Abstract
Current deep learning-based low-light image enhancement methods often struggle with high-resolution images, and fail to meet the practical demands of visual perception across diverse and unseen scenarios. In this paper, we introduce a novel approach termed CoLIE, which redefines the enhancement process through mapping the 2D coordinates of an underexposed image to its illumination component, conditioned on local context. We propose a reconstruction of enhanced-light images within the HSV space utilizing an implicit neural function combined with an embedded guided filter, thereby significantly reducing computational overhead. Moreover, we introduce a single image-based training loss function to enhance the model’s adaptability to various scenes, further enhancing its practical applicability. Through rigorous evaluations, we analyze the properties of our proposed framework, demonstrating its superiority in both image quality and scene adaptability. Furthermore, our evaluation extends to applications in downstream tasks within low-light scenarios, underscoring the practical utility of CoLIE. The source code is available at https://github.com/ctom2/colie.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Badizadegan, K., Wheeler, H.E., Fujinaga, Y., Lencer, W.I.: Trafficking of cholera toxin-ganglioside GM1 complex into Golgi and induction of toxicity depend on actin cytoskeleton. Am. J. Physiol.-Cell Physiol. 287(5), C1453–C1462 (2004). https://doi.org/10.1152/ajpcell.00189.2004. pMID: 15294854
Bychkovsky, V., Paris, S., Chan, E., Durand, F.: Learning photographic global tonal adjustment with a database of input/output image pairs. In: The Twenty-Fourth IEEE Conference on Computer Vision and Pattern Recognition (2011)
Cai, J., Gu, S., Zhang, L.: Learning a deep single image contrast enhancer from multi-exposure images. IEEE Trans. Image Process. 27(4), 2049–2062 (2018)
Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3291–3300 (2018)
Chen, W., Wenjing, W., Wenhan, Y., Jiaying, L.: Deep retinex decomposition for low-light enhancement. In: British Machine Vision Conference (2018)
Chen, Y., Liu, S., Wang, X.: Learning continuous image representation with local implicit image function. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8628–8638 (2021)
Deng, B., et al.: NASA neural articulated shape approximation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 612–628. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_36
Dong, X., et al.: Abandoning the bayer-filter to see in the dark. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17431–17440 (2022)
Fan, C.M., Liu, T.J., Liu, K.H.: Half wavelet attention on m-net+ for low-light image enhancement. In: 2022 IEEE International Conference on Image Processing (ICIP), pp. 3878–3882. IEEE (2022)
Fu, X., Zeng, D., Huang, Y., Zhang, X.P., Ding, X.: A weighted variational model for simultaneous reflectance and illumination estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2782–2790 (2016)
Fu, Z., Yang, Y., Tu, X., Huang, Y., Ding, X., Ma, K.K.: Learning a simple low-light image enhancer from paired low-light instances. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22252–22261 (2023)
Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T.: Local deep implicit functions for 3D shape. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4857–4866 (2020)
Genova, K., Cole, F., Vlasic, D., Sarna, A., Freeman, W.T., Funkhouser, T.: Learning shape templates with structured implicit functions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7154–7164 (2019)
Goldman, D.B.: Vignette and exposure calibration and compensation. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2276–2288 (2010)
Guo, C., Li, C., Guo, J., Loy, C.C., Hou, J., Kwong, S., Cong, R.: Zero-reference deep curve estimation for low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1780–1789 (2020)
Guo, X., Li, Y., Ling, H.: Lime: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016)
Hai, J., et al.: R2RNet: low-light image enhancement via real-low to real-normal network. J. Vis. Commun. Image Represent. 90, 103712 (2023)
Hao, S., Han, X., Guo, Y., Xu, X., Wang, M.: Low-light image enhancement with semi-decoupled decomposition. IEEE Trans. Multimedia 22(12), 3025–3038 (2020)
Huang, Y., Zha, Z.J., Fu, X., Hong, R., Li, L.: Real-world person re-identification via degradation invariance learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14084–14094 (2020)
Jia, M., Xu, J., Yang, R., Li, Z., Zhang, L., Wu, Y.: Three filters for the enhancement of the images acquired from fluorescence microscope and weak-light-sources and the image compression. Heliyon 9(9) (2023)
Jiang, Y., et al.: Enlightengan: deep light enhancement without paired supervision. IEEE Trans. Image Process. 30, 2340–2349 (2021)
Kim, H., Choi, S.M., Kim, C.S., Koh, Y.J.: Representative color transform for image enhancement. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4459–4468 (2021)
Kimmel, R., Elad, M., Shaked, D., Keshet, R., Sobel, I.: A variational framework for retinex. Int. J. Comput. Vision 52, 7–23 (2003)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Koh, J., Lee, J., Yoon, S.: BNUDC: a two-branched deep neural network for restoring images from under-display cameras. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1950–1959 (2022)
Land, E.H., McCann, J.J.: Lightness and retinex theory. Josa 61(1), 1–11 (1971)
Lee, J., Choi, K.P., Jin, K.H.: Learning local implicit fourier representation for image warping. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13678, pp. 182–200. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19797-0_11
Lee, J., Jin, K.H.: Local texture estimator for implicit representation function. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1929–1938 (2022)
Li, C., Qu, X., Gnanasambandam, A., Elgendy, O.A., Ma, J., Chan, S.H.: Photon-limited object detection using non-local feature matching and knowledge distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3976–3987 (2021)
Li, C., et al.: Embedding fourier for ultra-high-definition low-light image enhancement. In: ICLR (2023)
Li, C., et al.: Low-light image and video enhancement using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 9396–9416 (2021)
Li, L., Qiao, H., Ye, Q., Yang, Q.: Metadata-based raw reconstruction via implicit neural functions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18196–18205 (2023)
Li, M., Liu, J., Yang, W., Sun, X., Guo, Z.: Structure-revealing low-light image enhancement via robust retinex model. IEEE Trans. Image Process. 27(6), 2828–2841 (2018)
Liu, R., Ma, L., Zhang, J., Fan, X., Luo, Z.: Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10561–10570 (2021)
Liu, S., et al.: Grounding dino: marrying dino with grounded pre-training for open-set object detection. arXiv preprint arXiv:2303.05499 (2023)
Lore, K.G., Akintayo, A., Sarkar, S.: LLNet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recogn. 61, 650–662 (2017)
Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022)
Moran, S., Marza, P., McDonagh, S., Parisot, S., Slabaugh, G.: Deeplpf: deep local parametric filters for image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Naseer, M.M., Ranasinghe, K., Khan, S.H., Hayat, M., Shahbaz Khan, F., Yang, M.H.: Intriguing properties of vision transformers. In: Advances in Neural Information Processing Systems, vol. 34, pp. 23296–23308 (2021)
Ng, M.K., Wang, W.: A total variation model for retinex. SIAM J. Imag. Sci. 4(1), 345–365 (2011)
Peng, T., et al.: A basic tool for background and shading correction of optical microscopy images. Nat. Commun. 8(1) (2017). https://doi.org/10.1038/ncomms14836
Pizer, S.M.: Contrast-limited adaptive histogram equalization: speed and effectiveness stephen m. pizer, r. eugene johnston, james p. ericksen, bonnie c. yankaskas, keith e. muller medical image display research group. In: Proceedings of the First Conference on Visualization in Biomedical Computing, Atlanta, Georgia, vol. 337, p. 2 (1990)
Ren, X., Yang, W., Cheng, W.H., Liu, J.: LR3M: robust low-light enhancement via low-rank regularized retinex model. IEEE Trans. Image Process. 29, 5862–5876 (2020)
Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. In: Advances in Neural Information Processing Systems, vol. 33, pp. 7462–7473 (2020)
Smith, K., et al.: CIDRE: an illumination-correction method for optical microscopy. Nat. Methods 12(5), 404–406 (2015)
Sun, Y., Liu, J., Xie, M., Wohlberg, B.E., Kamilov, U.S.: CoIL: coordinate-based internal learning for imaging inverse problems. IEEE Trans. Comput. Imaging 7 (2021). https://doi.org/10.1109/TCI.2021.3125564. https://www.osti.gov/biblio/1883143
Wu, H., Zheng, S., Zhang, J., Huang, K.: Fast end-to-end trainable guided filter. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1838–1847 (2018)
Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: retinex-based deep unfolding network for low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5901–5910 (2022)
Xu, X., Wang, S., Wang, Z., Zhang, X., Hu, R.: Exploring image enhancement for salient object detection in low light images. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 17(1s), 1–19 (2021)
Yang, S., Ding, M., Wu, Y., Li, Z., Zhang, J.: Implicit neural representation for cooperative low-light image enhancement. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12918–12927 (2023)
Yang, W., Wang, S., Fang, Y., Wang, Y., Liu, J.: From fidelity to perceptual quality: a semi-supervised approach for low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3063–3072 (2020)
Yang, W., Wang, S., Fang, Y., Wang, Y., Liu, J.: From fidelity to perceptual quality: a semi-supervised approach for low-light image enhancement. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Yang, W., et al.: Advancing image understanding in poor visibility environments: a collective benchmark study. IEEE Trans. Image Process. 29, 5737–5752 (2020)
Zhang, Y., Guo, X., Ma, J., Liu, W., Zhang, J.: Beyond brightening low-light images. Int. J. Comput. Vision 129, 1013–1037 (2021)
Zhang, Y., Zhang, J., Guo, X.: Kindling the darkness: a practical low-light image enhancer. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1632–1640 (2019)
Zhang, Z., Zheng, H., Hong, R., Xu, M., Yan, S., Wang, M.: Deep color consistent network for low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1899–1908 (2022)
Zhao, L., Lu, S.P., Chen, T., Yang, Z., Shamir, A.: Deep symmetric network for underexposed image enhancement with recurrent attentional learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12075–12084 (2021)
Acknowledgements
Tomáš Chobola is supported by the Helmholtz Association under the joint research school “Munich School for Data Science - MUDS”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chobola, T., Liu, Y., Zhang, H., Schnabel, J.A., Peng, T. (2025). Fast Context-Based Low-Light Image Enhancement via Neural Implicit Representations. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15144. Springer, Cham. https://doi.org/10.1007/978-3-031-73016-0_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-73016-0_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73015-3
Online ISBN: 978-3-031-73016-0
eBook Packages: Computer ScienceComputer Science (R0)Springer Nature Proceedings Computer Science

