Skip to main content

Formal XAI via Syntax-Guided Synthesis

  • Conference paper
  • First Online:
Bridging the Gap Between AI and Reality (AISoLA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14380))

Included in the following conference series:

  • 1568 Accesses

  • 2 Citations

Abstract

In this paper, we propose a novel application of syntax-guided synthesis to find symbolic representations of a model’s decision-making process, designed for easy comprehension and validation by humans. Our approach takes input-output samples from complex machine learning models, such as deep neural networks, and automatically derives interpretable mimic programs. A mimic program precisely imitates the behavior of an opaque model over the provided data. We discuss various types of grammars that are well-suited for computing mimic programs for tabular and image input data.

Our experiments demonstrate the potential of the proposed method: we successfully synthesized mimic programs for neural networks trained on the MNIST and the Pima Indians diabetes data sets. All experiments were performed using the SMT-based \(\texttt{cvc5}\;\)synthesis tool.

K. Bjørner and S. Judson—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
EUR 29.95
Price includes VAT (Netherlands)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 58.84
Price includes VAT (Netherlands)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 76.29
Price includes VAT (Netherlands)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that the mathematical expressions of the formula can easily be translated into a programming language such as Python.

  2. 2.

    https://github.com/kbjorner/synthesis.

References

  1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

    Article  Google Scholar 

  2. Ahmed, I., Jeon, G., Piccialli, F.: From artificial intelligence to explainable artificial intelligence in industry 4.0: a survey on what, how, and where. IEEE Trans. Ind. Inf. 18(8), 5031–5042 (2022)

    Article  Google Scholar 

  3. Alur, R., et al.: Syntax-guided synthesis. In: FMCAD, pp. 1–8. IEEE (2013)

    Google Scholar 

  4. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

    Article  Google Scholar 

  5. Ashok, P., Jackermeier, M., Křetínský, J., Weinhuber, C., Weininger, M., Yadav, M.: dtControl 2.0: explainable strategy representation via decision tree learning steered by experts. In: TACAS 2021. LNCS, vol. 12652, pp. 326–345. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72013-1_17

    Chapter  Google Scholar 

  6. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2022), pp. 415–442 (2022)

    Google Scholar 

  7. Bassan, S., Katz, G.: Towards formal XAI: formally approximate minimal explanations of neural networks. In: TACAS (1). Lecture Notes in Computer Science, vol. 13993, pp. 187–207. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-30823-9_10

  8. Cano Córdoba, F., et al.: Analyzing intentional behavior in autonomous agents under uncertainty. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23, pp. 372–381 (2023)

    Google Scholar 

  9. Carr, S., Jansen, N., Topcu, U.: Task-aware verifiable rnn-based policies for partially observable markov decision processes. J. Artif. Intell. Res. (JAIR) 72, 819–847 (2021)

    Article  MathSciNet  Google Scholar 

  10. Chaddad, A., Peng, J., Xu, J., Bouridane, A.: Survey of explainable AI techniques in healthcare. Sensors 23(2), 634 (2023)

    Article  Google Scholar 

  11. Chollet, F.: Simple MNIST convnet (2015). https://keras.io/examples/vision/mnist_convnet/. Accessed 19 July 2023

  12. Costa, V.G., Pedreira, C.E.: Recent advances in decision trees: an updated survey. Artif. Intell. Rev. 56(5), 4765–4800 (2023)

    Article  Google Scholar 

  13. Dierl, S., et al.: Learning symbolic timed models from concrete timed data. In: Rozier, K.Y., Chaudhuri, S. (eds.) NASA Formal Methods, vol. 13903, pp. 104–121. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33170-1_7

    Chapter  Google Scholar 

  14. Dwivedi, R., et al.: Explainable AI (XAI): core ideas, techniques, and solutions. ACM Comput. Surv. 55(9), 194:1–194:33 (2023)

    Google Scholar 

  15. Fathi, E., Shoja, B.M.: Deep neural networks for natural language processing. In: Handbook of Statistics, vol. 38, pp. 229–316. Elsevier (2018)

    Google Scholar 

  16. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. (CSUR) 51(5), 1–42 (2018)

    Article  Google Scholar 

  17. Gulwani, S., Harris, W.R., Singh, R.: Spreadsheet data manipulation using examples. Commun. ACM 55(8), 97–105 (2012)

    Article  Google Scholar 

  18. Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D.: Deep reinforcement learning that matters. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  19. Ignatiev, A.: Towards trustable explainable AI. In: Bessiere, C. (ed.) Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pp. 5154–5158 (2020). https://www.ijcai.org/

  20. Izza, Y., Huang, X., Ignatiev, A., Narodytska, N., Cooper, M.C., Marques-Silva, J.: On computing probabilistic abductive explanations. Int. J. Approx. Reason. 159, 108939 (2023)

    Article  MathSciNet  Google Scholar 

  21. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based program synthesis. In: 2010 ACM/IEEE 32nd International Conference on Software Engineering (ICSE 2010), vol. 1, pp. 215–224 (2010)

    Google Scholar 

  22. Jüngermann, F., Kretínský, J., Weininger, M.: Algebraically explainable controllers: decision trees and support vector machines join forces. CoRR arXiv:2208.1280 (2022)

  23. LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database (1998). http://yann.lecun.com/exdb/mnist. Accessed 13 Aug 2022

  24. Li, M., Chan, N., Chandra, V., Muriki, K.: Cluster usage policy enforcement using slurm plugins and an HTTP API. In: Jacobs, G.A., Stewart, C.A. (eds.) PEARC 2020: Practice and Experience in Advanced Research Computing, Portland, OR, USA, 27–31 July 2020, pp. 232–238. ACM (2020)

    Google Scholar 

  25. Liang, W., et al.: Advances, challenges and opportunities in creating data for trustworthy AI. Nat. Mach. Intell. 4(8), 669–677 (2022)

    Article  Google Scholar 

  26. Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In: NIPS, pp. 4765–4774 (2017)

    Google Scholar 

  27. Marques-Silva, J., Ignatiev, A.: Delivering trustworthy AI through formal XAI. In: AAAI, pp. 12342–12350. AAAI Press (2022)

    Google Scholar 

  28. Minh, D., Wang, H.X., Li, Y.F., Nguyen, T.N.: Explainable artificial intelligence: a comprehensive review. Artif. Intell. Rev., 1–66 (2022)

    Google Scholar 

  29. Mohsen, H., El-Dahshan, E.S.A., El-Horbaty, E.S.M., Salem, A.B.M.: Classification using deep learning neural networks for brain tumors. Future Comput. Inf. J. 3(1), 68–71 (2018)

    Article  Google Scholar 

  30. Molnar, C.: Interpretable Machine Learning, 2 edn. (2022). https://christophm.github.io/interpretable-ml-book

  31. Morton, K., Hallahan, W.T., Shum, E., Piskac, R., Santolucito, M.: Grammar filtering for syntax-guided synthesis. In: AAAI, pp. 1611–1618. AAAI Press (2020)

    Google Scholar 

  32. Neider, D., Ghosh, B.: Probably approximately correct explanations of machine learning models via syntax-guided synthesis. arXiv preprint arXiv:2009.08770 (2020)

  33. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  34. Ranjbar, N., Safabakhsh, R.: Using decision tree as local interpretable model in autoencoder-based LIME. In: CSICC, pp. 1–7. IEEE (2022)

    Google Scholar 

  35. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why Should I Trust You?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2016), pp. 1135–1144 (2016)

    Google Scholar 

  36. Shih, A., Choi, A., Darwiche, A.: A symbolic approach to explaining bayesian network classifiers. In: Lang, J. (ed.) Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, Stockholm, Sweden, 13–19 July 2018, pp. 5103–5111 (2018). https://www.ijcai.org/

  37. Smith, J.W., Everhart, J.E., Dickson, W., Knowler, W.C., Johannes, R.S.: Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. In: Proceedings of the Annual Symposium on Computer Application in Medical Care (1988)

    Google Scholar 

  38. Tappler, M., Aichernig, B.K., Bacci, G., Eichlseder, M., Larsen, K.G.: L\({}^{\text{* }}\)-based learning of markov decision processes (extended version). Formal Aspects Comput. 33(4–5), 575–615 (2021)

    Article  MathSciNet  Google Scholar 

  39. Verma, A., Murali, V., Singh, R., Kohli, P., Chaudhuri, S.: Programmatically interpretable reinforcement learning. In: International Conference on Machine Learning (ICML), pp. 5045–5054. PMLR (2018)

    Google Scholar 

  40. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harvard J. Law Technol. 31, 841 (2017)

    Google Scholar 

  41. Wang, F., Cao, Z., Tan, L., Zong, H.: Survey on learning-based formal methods: taxonomy, applications and possible future directions. IEEE Access 8, 108561–108578 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part from the European Union’s Horizon 2020 research and innovation programme under grant agreement N\(^\circ \) 956123 - FOCETA, by the State Government of Styria, Austria - Department Zukunftsfonds Steiermark, by the United States Office of Naval Research (ONR) through a National Defense Science and Engineering (NDSEG) Graduate Fellowship, and by the United States National Science Foundation (NSF) award CCF-2131476. The authors thank Benedikt Maderbacher and William Hallahan for their assistance with SyGuS encodings, and Timos Antonopoulos for his helpful comments on an earlier draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Cano .

Editor information

Editors and Affiliations

Appendix

Appendix

Fig. 8.
figure 8

Decision logic representation for an MNIST mimic program \(P_{f,100}\), showing the progression of pixel comparisons.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bjørner, K. et al. (2024). Formal XAI via Syntax-Guided Synthesis. In: Steffen, B. (eds) Bridging the Gap Between AI and Reality. AISoLA 2023. Lecture Notes in Computer Science, vol 14380. Springer, Cham. https://doi.org/10.1007/978-3-031-46002-9_7

Download citation

Keywords

Publish with us

Policies and ethics