Skip to main content

Radiative Gaussian Splatting for Efficient X-Ray Novel View Synthesis

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15059))

Included in the following conference series:

  • 2279 Accesses

  • 28 Citations

Abstract

X-ray is widely applied for transmission imaging due to its stronger penetration than natural light. When rendering novel view X-ray projections, existing methods mainly based on NeRF suffer from long training time and slow inference speed. In this paper, we propose a 3D Gaussian splatting-based method, namely X-Gaussian, for X-ray novel view synthesis. Firstly, we redesign a radiative Gaussian point cloud model inspired by the isotropic nature of X-ray imaging. Our model excludes the influence of view direction when learning to predict the radiation intensity of 3D points. Based on this model, we develop a Differentiable Radiative Rasterization (DRR) with CUDA implementation. Secondly, we customize an Angle-pose Cuboid Uniform Initialization (ACUI) strategy that directly uses the parameters of the X-ray scanner to compute the camera information and then uniformly samples point positions within a cuboid enclosing the scanned object. Experiments show that our X-Gaussian outperforms state-of-the-art methods by 6.5 dB while enjoying less than 15% training time and over 73\(\times \) inference speed. The application on CT reconstruction also reveals the practical values of our method. Code is at https://github.com/caiyuanhao1998/X-Gaussian.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
EUR 29.95
Price includes VAT (Netherlands)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 111.27
Price includes VAT (Netherlands)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 141.69
Price includes VAT (Netherlands)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersen, A.H., Kak, A.C.: Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm. Ultrasonic imaging (1984)

    Google Scholar 

  2. Armato, I.I.I., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38, 915–931 (2011)

    Article  Google Scholar 

  3. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields. In: ICCV (2021)

    Google Scholar 

  4. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF 360: unbounded anti-aliased neural radiance fields. In: CVPR (2022)

    Google Scholar 

  5. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Zip-NeRF: anti-aliased grid-based neural radiance fields. In: ICCV (2023)

    Google Scholar 

  6. Biguri, A., Dosanjh, M., Hancock, S., Soleimani, M.: TIGRE: a MATLAB-GPU toolbox for CBCT image reconstruction. Biomed. Phys. Eng. Express 2, 055010 (2016)

    Article  Google Scholar 

  7. Boone, J., Shah, N., Nelson, T.: A comprehensive analysis of coefficients for pendant-geometry cone-beam breast computed tomography. Med. Phys. 31, 226–235 (2004)

    Article  Google Scholar 

  8. Boone, J.M., Nelson, T.R., Lindfors, K.K., Seibert, J.A.: Dedicated breast CT: radiation dose and image quality evaluation. Radiology 221, 657–667 (2001)

    Article  Google Scholar 

  9. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: TensoRF: tensorial radiance fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. LNCS, vol. 13692. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_20

  10. Chen, B., Ning, R.: Cone-beam volume CT breast imaging: Feasibility study. Med. Phys. 29, 755–770 (2002)

    Google Scholar 

  11. Chen, Z., Funkhouser, T., Hedman, P., Tagliasacchi, A.: MobileNeRF: exploiting the polygon rasterization pipeline for efficient neural field rendering on mobile architectures. In: CVPR (2023)

    Google Scholar 

  12. Cormack, A.M.: Representation of a function by its line integrals, with some radiological applications. J. Appl. Phys. 34, 2722–2727 (1963)

    Article  Google Scholar 

  13. Cormack, A.M.: Representation of a function by its line integrals, with some radiological applications. II. J. Appl. Phys. 35, 2908–2913 (1964)

    Article  Google Scholar 

  14. Corona-Figueroa, A., Frawley, J., Bond-Taylor, S., Bethapudi, S., Shum, H.P., Willcocks, C.G.: MedNeRF: medical neural radiance fields for reconstructing 3D-aware CT-projections from a single x-ray. In: International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (2022)

    Google Scholar 

  15. Elbakri, I.A., Fessler, J.A.: Segmentation-free statistical image reconstruction for polyenergetic x-ray computed tomography with experimental validation. Phys. Med. Biol. 48, 2453 (2003)

    Article  Google Scholar 

  16. Feldkamp, L.A., Davis, L.C., Kress, J.W.: Practical cone-beam algorithm. Josa a 1, 612–619 (1984)

    Google Scholar 

  17. Guide, D.: CUDA C programming guide. NVIDIA (2013)

    Google Scholar 

  18. Hounsfield, G.N.: Computerized transverse axial scanning (tomography): Part 1. description of system. British J. Radiol. 46, 1016–1022 (1973)

    Google Scholar 

  19. Hounsfield, G.N.: Computed medical imaging. Science 210, 22–28 (1980)

    Article  Google Scholar 

  20. Hu, S., Liu, Z.: GauHuman: articulated gaussian splatting from monocular human videos. arXiv preprint arXiv: (2023)

    Google Scholar 

  21. Hu, T., Liu, S., Chen, Y., Shen, T., Jia, J.: EfficientNeRF efficient neural radiance fields. In: CVPR (2023)

    Google Scholar 

  22. Hu, W., et al.: Tri-MipRF: Tri-Mip representation for efficient anti-aliasing neural radiance fields. In: ICCV (2023)

    Google Scholar 

  23. Jiang, Y., et al.: GaussianShader: 3D Gaussian splatting with shading functions for reflective surfaces. arXiv preprint arXiv:2311.17977 (2023)

  24. Keetha, N., et al.: Splatam: Splat, track & map 3D gaussians for dense RGB-D SLAM. arXiv preprint arXiv:2312.02126 (2023)

  25. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D Gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42, 1–14 (2023)

    Google Scholar 

  26. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  27. Klacansky, P.: Scientific visualization datasets (2022). https://klacansky.com/open-scivis-datasets/

  28. Kocabas, M., Chang, J.H.R., Gabriel, J., Tuzel, O., Ranjan, A.: Hugs: human gaussian splats. arXiv preprint arXiv:2311.17910 (2023)

  29. Kopanas, G., Philip, J., Leimkühler, T., Drettakis, G.: Point-based neural rendering with per-view optimization. In: Computer Graphics Forum (2021)

    Google Scholar 

  30. Li, R., Gao, H., Tancik, M., Kanazawa, A.: NerfAcc: efficient sampling accelerates nerfs. In: ICCV (2023)

    Google Scholar 

  31. Liang, Y., Yang, X., Lin, J., Li, H., Xu, X., Chen, Y.: LucidDreamer: towards high-fidelity text-to-3D generation via interval score matching. arXiv preprint arXiv:2311.11284 (2023)

  32. Liang, Z., Zhang, Q., Feng, Y., Shan, Y., Jia, K.: GS-IR: 3D Gaussian splatting for inverse rendering. arXiv preprint arXiv:2311.16473 (2023)

  33. Liu, X., et al.: HumanGaussian: Text-driven 3D human generation with gaussian splatting. arXiv preprint arXiv:2311.17061 (2023)

  34. Luiten, J., Kopanas, G., Leibe, B., Ramanan, D.: Dynamic 3D gaussians: tracking by persistent dynamic view synthesis. arXiv preprint arXiv:2308.09713 (2023)

  35. Manglos, S.H., Gagne, G.M., Krol, A., Thomas, F.D., Narayanaswamy, R.: Transmission maximum-likelihood reconstruction with ordered subsets for cone beam ct. Phys. Med. Biol. 40, 1225 (1995)

    Google Scholar 

  36. Matsuki, H., Murai, R., Kelly, P.H., Davison, A.J.: Gaussian splatting slam. arXiv preprint arXiv:2312.06741 (2023)

  37. Mildenhall, B., Srinivasan, P., Tancik, M., Barron, J., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: ECCV (2020)

    Google Scholar 

  38. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM ToG (2022)

    Google Scholar 

  39. Pan, J., Zhou, T., Han, Y., Jiang, M., et al.: Variable weighted ordered subset image reconstruction algorithm. Int. J. Biomed. Imaging 2006, 010398 (2006)

    Article  Google Scholar 

  40. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: NeurIPS (2019)

    Google Scholar 

  41. Reiser, C., et al.: MERF: memory-efficient radiance fields for real-time view synthesis in unbounded scenes. TOG (2023)

    Google Scholar 

  42. Rückert, D., Wang, Y., Li, R., Idoughi, R., Heidrich, W.: NeAT: neural adaptive tomography. TOG (2022)

    Google Scholar 

  43. Sauer, K., Bouman, C.: A local update strategy for iterative reconstruction from projections. TIP (1993)

    Google Scholar 

  44. Scarfe, W.C., Farman, A.G., Sukovic, P., et al.: Clinical applications of cone-beam computed tomography in dental practice. J. Can. Dent. Assoc. 72, 75–80 (2006)

    Google Scholar 

  45. Sidky, E.Y., Pan, X.: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys. Med. Biol. 53, 4777–4807 (2008)

    Google Scholar 

  46. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. In: SIGGRAPH (2006)

    Google Scholar 

  47. Tang, J., Ren, J., Zhou, H., Liu, Z., Zeng, G.: DreamGaussian: generative gaussian splatting for efficient 3D content creation. arXiv preprint arXiv:2309.16653 (2023)

  48. Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan, P.P.: Ref-NeRF: structured view-dependent appearance for neural radiance fields. In: CVPR (2022)

    Google Scholar 

  49. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncell, E.P.: Image quality assessment: from error visibility to structural similarity. TIP (2004)

    Google Scholar 

  50. Wu, G., et al.: 4D Gaussian splatting for real-time dynamic scene rendering. arXiv preprint arXiv:2310.08528 (2023)

  51. Xie, T., et al.: PhysGaussian: physics-integrated 3D gaussians for generative dynamics. arXiv preprint arXiv:2311.12198 (2023)

  52. Yan, C., Qu, D., Wang, D., Xu, D., Wang, Z., Zhao, B., Li, X.: GS-SLAM: dense visual slam with 3D gaussian splatting. arXiv preprint arXiv:2311.11700 (2023)

  53. Yang, Z., Yang, H., Pan, Z., Zhu, X., Zhang, L.: Real-time photorealistic dynamic scene representation and rendering with 4D gaussian splatting. arXiv preprint arXiv:2310.10642 (2023)

  54. Yariv, L., et al.: BakedSDF: meshing neural SDFs for real-time view synthesis. In: SIGGRAPH (2023)

    Google Scholar 

  55. Yi, T., et al.: GaussianDreamer: fast generation from text to 3D Gaussian splatting with point cloud priors. arXiv preprint arXiv:2310.08529 (2023)

  56. Yu, L., Zou, Y., Sidky, E.Y., Pelizzari, C.A., Munro, P., Pan, X.: Region of interest reconstruction from truncated data in circular cone-beam CT. TMI (2006)

    Google Scholar 

  57. Yugay, V., Li, Y., Gevers, T., Oswald, M.R.: Gaussian-SLAM: photo-realistic dense slam with gaussian splatting. arXiv preprint arXiv:2312.10070 (2023)

  58. Zang, G., Idoughi, R., Li, R., Wonka, P., Heidrich, W.: IntraTomo: self-supervised learning-based tomography via sinogram synthesis and prediction. In: CVPR (2021)

    Google Scholar 

  59. Zbijewski, W., Defrise, M., Viergever, M.A., Beekman, F.J.: Statistical reconstruction for x-ray CT systems with non-continuous detectors. Phys. Med. Biol. 52, 403 (2006)

    Google Scholar 

  60. Zha, R., Zhang, Y., Li, H.: NAF: neural attenuation fields for sparse-view CBCT reconstruction. In: MICCAI (2022)

    Google Scholar 

  61. Zhang, T., et al.: PhysDreamer: physics-based interaction with 3d objects via video generation. In: ECCV (2024)

    Google Scholar 

  62. Zwicker, M., Pfister, H., Van Baar, J., Gross, M.: EWA volume splatting. In: Proceedings Visualization, 2001. VIS 2001. IEEE (2001)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Lustgarten Foundation for Pancreatic Cancer Research and the Patrick J. McGovern Foundation Award.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, Y. et al. (2025). Radiative Gaussian Splatting for Efficient X-Ray Novel View Synthesis. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15059. Springer, Cham. https://doi.org/10.1007/978-3-031-73232-4_16

Download citation

Keywords

Publish with us

Policies and ethics