orderless, 144
Out, 460
Outer, 710
OutputForm, 215
OutputStream, 336
Overflow, 433
OwnValues, 90

PadLeft, 501
PadRight, 502
PageRankCentrality, 771
ParametricPlot, 271
ParentDirectory, 158

Part, 488
Partition, 502
PartitionsP, 442
PathGraph, 798
PathGraphQ, 790
Pattern, 633
PatternsOrderedQ, 727
PatternTest, 643
PauliMatrix, 235
Pause, 624
Permutations, 474
Perpendicular, 585
Pi, 433
Pick, 490
Piecewise, 533
PieChart, 272
Pink, 124
PixelValue, 327
PixelValuePositions, 327
PlanarGraphQ, 790
Plot, 275
Plot3D, 277
PlotPoints, 257
PlotRange, 257
Pluralize, 813
Plus, 48
PlusMinus, 586
Pochhammer, 676
Point, 183
PointSize, 184
PolarPlot, 279
PolyGamma, 677
Polygon, 185
PolygonalNumber, 365
PolyLog, 688
PolynomialQ, 387
Position, 490
Positive, 742
PossibleZeroQ, 742
Postfix, 465
Power, 49
PowerExpand, 388
PowerMod, 370
PowersRepresentations, 443
Precedence, 465
PrecedenceForm, 466
Precedes, 586
PrecedesEqual, 586
PrecedesSlantEqual, 587
PrecedesTilde, 587
Precision, 77
PreDecrement, 65
Prefix, 466
PreIncrement, 65
Prepend, 491

838

PrependTo, 491
Prime, 443
PrimePi, 444
PrimePowerQ, 444
PrimeQ, 743
Print, 329
PrintTrace, 754
Product, 516
ProductLog, 672
Projection, 543
Property, 776
PropertyValue, 776
Proportion, 587
Proportional, 588
Protect, 144
Protected, 145
PseudoInverse, 426
Purple, 124
Put, 336
PutAppend, 337
PythonCProfileEvaluation, 754
PythonForm, 216

QRDecomposition, 427
Quantile, 151
Quantity, 759
QuantityMagnitude, 760
QuantityQ, 761
QuantityUnit, 761
Quartiles, 151
Quiet, 528
Quit, 461
Quotient, 371
QuotientRemainder, 371

Random, 446
RandomChoice, 446
RandomComplex, 447
RandomGraph, 800
RandomImage, 322
RandomInteger, 448
RandomPrime, 445
RandomReal, 449
RandomSample, 449
RandomTree, 799
RandomWord, 806
Range, 475
RankedMax, 152
RankedMin, 152
Rational, 517
Rationalize, 534
Re, 517
Read, 338
ReadList, 340
ReadProtected, 146

Real, 518
RealAbs, 535
RealDigits, 78
Reals, 400
RealSign, 535
RealValuedNumberQ, 518
Reap, 475
Record, 341
Rectangle, 187
Red, 125
RegularExpression, 700
RegularPolygon, 187
ReleaseHold, 194
Remove, 56
RemoveDiacritics, 81
RenameDirectory, 159
RenameFile, 351
Repeated, 634
RepeatedNull, 634
Replace, 637
ReplaceAll, 638
ReplaceList, 639
ReplacePart, 492
ReplaceRepeated, 640
ResetDirectory, 352
Rest, 493
Return, 624
Reverse, 503
ReverseElement, 588
ReverseEquilibrium, 588
ReverseSort, 152
ReverseUpEquilibrium, 588
RGBColor, 106
Riffle, 503
Right, 467
RightArrow, 589
RightArrowBar, 589
RightArrowLeftArrow, 589
RightDownTeeVector, 590
RightDownVector, 590
RightDownVectorBar, 590
RightTee, 591
RightTeeArrow, 591
RightTeeVector, 591
RightTriangle, 592
RightTriangleBar, 592
RightTriangleEqual, 592
RightUpDownVector, 593
RightUpTeeVector, 593
RightUpVector, 593
RightUpVectorBar, 594
RightVector, 594
RightVectorBar, 594
RogersTanimotoDissimilarity, 366
Root, 400

839

RootSum, 400
RotateLeft, 504
RotateRight, 504
RotationTransform, 712
Round, 536
RoundImplies, 594
Row, 467
RowReduce, 427
RSolve, 649
Rule, 641
RuleDelayed, 641
Run, 246
RussellRaoDissimilarity, 366

SameQ, 722
ScalingTransform, 712
Scan, 225
Sec, 457
Sech, 415
SeedRandom, 451
Select, 494
Sequence, 195
SequenceForm, 220
SequenceHold, 146
Series, 401
SeriesCoefficient, 402
SeriesData, 403
SessionTime, 134
Set, 58
SetAttributes, 147
SetDelayed, 59
SetDirectory, 352
SetEnvironment, 246
SetFileDate, 210
SetOptions, 616
SetStreamPosition, 341
Share, 247
Sharpen, 300
ShearingTransform, 712
ShortDownArrow, 595
Shortest, 635
ShortLeftArrow, 595
ShortRightArrow, 595
ShortUpArrow, 596
Show, 188
Sign, 537
SimpleGraphQ, 791
Simplify, 388
Sin, 457
SingularValueDecomposition, 428
Sinh, 415
SixJSymbol, 235
Skewness, 155
Skip, 342
Slot, 227

SlotSequence, 228
Small, 189
SmallCircle, 596
SokalSneathDissimilarity, 366
Solve, 404
Sort, 153
SortBy, 202
Sow, 476
Span, 494
SparseArray, 650
SpellingCorrectionList, 809
Sphere, 289
SphericalBesselJ, 662
SphericalBesselY, 663
SphericalHankelH1, 663
SphericalHankelH2, 664
SphericalHarmonicY, 687
Split, 505
SplitBy, 505
Sqrt, 50
Square, 609
SquaredEuclideanDistance, 167
SquareIntersection, 596
SquaresR, 445
SquareSubset, 597
SquareSubsetEqual, 597
SquareSuperset, 597
SquareSupersetEqual, 598
SquareUnion, 598
StandardForm, 216
Star, 598
StarGraph, 799
StartOfLine, 702
StartOfString, 703
StieltjesGamma, 677
StirlingS1, 374
StirlingS2, 374
StreamPosition, 342
Streams, 343
String, 82
StringCases, 703
StringContainsQ, 82
StringDrop, 694
StringExpression, 704
StringForm, 220
StringFreeQ, 745
StringInsert, 694
StringJoin, 695
StringLength, 696
StringMatchQ, 745
StringPosition, 696
StringQ, 746
StringRepeat, 82
StringReplace, 697
StringReverse, 698

840

StringRiffle, 698
StringSplit, 698
StringTake, 699
StringToStream, 344
StringTrim, 700
StruveH, 664
StruveL, 664
Style, 467
Subfactorial, 678
Subscript, 468
Subset, 598
SubsetEqual, 599
SubsetQ, 731
Subsets, 367
Subsuperscript, 468
Subtract, 51
SubtractFrom, 66
SubValues, 68
Succeeds, 599
SucceedsEqual, 599
SucceedsSlantEqual, 600
SucceedsTilde, 600
SuchThat, 600
Sum, 519
Superscript, 468
Superset, 601
SupersetEqual, 601
Switch, 625
Symbol, 91
SymbolName, 91
SymbolQ, 91
SympyForm, 217
Syntax, 529
SyntaxQ, 746
System‘Convert‘B64Dump‘B64Decode, 353
System‘Convert‘B64Dump‘B64Encode, 353
System‘ConvertersDump‘$ExtensionMappings,

354
System‘ConvertersDump‘$FormatMappings, 354
System‘Private‘$ContextPathStack, 647
System‘Private‘$ContextStack, 648

Table, 477
TableForm, 217
TagSet, 61
TagSetDelayed, 61
Take, 495
TakeLargest, 153
TakeLargestBy, 496
TakeSmallest, 154
TakeSmallestBy, 496
Tally, 506
Tan, 458
Tanh, 415
Tetrahedron, 294

TeXForm, 219
Text, 190
TextCases, 811
TextPosition, 811
TextRecognize, 323
TextSentences, 812
TextStructure, 812
TextWords, 812
Therefore, 601
Thick, 190
Thickness, 190
Thin, 191
Thread, 226
ThreeJSymbol, 236
Threshold, 301
Through, 199
Throw, 625
TicksStyle, 258
Tilde, 602
TildeEqual, 602
TildeFullEqual, 602
TildeTilde, 602
TimeConstrained, 135
TimeRemaining, 135
Times, 52
TimesBy, 66
TimeUsed, 135
Timing, 136
Tiny, 191
ToBoxes, 509
ToCharacterCode, 691
ToExpression, 83
ToFileName, 352
Together, 389
ToLowerCase, 693
Top, 259
ToString, 84
Total, 53
ToUpperCase, 693
Tr, 428
TraceBuiltins, 755
TraceEvaluation, 757
TraditionalForm, 219
TransformationFunction, 712
TranslationTransform, 713
Transliterate, 84
Transpose, 713
TreeGraph, 800
TreeGraphQ, 801
True, 736
TrueQ, 723
Tube, 290
Tuples, 478

Uncompress, 128

841

Undefined, 434
Underflow, 434
UndirectedEdge, 548, 776
Unequal, 724
Unevaluated, 196
UniformPolyhedron, 295
Union, 506
UnionPlus, 603
Unique, 648
UnitConvert, 761
UnitStep, 538
UnitVector, 544
Unprotect, 148
UnsameQ, 725
Unset, 56
UpArrow, 603
UpArrowBar, 603
UpArrowDownArrow, 604
UpDownArrow, 604
UpEquilibrium, 604
UpperCaseQ, 693
UpperLeftArrow, 605
UpperRightArrow, 606
UpSet, 61
UpSetDelayed, 62
UpTee, 605
UpTeeArrow, 605
UpTo, 496
UpValues, 69
URLFetch, 360
URLSave, 353

ValueQ, 92
Values, 472
Variables, 390
VectorAngle, 544
VectorQ, 731
Vee, 606
Verbatim, 635
VertexAdd, 777
VertexConnectivity, 778
VertexCount, 786
VertexDegree, 786
VertexDelete, 778
VertexIndex, 780
VertexList, 780
VerticalBar, 606
VerticalTilde, 606

WeaklyConnectedComponents, 782
WeberE, 665
Wedge, 607
Which, 626
While, 626
White, 126

Whitespace, 85
WhitespaceCharacter, 704
With, 648
Word, 344
WordBoundary, 705
WordCharacter, 705
WordCloud, 312
WordCount, 809
WordData, 807
WordDefinition, 808
WordFrequency, 809
WordList, 808
WordSimilarity, 810
WordStem, 810
Write, 344
WriteString, 345

XML‘Parser‘XMLGet, 206
XML‘Parser‘XMLGetString, 206
XML‘PlaintextImport, 205
XML‘TagsImport, 206
XML‘XMLObjectImport, 207
XMLElement, 206
XMLObject, 206
Xor, 736
XYZColor, 106

Yellow, 126
YuleDissimilarity, 368

Zeta, 689

842

COLOPHON
Mathics3 Core 9.0.0

Python
3.13.7 (main, Aug 17 2025, 17:14:11) [GCC 13.3.0]

XeTeX
XeTeX 3.141592653-2.6-0.999995 (TeX Live 2023/Debian)

Asymptote
Asymptote version 2.95 [(C) 2004 Andy Hammerlindl, John C.
Bowman, Tom Prince]

mpmath 1.3.0

NumpyPy 2.3.2

SymPy 1.13.3

Ghostscript 10.02.1

cython 3.1.3

lxml 6.0.0

matplotlib 3.10.5

networkx 3.5

psutil 7.0.0

skimage 0.25.2

scipy 1.16.1

wordcloud 1.9.4

	Manual
	Introduction
	Language Tutorial
	Further Tutorial Examples
	Django-based Web Interface

	Reference of Built-in Symbols
	Arithmetic Functions
	Assignments
	Atomic Elements of Expressions
	Binary Data
	Code Compilation
	Colors
	Compress Functions
	Date and Time
	Definition Attributes
	Descriptive Statistics
	Directories and Directory Operations
	Distance and Similarity Measures
	Drawing Graphics
	Evaluation Control
	Expression Structure
	File Formats
	File Operations
	Forms of Input and Output
	Functional Programming
	Functions used in Quantum Mechanics
	Global System Information
	Graphics and Drawing
	Image Manipulation
	Input and Output
	Input/Output, Files, and Filesystem
	Integer Functions
	Integer and Number-Theoretical Functions
	Interactive Manipulation
	Kernel Sessions
	Layout
	List Functions
	Low-level Format definitions
	Mathematical Functions
	Mathematical Optimization
	Matrices and Linear Algebra
	Message-related functions.
	Numerical Functions
	Operations on Vectors
	Operators without Built-in Meanings
	Options Management
	Physical and Chemical data
	Procedural Programming
	Rules and Patterns
	Scoping Constructs
	Solving Recurrence Equations
	Sparse Array Functions
	Special Functions
	Strings and Characters
	Symbolic Execution History
	Tensors
	Testing Expressions
	The Main Loop
	Tracing and Profiling
	Units and Quantities

	Mathics3 Modules
	Graphs - Vertices and Edges
	ICU — International Components for Unicode
	Natural Language Processing

	License
	GNU General Public License
	Included software and data
	Index
	Colophon

