Skip to main content

Mitigating Background Shift in Class-Incremental Semantic Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Class-Incremental Semantic Segmentation (CISS) aims to learn new classes without forgetting the old ones, using only the labels of the new classes. To achieve this, two popular strategies are employed: 1) pseudo-labeling and knowledge distillation to preserve prior knowledge; and 2) background weight transfer, which leverages the broad coverage of background in learning new classes by transferring background weight to the new class classifier. However, the first strategy heavily relies on the old model in detecting old classes while undetected pixels are regarded as the background, thereby leading to the background shift towards the old classes (i.e., misclassification of old class as background). Additionally, in the case of the second approach, initializing the new class classifier with background knowledge triggers a similar background shift issue, but towards the new classes. To address these issues, we propose a background-class separation framework for CISS. To begin with, selective pseudo-labeling and adaptive feature distillation are to distill only trustworthy past knowledge. On the other hand, we encourage the separation between the background and new classes with a novel orthogonal objective along with label-guided output distillation. Our state-of-the-art results validate the effectiveness of these proposed methods. Our code is available at: https://github.com/RoadoneP/ECCV2024_MBS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
EUR 29.95
Price includes VAT (Netherlands)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 60.98
Price includes VAT (Netherlands)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 80.65
Price includes VAT (Netherlands)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cermelli, F., Mancini, M., Bulo, S.R., Ricci, E., Caputo, B.: Modeling the background for incremental learning in semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9233–9242 (2020)

    Google Scholar 

  2. Cha, S., Yoo, Y., Moon, T., et al.: Ssul: semantic segmentation with unknown label for exemplar-based class-incremental learning. Adv. Neural. Inf. Process. Syst. 34, 10919–10930 (2021)

    MATH  Google Scholar 

  3. Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.S.: Riemannian walk for incremental learning: understanding forgetting and intransigence. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 556–572. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_33

    Chapter  Google Scholar 

  4. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv preprint arXiv:1412.7062 (2014)

  5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  MATH  Google Scholar 

  6. Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)

    Google Scholar 

  7. Cheng, B., Schwing, A., Kirillov, A.: Per-pixel classification is not all you need for semantic segmentation. Adv. Neural. Inf. Process. Syst. 34, 17864–17875 (2021)

    Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. Dhar, P., Singh, R.V., Peng, K.C., Wu, Z., Chellappa, R.: Learning without memorizing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5138–5146 (2019)

    Google Scholar 

  10. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=YicbFdNTTy

  11. Douillard, A., Chen, Y., Dapogny, A., Cord, M.: Plop: learning without forgetting for continual semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4040–4050 (2021)

    Google Scholar 

  12. Douillard, A., Cord, M., Ollion, C., Robert, T., Valle, E.: PODNet: pooled outputs distillation for small-tasks incremental learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 86–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_6

    Chapter  Google Scholar 

  13. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vision 111, 98–136 (2015)

    Article  MATH  Google Scholar 

  14. French, R.M.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3(4), 128–135 (1999)

    Article  MATH  Google Scholar 

  15. Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., Lu, H.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)

    Google Scholar 

  16. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. Adv. Neural. Inf. Process. Syst. 33, 21271–21284 (2020)

    MATH  Google Scholar 

  17. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  18. Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incrementally via rebalancing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 831–839 (2019)

    Google Scholar 

  19. Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: Ccnet: criss-cross attention for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 603–612 (2019)

    Google Scholar 

  20. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, X., Zhou, Y., Wu, T., Socher, R., Xiong, C.: Learn to grow: a continual structure learning framework for overcoming catastrophic forgetting. In: International Conference on Machine Learning, pp. 3925–3934. PMLR (2019)

    Google Scholar 

  22. Lin, Z., Wang, Z., Zhang, Y.: Continual semantic segmentation via structure preserving and projected feature alignment. In: European Conference on Computer Vision. pp. 345–361. Springer (2022). https://doi.org/10.1007/978-3-031-19818-2_20

  23. Liu, Y., Schiele, B., Sun, Q.: Adaptive aggregation networks for class-incremental learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2544–2553 (2021)

    Google Scholar 

  24. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  25. Mallya, A., Lazebnik, S.: Packnet: adding multiple tasks to a single network by iterative pruning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7765–7773 (2018)

    Google Scholar 

  26. Maracani, A., Michieli, U., Toldo, M., Zanuttigh, P.: Recall: replay-based continual learning in semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7026–7035 (2021)

    Google Scholar 

  27. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: The sequential learning problem. In: Psychology of Learning and Motivation, vol. 24, pp. 109–165. Elsevier (1989)

    Google Scholar 

  28. Michieli, U., Zanuttigh, P.: Incremental learning techniques for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  29. Michieli, U., Zanuttigh, P.: Continual semantic segmentation via repulsion-attraction of sparse and disentangled latent representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1114–1124 (2021)

    Google Scholar 

  30. Phan, M.H., Phung, S.L., Tran-Thanh, L., Bouzerdoum, A., et al.: Class similarity weighted knowledge distillation for continual semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16866–16875 (2022)

    Google Scholar 

  31. Qiu, Y., et al.: Sats: self-attention transfer for continual semantic segmentation. Pattern Recogn. 138, 109383 (2023)

    Article  MATH  Google Scholar 

  32. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: icarl: incremental classifier and representation learning. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 2001–2010 (2017)

    Google Scholar 

  33. Robbins, H., Monro, S.: A stochastic approximation method. The annals of mathematical statistics, pp. 400–407 (1951)

    Google Scholar 

  34. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  MATH  Google Scholar 

  35. Seong, H.S., Moon, W., Lee, S., Heo, J.P.: Leveraging hidden positives for unsupervised semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19540–19549 (2023)

    Google Scholar 

  36. Shang, C., Li, H., Meng, F., Wu, Q., Qiu, H., Wang, L.: Incrementer: transformer for class-incremental semantic segmentation with knowledge distillation focusing on old class. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7214–7224 (2023)

    Google Scholar 

  37. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative replay. Adv. Neural Inform. Process. Syst. 30 (2017)

    Google Scholar 

  38. Siam, M., Elkerdawy, S., Jagersand, M., Yogamani, S.: Deep semantic segmentation for automated driving: Taxonomy, roadmap and challenges. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 1–8. IEEE (2017)

    Google Scholar 

  39. Strudel, R., Garcia, R., Laptev, I., Schmid, C.: Segmenter: transformer for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on computer vision, pp. 7262–7272 (2021)

    Google Scholar 

  40. Tiwari, R., Killamsetty, K., Iyer, R., Shenoy, P.: Gcr: gradient coreset based replay buffer selection for continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 99–108 (2022)

    Google Scholar 

  41. Wang, W., Zhou, T., Yu, F., Dai, J., Konukoglu, E., Van Gool, L.: Exploring cross-image pixel contrast for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7303–7313 (2021)

    Google Scholar 

  42. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer: simple and efficient design for semantic segmentation with transformers. Adv. Neural. Inf. Process. Syst. 34, 12077–12090 (2021)

    MATH  Google Scholar 

  43. Yan, S., Xie, J., He, X.: Der: dynamically expandable representation for class incremental learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3014–3023 (2021)

    Google Scholar 

  44. Yang, G., et al.: Uncertainty-aware contrastive distillation for incremental semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 45(2), 2567–2581 (2022)

    Article  MATH  Google Scholar 

  45. Yang, Z., et al.: Label-guided knowledge distillation for continual semantic segmentation on 2d images and 3d point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 18601–18612 (2023)

    Google Scholar 

  46. Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence. In: International Conference on Machine Learning, pp. 3987–3995. PMLR (2017)

    Google Scholar 

  47. Zhang, C.B., Xiao, J.W., Liu, X., Chen, Y.C., Cheng, M.M.: Representation compensation networks for continual semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7053–7064 (2022)

    Google Scholar 

  48. Zhao, H., Yang, F., Fu, X., Li, X.: Rbc: rectifying the biased context in continual semantic segmentation. In: European Conference on Computer Vision, pp. 55–72. Springer (2022). https://doi.org/10.1007/978-3-031-19830-4_4

  49. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ade20k dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 633–641 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by MSIT&KNPA/KIPoT (Police Lab 2.0, No. 210121M06), MSIT/IITP (No. 2022-0-00680, 2019-0-00421, 2020-0-01821, RS-2024-00437102), and SEMES-SKKU collaboration funded by SEMES. Gilhan Park acknowledges support from the Hyundai Motor Chung Mong-Koo Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Pil Heo .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1874 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, G., Moon, W., Lee, S., Kim, TY., Heo, JP. (2025). Mitigating Background Shift in Class-Incremental Semantic Segmentation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15108. Springer, Cham. https://doi.org/10.1007/978-3-031-72973-7_5

Download citation

Keywords

Publish with us

Policies and ethics