Skip to main content

iHuman: Instant Animatable Digital Humans From Monocular Videos

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Personalized 3D avatars require an animatable representation of digital humans. Doing so instantly from monocular videos offers scalability to broad class of users and wide-scale applications. In this paper, we present a fast, simple, yet effective method for creating animatable 3D digital humans from monocular videos. Our method utilizes the efficiency of Gaussian splatting to model both 3D geometry and appearance. However, we observed that naively optimizing Gaussian splats results in inaccurate geometry, thereby leading to poor animations.

This work achieves and illustrates the need of accurate 3D mesh-type modelling of the human body for animatable digitization through Gaussian splats. This is achieved by developing a novel pipeline that benefits from three key aspects: (a) implicit modelling of surface’s displacements and the color’s spherical harmonics; (b) binding of 3D Gaussians to the respective triangular faces of the body template; (c) a novel technique to render normals followed by their auxiliary supervision. Our exhaustive experiments on three different benchmark datasets demonstrates the state-of-the-art results of our method, in limited time settings. In fact, our method is faster by an order of magnitude (in terms of training time) than its closest competitor. At the same time, we achieve superior rendering and 3D reconstruction performance under the change of poses. Our source code will be made publicly available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
EUR 29.95
Price includes VAT (Netherlands)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 60.98
Price includes VAT (Netherlands)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 80.65
Price includes VAT (Netherlands)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alldieck, T., Magnor, M., Xu, W., Theobalt, C., Pons-Moll, G.: Detailed human avatars from monocular video. In: 2018 International Conference on 3D Vision (3DV), pp. 98–109. IEEE (2018)

    Google Scholar 

  2. Alldieck, T., Magnor, M.A., Bhatnagar, B.L., Theobalt, C., Pons-Moll, G.: Learning to reconstruct people in clothing from a single RGB camera. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, 16–20 June 2019, pp. 1175–1186. Computer Vision Foundation/IEEE (2019). https://doi.org/10.1109/CVPR.2019.00127

  3. Alldieck, T., Magnor, M.A., Xu, W., Theobalt, C., Pons-Moll, G.: Video based reconstruction of 3d people models. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, 18–22 June 2018, pp. 8387–8397. Computer Vision Foundation/IEEE Computer Society (2018). https://doi.org/10.1109/CVPR.2018.00875

  4. Bhatnagar, B.L., Sminchisescu, C., Theobalt, C., Pons-Moll, G.: Combining implicit function learning and parametric models for 3d human reconstruction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J. (eds.) ECCV 2020, Part II. LNCS, vol. 12347, pp. 311–329. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_19

  5. Bhatnagar, B.L., Sminchisescu, C., Theobalt, C., Pons-Moll, G.: Loopreg: self-supervised learning of implicit surface correspondences, pose and shape for 3d human mesh registration. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, 6–12 December 2020, Virtual (2020). https://proceedings.neurips.cc/paper/2020/hash/970af30e481057c48f87e101b61e6994-Abstract.html

  6. Bhatnagar, B.L., Tiwari, G., Theobalt, C., Pons-Moll, G.: Multi-garment net: learning to dress 3d people from images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5420–5430 (2019)

    Google Scholar 

  7. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it SMPL: automatic estimation of 3D human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34

    Chapter  Google Scholar 

  8. Chen, J., Zhang, Y., Kang, D., Zhe, X., Bao, L., Jia, X., Lu, H.: Animatable neural radiance fields from monocular rgb videos. arXiv preprint arXiv:2106.13629 (2021)

  9. Chen, X., et al.: Fast-SNARF: a fast deformer for articulated neural fields. IEEE Trans. Pattern Anal. Mach. Intell. 45(10), 11796–11809 (2023)

    Google Scholar 

  10. Chen, X., Zheng, Y., Black, M.J., Hilliges, O., Geiger, A.: Snarf: differentiable forward skinning for animating non-rigid neural implicit shapes. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11594–11604 (2021)

    Google Scholar 

  11. Dragomir, A., Praveen, S., Daphne, K., Sebastian, T., Jim, R., James, D.: Scape. ACM Trans. Graph. (2005). https://doi.org/10.1145/1073204.1073207

    Article  Google Scholar 

  12. Feng, Y., Feng, H., Black, M.J., Bolkart, T.: Learning an animatable detailed 3d face model from in-the-wild images. ACM Trans. Graph. 40(4), 1–13 (2021)

    Article  Google Scholar 

  13. Gafni, G., Thies, J., Zollhofer, M., Niessner, M.: Dynamic neural radiance fields for monocular 4d facial avatar reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8649–8658 (2021). https://openaccess.thecvf.com/content/CVPR2021/html/Gafni_Dynamic_Neural_Radiance_Fields_for_Monocular_4D_Facial_Avatar_Reconstruction_CVPR_2021_paper.html

  14. Geng, C., Peng, S., Xu, Z., Bao, H., Zhou, X.: Learning neural volumetric representations of dynamic humans in minutes. In: CVPR (2023)

    Google Scholar 

  15. Goel, S., Pavlakos, G., Rajasegaran, J., Kanazawa, A., Malik, J.: Humans in 4d: reconstructing and tracking humans with transformers. arXiv preprint arXiv:2305.20091 (2023)

  16. Guo, C., Jiang, T., Chen, X., Song, J., Hilliges, O.: Vid2avatar: 3d avatar reconstruction from videos in the wild via self-supervised scene decomposition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12858–12868 (2023)

    Google Scholar 

  17. Guédon, A., Lepetit, V.: Sugar: surface-aligned gaussian splatting for efficient 3d mesh reconstruction and high-quality mesh rendering (2023)

    Google Scholar 

  18. He, T., Xu, Y., Saito, S., Soatto, S., Tung, T.: Arch++: animation-ready clothed human reconstruction revisited. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 11046–11056 (2021). https://openaccess.thecvf.com/content/ICCV2021/html/He_ARCH_Animation-Ready_Clothed_Human_Reconstruction_Revisited_ICCV_2021_paper.html

  19. Huang, Z., Xu, Y., Lassner, C., Li, H., Tung, T.: Arch: animatable reconstruction of clothed humans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3093–3102 (2020)

    Google Scholar 

  20. Jena, R., Iyer, G.S., Choudhary, S., Smith, B., Chaudhari, P., Gee, J.: SplatArmor: articulated Gaussian splatting for animatable humans from monocular RGB videos. arXiv preprint arXiv:2311.10812 [cs] (2023)

  21. Jiang, B., Hong, Y., Bao, H., Zhang, J.: Selfrecon: self reconstruction your digital avatar from monocular video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5605–5615 (2022)

    Google Scholar 

  22. Jiang, T., Chen, X., Song, J., Hilliges, O.: Instantavatar: learning avatars from monocular video in 60 seconds. In: CVPR (2023)

    Google Scholar 

  23. Jiang, W., Yi, K.M., Samei, G., Tuzel, O., Ranjan, A.: Neuman: neural human radiance field from a single video. In: Avidan, S., Brostow, G.J., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, Part XXXII. LNCS, vol. 13692, pp. 402–418. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_24

  24. Jiang, Y., Yao, K., Su, Z., Shen, Z., Luo, H., Xu, L.: Instant-nvr: instant neural volumetric rendering for human-object interactions from monocular RGBD stream. In: CVPR (2023)

    Google Scholar 

  25. Kanazawa, A., Black, M.J., Jacobs, D., Malik, J.: End-to-end recovery of human shape and pose. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2017). https://doi.org/10.1109/CVPR.2018.00744

  26. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry processing, vol. 7 (2006)

    Google Scholar 

  27. Kerbl, B., Kopanas, G., Leimkuehler, T., Drettakis, G.: 3D Gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4) (2023)

    Google Scholar 

  28. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d Gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4), 139:1–139:14 (2023). https://doi.org/10.1145/3592433

  29. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2015)

    Google Scholar 

  30. Kocabas, M., Chang, J.H.R., Gabriel, J., Tuzel, O., Ranjan, A.: HUGS: human Gaussian splats. arXiv preprint arXiv:2311.17910 [cs] (2023)

  31. Kolotouros, N., Pavlakos, G., Daniilidis, K.: Convolutional mesh regression for single-image human shape reconstruction. In: CVPR (2019)

    Google Scholar 

  32. Kwon, Y., Kim, D., Ceylan, D., Fuchs, H.: Neural human performer: learning generalizable radiance fields for human performance rendering. Adv. Neural. Inf. Process. Syst. 34, 24741–24752 (2021)

    Google Scholar 

  33. Lei, J., Wang, Y., Pavlakos, G., Liu, L., Daniilidis, K.: GART: Gaussian articulated template models arXiv preprint arXiv:2311.16099 [cs] (2023)

  34. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: Seminal Graphics Papers: Pushing the Boundaries, vol. 2, pp. 811–818 (2023)

    Google Scholar 

  35. Li, M., Yao, S., Xie, Z., Chen, K., Jiang, Y.G.: Gaussianbody: clothed human reconstruction via 3d gaussian splatting. arXiv preprint arXiv:2401.09720 (2024)

  36. Li, M., Tao, J., Yang, Z., Yang, Y.: Human101: training 100+FPS human Gaussians in 100s from 1 view. arXiv preprint arXiv:2312.15258 [cs] (2023)

  37. Li, R., et al.: TAVA: template-free animatable volumetric actors. In: Avidan, S., Brostow, G.J., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, Part XXXII. LNCS, vol. 13692, pp. 419–436. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_25

  38. Li, Z., Zheng, Z., Wang, L., Liu, Y.: Animatable Gaussians: learning pose-dependent Gaussian maps for high-fidelity human avatar modeling. arXiv preprint arXiv:2311.16096 [cs] (2023)

  39. Lin, K., Wang, L., Liu, Z.: Mesh graphormer. In: ICCV (2021)

    Google Scholar 

  40. Liu, L., Habermann, M., Rudnev, V., Sarkar, K., Gu, J., Theobalt, C.: Neural actor: neural free-view synthesis of human actors with pose control. ACM Trans. Graph. 40(6), 1–16 (2021)

    Google Scholar 

  41. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. In: Seminal Graphics: Pioneering Efforts that Shaped the Field, pp. 347–353 (1998)

    Google Scholar 

  42. Marc, H., Lingjie, L., Weipeng, X., Gerard, P.M., Michael, Z., Christian, T.: HD humans. In: Proc. ACM Comput. Graph. Interact. Techniq. (2023). https://doi.org/10.1145/3606927

  43. Matthew, L., Naureen, M., Javier, R., Gerard, P.M., J., B.M.: SMPL. ACM Trans. Graph. (2015). https://doi.org/10.1145/2816795.2818013

  44. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3d reconstruction in function space. In: CVPR (2019)

    Google Scholar 

  45. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J., Ramamoorthi, R., Ng, R.: Nerf: representing scenes as neural radiance fields for view synthesis. Eur. Conf. Comput. Vision (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Article  Google Scholar 

  46. Moon, G., Lee, K.M.: I2l-meshnet: image-to-lixel prediction network for accurate 3d human pose and mesh estimation from a single RGB image. Eur. Conf. Comput. Vision (2020). https://doi.org/10.1007/978-3-030-58571-6_44

  47. Moreau, A., Song, J., Dhamo, H., Shaw, R., Zhou, Y., Pérez-Pellitero, E.: Human Gaussian splatting: real-time rendering of animatable avatars. arXiv:2311.17113 [cs] (2023)

  48. Noguchi, A., Sun, X., Lin, S., Harada, T.: Neural articulated radiance field. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5762–5772 (2021). https://openaccess.thecvf.com/content/ICCV2021/html/Noguchi_Neural_Articulated_Radiance_Field_ICCV_2021_paper.html

  49. Omran, M., Lassner, C., Pons-Moll, G., Gehler, P., Schiele, B.: Neural body fitting: unifying deep learning and model-based human pose and shape estimation. In: International Conference on 3D Vision (2018). https://doi.org/10.1109/3DV.2018.00062

  50. Osman, A.A.A., Bolkart, T., Black, M.J.: STAR: sparse trained articulated human body regressor. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 598–613. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_36

    Chapter  Google Scholar 

  51. Pang, H., Zhu, H., Kortylewski, A., Theobalt, C., Habermann, M.: ASH: animatable Gaussian splats for efficient and photoreal human rendering. arXiv preprint arXiv:2312.05941 [cs] (2023)

  52. Park, J.J., Florence, P.R., Straub, J., Newcombe, R.A., Lovegrove, S.: Deepsdf: learning continuous signed distance functions for shape representation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, 16–20 June 2019, pp. 165–174. Computer Vision Foundation/IEEE (2019). https://doi.org/10.1109/CVPR.2019.00025

  53. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library (2019)

    Google Scholar 

  54. Pavlakos, G., Zhu, L., Zhou, X., Daniilidis, K.: Learning to estimate 3d human pose and shape from a single color image. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018). https://doi.org/10.1109/CVPR.2018.00055

  55. Pavlakos, G., et al.: Expressive body capture: 3d hands, face, and body from a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  56. Peng, S., et al.: Animatable neural radiance fields for modeling dynamic human bodies. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14314–14323 (2021)

    Google Scholar 

  57. Peng, S., et al.: Animatable neural radiance fields for modeling dynamic human bodies. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14294–14303 (2021). https://doi.org/10.1109/ICCV48922.2021.01405

  58. Peng, S., et al.: Neural body: implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, Virtual, 19–25 June 2021, pp. 9054–9063. Computer Vision Foundation/IEEE (2021). https://doi.org/10.1109/CVPR46437.2021.00894

  59. Qian, S., Kirschstein, T., Schoneveld, L., Davoli, D., Giebenhain, S., Nießner, M.: Gaussianavatars: photorealistic head avatars with rigged 3d Gaussians. arXiv preprint arXiv: 2312.02069 (2023)

  60. Qian, Z., Wang, S., Mihajlovic, M., Geiger, A., Tang, S.: 3DGS-Avatar: animatable avatars via deformable 3D Gaussian splatting. arXiv preprint arXiv:2312.09228 [cs] (2023)

  61. Saito, S., Simon, T., Saragih, J., Joo, H.: Pifuhd: multi-level pixel-aligned implicit function for high-resolution 3d human digitization. In: CVPR (2020)

    Google Scholar 

  62. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–4113 (2016)

    Google Scholar 

  63. Shahbazi, M., et al.: Nerf-gan distillation for efficient 3d-aware generation with convolutions. arXiv preprint arXiv:2303.12865 (2023)

  64. Su, S.Y., Bagautdinov, T.M., Rhodin, H.: Danbo: disentangled articulated neural body representations via graph neural networks. In: European Conference on Computer Vision (2022). https://doi.org/10.48550/arXiv.2205.01666

  65. Su, S.Y., Yu, F., Zollhoefer, M., Rhodin, H.: A-nerf: articulated neural radiance fields for learning human shape, appearance, and pose. In: NEURIPS (2021)

    Google Scholar 

  66. Thomas, M., Alex, E., Christoph, S., Alexander, K.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (2022). https://doi.org/10.1145/3528223.3530127

  67. Waczyńska, J., Borycki, P., Tadeja, S., Tabor, J., Spurek, P.: Games: mesh-based adapting and modification of gaussian splatting. arXiv preprint arXiv:2402.01459 (2024)

  68. Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: Neus: learning neural implicit surfaces by volume rendering for multi-view reconstruction. In: NEURIPS (2021)

    Google Scholar 

  69. Wang, S., Schwarz, K., Geiger, A., Tang, S.: ARAH: animatable volume rendering of articulated human SDFS. In: Avidan, S., Brostow, G.J., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, Part XXXII. LNCS, vol. 13692, pp. 1–19. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_1

  70. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8798–8807 (2018)

    Google Scholar 

  71. Wang, Y., Gao, Q., Liu, L., Liu, L., Theobalt, C., Chen, B.: Neural novel actor: learning a generalized animatable neural representation for human actors. IEEE Trans. Visualiz. Comput. Graph. (2022). https://doi.org/10.48550/arXiv.2208.11905

  72. Wang, Y., Daniilidis, K.: Refit: recurrent fitting network for 3d human recovery. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14644–14654 (2023)

    Google Scholar 

  73. Weng, C., Curless, B., Srinivasan, P.P., Barron, J.T., Kemelmacher-Shlizerman, I.: Humannerf: free-viewpoint rendering of moving people from monocular video. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16189–16199 (2022). https://doi.org/10.1109/CVPR52688.2022.01573

  74. Xiu, Y., Yang, J., Cao, X., Tzionas, D., Black, M.J.: Econ: explicit clothed humans optimized via normal integration. Comput. Vision Pattern Recognit. (2022). https://doi.org/10.1109/CVPR52729.2023.00057

    Article  Google Scholar 

  75. Xiu, Y., Yang, J., Tzionas, D., Black, M.J.: Icon: implicit clothed humans obtained from normals. In: CVPR (2022)

    Google Scholar 

  76. Xu, H., Alldieck, T., Sminchisescu, C.: H-nerf: neural radiance fields for rendering and temporal reconstruction of humans in motion. In: NEURIPS (2021)

    Google Scholar 

  77. Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit surfaces. Adv. Neural. Inf. Process. Syst. 34, 4805–4815 (2021)

    Google Scholar 

  78. Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit surfaces. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 4805–4815. Curran Associates, Inc. (2021). https://proceedings.neurips.cc/paper_files/paper/2021/file/25e2a30f44898b9f3e978b1786dcd85c-Paper.pdf

  79. Yu, Z., Cheng, W., Liu, X., Wu, W., Lin, K.Y.: Monohuman: animatable human neural field from monocular video. In: CVPR (2023)

    Google Scholar 

  80. Yuan, Y., et al.: Gavatar: animatable 3d Gaussian avatars with implicit mesh learning. arXiv preprint arXiv:2312.11461 (2023)

  81. Zablotskaia, P., Siarohin, A., Zhao, B., Sigal, L.: Dwnet: dense warp-based network for pose-guided human video generation. arXiv preprint arXiv:1910.09139 (2019)

  82. Zhang, J., et al.: Editable free-viewpoint video using a layered neural representation. ACM Trans. Graph. 40(4), 1–18 (2021)

    Google Scholar 

  83. Zhao, F., et al.: Human performance modeling and rendering via neural animated mesh. ACM Trans. Graph. 41(6), 235:1–235:17 (2022). https://doi.org/10.1145/3550454.3555451

  84. Zheng, Z., Huang, H., Yu, T., Zhang, H., Guo, Y., Liu, Y.: Structured local radiance fields for human avatar modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15893–15903 (2022). https://openaccess.thecvf.com/content/CVPR2022/html/Zheng_Structured_Local_Radiance_Fields_for_Human_Avatar_Modeling_CVPR_2022_paper.html

  85. Zhu, H., Zhan, F., Theobalt, C., Habermann, M.: Trihuman: a real-time and controllable tri-plane representation for detailed human geometry and appearance synthesis. arXiv preprint arXiv:2312.05161 (2023)

  86. Zielonka, W., Bagautdinov, T., Saito, S., Zollhöfer, M., Thies, J., Romero, J.: Drivable 3D Gaussian avatars. arXiv preprint arXiv:2311.08581 [cs] (2023)

  87. Zielonka, W., Bolkart, T., Thies, J.: Instant volumetric head avatars. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, 17–24 June 2023, pp. 4574–4584. IEEE (2023). https://doi.org/10.1109/CVPR52729.2023.00444

Download references

Acknowledgements

We would like to express our sincere gratitude to Mr. Kobid Upadhyay for his invaluable assistance in creating the figure and rendering the 3D models in blender. His contributions have significantly enhanced the clarity and quality of our visual presentations.

We would also like to thank Alternative Technology (https://alternative.com.np) for providing us with an RTX 4090 for experimentation, which greatly facilitated our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramish Paudel .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5250 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paudel, P., Khanal, A., Paudel, D.P., Tandukar, J., Chhatkuli, A. (2025). iHuman: Instant Animatable Digital Humans From Monocular Videos. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15133. Springer, Cham. https://doi.org/10.1007/978-3-031-73226-3_18

Download citation

Keywords

Publish with us

Policies and ethics