Abstract
3D Gaussian Splatting has garnered extensive attention and application in real-time neural rendering. Concurrently, concerns have been raised about the limitations of this technology in aspects such as point cloud storage, performance, and robustness in sparse viewpoints, leading to various improvements. However, there has been a notable lack of attention to the fundamental problem of projection errors introduced by the local affine approximation inherent in the splatting itself, and the consequential impact of these errors on the quality of photo-realistic rendering. This paper addresses the projection error function of 3D Gaussian Splatting, commencing with the residual error from the first-order Taylor expansion of the projection function. The analysis establishes a correlation between the error and the Gaussian mean position. Subsequently, leveraging function optimization theory, this paper analyzes the function’s minima to provide an optimal projection strategy for Gaussian Splatting referred to Optimal Gaussian Splatting, which can accommodate a variety of camera models. Experimental validation further confirms that this projection methodology reduces artifacts, resulting in a more convincingly realistic rendering.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5835–5844. IEEE (2021)
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF 360: unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5470–5479 (2022)
Buehler, C., Bosse, M., McMillan, L., Gortler, S.J., Cohen, M.F.: Unstructured lumigraph rendering. In: Pocock, L. (ed.) Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2001, Los Angeles, California, USA, 12–17 August 2001, pp. 425–432. ACM (2001). https://doi.org/10.1145/383259.383309
Cen, J., et al.: Segment any 3D Gaussians. arXiv preprint arXiv:2312.00860 (2023)
Chaurasia, G., Duchêne, S., Sorkine-Hornung, O., Drettakis, G.: Depth synthesis and local warps for plausible image-based navigation. ACM Trans. Graph. 32(3), 30:1–30:12 (2013). https://doi.org/10.1145/2487228.2487238
Chen, G., Wang, W.: A survey on 3D Gaussian splatting. arXiv preprint arXiv:2401.03890 (2024)
Chen, Y., et al.: GaussianEditor: swift and controllable 3D editing with Gaussian splatting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21476–21485 (2024)
Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5501–5510 (2022)
Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T.: Local deep implicit functions for 3D shape. In: CVPR (2020)
Goesele, M., Snavely, N., Curless, B., Hoppe, H., Seitz, S.M.: Multi-view stereo for community photo collections. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, Rio de Janeiro, Brazil, 14–20 October 2007, pp. 1–8. IEEE Computer Society (2007). https://doi.org/10.1109/ICCV.2007.4408933
Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: Fujii, J. (ed.) Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1996, New Orleans, LA, USA, 4–9 August 1996, pp. 43–54. ACM (1996). https://doi.org/10.1145/237170.237200
Guédon, A., Lepetit, V.: Sugar: surface-aligned gaussian splatting for efficient 3D mesh reconstruction and high-quality mesh rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5354–5363 (2024)
Hedman, P., Philip, J., Price, T., Frahm, J.M., Drettakis, G., Brostow, G.: Deep blending for free-viewpoint image-based rendering. ACM Trans. Graph. (ToG) 37(6), 1–15 (2018)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, 6–12 December 2020, Virtual (2020). https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
Jiang, C., Sud, A., Makadia, A., Huang, J., Nießner, M., Funkhouser, T.: Local implicit grid representations for 3D scenes. In: CVPR (2020)
Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D Gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4) (2023)
Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: benchmarking large-scale scene reconstruction. ACM Trans. Graph. (ToG) 36(4), 1–13 (2017)
Kopanas, G., Leimkühler, T., Rainer, G., Jambon, C., Drettakis, G.: Neural point catacaustics for novel-view synthesis of reflections. ACM Trans. Graph. 41(6), 201:1–201:15 (2022). https://doi.org/10.1145/3550454.3555497
Levoy, M., Hanrahan, P.: Light field rendering. In: Fujii, J. (ed.) Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1996, New Orleans, LA, USA, 4–9 August 1996, pp. 31–42. ACM (1996). https://doi.org/10.1145/237170.237199
Li, X., Wang, H., Tseng, K.K.: GaussianDiffusion: 3D Gaussian splatting for denoising diffusion probabilistic models with structured noise. arXiv preprint arXiv:2311.11221 (2023)
Luiten, J., Kopanas, G., Leibe, B., Ramanan, D.: Dynamic 3D Gaussians: tracking by persistent dynamic view synthesis. In: 2024 International Conference on 3D Vision (3DV), pp. 800–809. IEEE (2024)
Martin-Brualla, R., Radwan, N., Sajjadi, M.S.M., Barron, J.T., Dosovitskiy, A., Duckworth, D.: NeRF in the wild: neural radiance fields for unconstrained photo collections. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, Virtual, 19–25 June 2021, pp. 7210–7219. Computer Vision Foundation/IEEE (2021). https://doi.org/10.1109/CVPR46437.2021.00713
Matsuki, H., Murai, R., Kelly, P.H.J., Davison, A.J.: Gaussian splatting SLAM. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2024)
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: CVPR (2019)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24
Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (ToG) 41(4), 1–15 (2022)
Niedermayr, S., Stumpfegger, J., Westermann, R.: Compressed 3D Gaussian splatting for accelerated novel view synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10349–10358 (2024)
Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: learning implicit 3D representations without 3D supervision. In: CVPR (2019)
Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: CVPR (2019)
Radl, L., Steiner, M., Parger, M., Weinrauch, A., Kerbl, B., Steinberger, M.: StopThePop: sorted Gaussian splatting for view-consistent real-time rendering. ACM Trans. Graph. 43(4), 1–17 (2024)
Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–4113 (2016)
Sitzmann, V., Zollhoefer, M., Wetzstein, G.: Scene representation networks: continuous 3D-structure-aware neural scene representations. In: NeurIPS (2019)
Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. ACM Trans. Graph. 25(3), 835–846 (2006). https://doi.org/10.1145/1141911.1141964
Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data distribution. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8–14 December 2019, Vancouver, BC, Canada, pp. 11895–11907 (2019). https://proceedings.neurips.cc/paper/2019/hash/3001ef257407d5a371a96dcd947c7d93-Abstract.html
Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-based generative modeling through stochastic differential equations. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021. OpenReview.net (2021). https://openreview.net/forum?id=PxTIG12RRHS
Sun, C., Sun, M., Chen, H.: Direct voxel grid optimization: super-fast convergence for radiance fields reconstruction. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, 18–24 June 2022, pp. 5449–5459. IEEE (2022). https://doi.org/10.1109/CVPR52688.2022.00538
Takikawa, T., et al.: Neural geometric level of detail: real-time rendering with implicit 3D shapes. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, Virtual, 19–25 June 2021, pp. 11358–11367. Computer Vision Foundation/IEEE (2021). https://doi.org/10.1109/CVPR46437.2021.01120
Xiong, H., Muttukuru, S., Upadhyay, R., Chari, P., Kadambi, A.: SparseGS: real-time 360\(^{\circ }\) sparse view synthesis using Gaussian splatting. arXiv e-prints, pp. arXiv–2312 (2023)
Xu, Q., et al.: Point-NeRF: point-based neural radiance fields. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, 18–24 June 2022, pp. 5428–5438. IEEE (2022). https://doi.org/10.1109/CVPR52688.2022.00536
Yang, C., et al.: GaussianObject: just taking four images to get a high-quality 3D object with Gaussian splatting. arXiv preprint arXiv:2402.10259 (2024)
Yang, J., Pavone, M., Wang, Y.: FreeNeRF: improving few-shot neural rendering with free frequency regularization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8254–8263 (2023)
Yu, Z., Chen, A., Huang, B., Sattler, T., Geiger, A.: Mip-Splatting: alias-free 3D Gaussian splatting. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2024)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)
Zwicker, M., Pfister, H., Van Baar, J., Gross, M.: EWA splatting. IEEE Trans. Visual Comput. Graphics 8(3), 223–238 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Huang, L., Bai, J., Guo, J., Li, Y., Guo, Y. (2025). On the Error Analysis of 3D Gaussian Splatting and an Optimal Projection Strategy. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15075. Springer, Cham. https://doi.org/10.1007/978-3-031-72643-9_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-72643-9_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72642-2
Online ISBN: 978-3-031-72643-9
eBook Packages: Computer ScienceComputer Science (R0)Springer Nature Proceedings Computer Science
