MatbenchBenchmark
Bases: MSONable, MSONable2File
The core class for benchmarking with Matbench.
MatbenchBenchmark is capable of benchmarking and validating arbitrary materials science benchmarks. It is a container class for sets of MatbenchTasks, objects which provide predetermined sets of training/validation and testing data for any algorithm to benchmark with. MatbenchBenchmark can also give summaries of entire complex benchmarks, including access to individual score statistics for each metric.
MatbenchBenchmark can run any benchmark as long as it has a corresponding benchmark name key. Matbench v0.1 ("matbench_v0.1") is the only benchmark currently configured for use with MatbenchBenchmark.
MatbenchBenchmark is capable of running benchmark subsets; for example, only 3 of the 13 available Matbench v0.1 problems.
See the documentation for more details.
Attributes:
| Name | Type | Description |
|---|---|---|
benchmark_name |
str
|
The benchmark name, defaults to the original Matbench v0.1 "matbench_v0.1". Should have an associated validation file in order for the MatbenchTasks to work correctly. |
metadata |
dict
|
The corresponding metadata file for this benchmark, which defines the basic configuration for each task. See matbench_v0.1_validation for an example. Each dataset has the same required keys in order to work correctly. |
user_metadata |
dict
|
Any metadata about the algorithm or benchmark that the user wants to keep as part of the benchmark file. |
tasks_map |
{str
|
MatbenchTask}): A mapping of task name to the corresponding MatbenchTask object. |
<<task_names>> |
MatbenchTask
|
Access any task obj via
MatbenchTask.< mb = MatbenchBenchmark() mb.matbench_dielectric < |
Source code in matbench/bench.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 | |
info
property
Get a formatted string of info about this benchmark and its current state.
Returns:
| Name | Type | Description |
|---|---|---|
s |
str
|
A formatted string describing this benchmark's state. |
is_classification_complete
property
Determine if all classification tasks for this benchmark are included
Returns:
| Type | Description |
|---|---|
bool
|
Whether benchmark is classification complete. |
is_complete
property
Determine if all available tasks are included in this benchmark.
For matbench v0.1, this means all 13 tasks are in the benchmark.
Returns:
| Type | Description |
|---|---|
bool
|
Whether benchmark is entirely complete. |
is_composition_complete
property
Determine if all composition tasks for this benchmark are included
Returns:
| Type | Description |
|---|---|
bool
|
Whether benchmark is composition complete. |
is_recorded
property
All tasks in this benchmark (whether or not it includes all tasks in the benchmark set) are recorded.
Returns:
| Type | Description |
|---|---|
bool
|
True if all tasks (even if only a subset of all matbench) |
|
for this benchmark are recorded. |
is_regression_complete
property
Determine if all regression tasks for this benchmark are included
Returns:
| Type | Description |
|---|---|
bool
|
Whether benchmark is regression complete. |
is_structure_complete
property
Determine if all structure tasks for this benchmark are included
Returns:
| Type | Description |
|---|---|
bool
|
Whether benchmark is structure complete. |
is_valid
property
Checks all tasks are recorded and valid, as per each task's validation procedure.
Can take some time, especially if the tasks are not already loaded into memory.
Returns:
| Type | Description |
|---|---|
bool
|
True if all tasks are valid |
scores
property
Get all score metrics for all tasks as a dictionary.
Returns:
| Type | Description |
|---|---|
RecursiveDotDict
|
A nested dictionary-like object of scores for each task. |
tasks
property
Return the tasks as a list.
Returns:
| Type | Description |
|---|---|
[MatbenchTask]
|
A list of matbench tasks in this benchmark |
__getattr__(item)
Enable MatbenchBenchmark.task_name behavior.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
item |
str
|
The name of the attr. |
required |
(object): The attr, if not in the metadata defined by the benchmark
If the attr is a task name, returns that MatBenchTask object.
Source code in matbench/bench.py
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 | |
__init__(benchmark=MBV01_KEY, autoload=False, subset=None)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
benchmark |
str
|
The name of the benchmark. Only supported benchmark currently is "matbench_v0.1", though more will be added in the future. |
MBV01_KEY
|
autoload |
bool
|
If True, automatically load the dataset into memory For a full benchmark, this can take some time. If False, you'll need to load each task with .load before you can access the raw data. |
False
|
subset |
[str]
|
A list of task names to use as a subset of a full benchmark. Only the named tasks will be contained in the class. Must correspond to the metadata file defined by the benchmark name. |
None
|
Source code in matbench/bench.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 | |
add_metadata(metadata)
Add freeform information about this run to the object (and subsequent json), accessible thru the 'user_metadata' attr.
All keys must be strings.
All values must be either
a. a numpy ndarray b. python native types, such as bools, floats, ints, strs c. a pandas series d. a list/tuple of python native types (bools, floats, ints)
OR
e. A dictionary where all keys are strs and all values are one of a, b, c, d, or e (recursive).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
metadata |
dict
|
Metadata about the algorithm being run on this benchmark. |
required |
Returns:
| Type | Description |
|---|---|
NoneType
|
None. Logger provides information. |
Source code in matbench/bench.py
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 | |
as_dict()
Overridden from MSONable.as_dict, get dict repr of this obj
Returns:
| Name | Type | Description |
|---|---|---|
d |
dict
|
the object as a dictionary. |
Source code in matbench/bench.py
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 | |
from_dict(d)
classmethod
Create a MatbenchBenchmark object from a dictionary.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
d |
dict
|
The benchmark as a dictionary. |
required |
Returns:
| Type | Description |
|---|---|
MatbenchBenchmark
|
The benchmark as an object. |
Source code in matbench/bench.py
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 | |
from_preset(benchmark, preset_name, autoload=False)
classmethod
The following presets are defined for each benchmark:
benchmark: 'matbench_v0.1':
- preset: 'structure' - Only structure problems
- preset: 'composition' - Only composition problems
- preset: 'regression' - Only regression problems
- preset: 'classification' - Only classification problems
- preset: 'all' - All problems in matbench v0.1
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
benchmark |
str
|
Name of the benchmark set you'd like to use. The only supported benchmark set currently is "matbench_v0.1" |
required |
preset_name |
str
|
The name of the preset |
required |
autoload |
bool
|
If true, automatically loads all the datasets upon instantiation. Be warned; this can take a while. |
False
|
Returns:
| Type | Description |
|---|---|
MatbenchBenchmark object
|
A ready-to-use MatbenchBenchmark object. |
Source code in matbench/bench.py
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 | |
get_info()
Log info about the benchmark to the respective logging handlers.
Returns:
| Type | Description |
|---|---|
NoneType
|
Output is sent to logger. |
Source code in matbench/bench.py
440 441 442 443 444 445 446 | |
load()
Load all tasks in this benchmark. Returns: (NoneType): Datasets are kept in attributes.
Source code in matbench/bench.py
490 491 492 493 494 495 496 | |
validate()
Run validation on each task in this benchmark.
Returns:
| Type | Description |
|---|---|
{str: str}
|
dict of errors, if they exist |
Source code in matbench/bench.py
498 499 500 501 502 503 504 505 506 507 508 509 510 511 | |