Abstract
The efficient, automated search for well-performing neural architectures (NAS) has drawn increasing attention in the recent past. Thereby, the predominant research objective is to reduce the necessity of costly evaluations of neural architectures while efficiently exploring large search spaces. To this aim, surrogate models embed architectures in a latent space and predict their performance, while generative models for neural architectures enable optimization-based search within the latent space the generator draws from. Both, surrogate and generative models, have the aim of facilitating query-efficient search in a well-structured latent space. In this paper, we further improve the trade-off between query-efficiency and promising architecture generation by leveraging advantages from both, efficient surrogate models and generative design. To this end, we propose a generative model, paired with a surrogate predictor, that iteratively learns to generate samples from increasingly promising latent subspaces. This approach leads to very effective and efficient architecture search, while keeping the query amount low. In addition, our approach allows in a straightforward manner to jointly optimize for multiple objectives such as accuracy and hardware latency. We show the benefit of this approach not only w.r.t. the optimization of architectures for highest classification accuracy but also in the context of hardware constraints and outperform state-of-the-art methods on several NAS benchmarks for single and multiple objectives. We also achieve state-of-the-art performance on ImageNet. The code is available at https://github.com/jovitalukasik/AG-Net.
J. Lukasik and S. Jung—Authors contributed equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bender, G., Kindermans, P., Zoph, B., Vasudevan, V., Le, Q.V.: Understanding and simplifying one-shot architecture search. In: ICML (2018)
Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(10), 281–305 (2012)
Cai, H., Zhu, L., Han, S.: ProxylessNAS: direct neural architecture search on target task and hardware. In: ICLR (2019)
Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)
Chen, W., Gong, X., Wang, Z.: Neural architecture search on ImageNet in four GPU hours: a theoretically inspired perspective. In: ICLR (2021)
Chen, X., Xie, L., Wu, J., Tian, Q.: Progressive differentiable architecture search: bridging the depth gap between search and evaluation. In: ICCV (2019)
Chrabaszcz, P., Loshchilov, I., Hutter, F.: A downsampled variant of ImageNet as an alternative to the CIFAR datasets. CoRR abs/1707.08819 (2017)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)
Dong, X., Yang, Y.: One-shot neural architecture search via self-evaluated template network. In: ICCV (2019)
Dong, X., Yang, Y.: Nas-bench-201: extending the scope of reproducible neural architecture search. In: ICLR (2020)
Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20(1), 1997–2017 (2019)
Goodfellow, I.J., et al.: Generative adversarial networks. arXiv preprint arXiv:1406.2661 (2014)
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: ICCV (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Huang, S., Chu, W.: Searching by generating: flexible and efficient one-shot NAS with architecture generator. In: CVPR (2021)
Kandasamy, K., Neiswanger, W., Schneider, J., Póczos, B., Xing, E.P.: Neural architecture search with bayesian optimisation and optimal transport. In: NIPS (2018)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)
Klyuchnikov, N., Trofimov, I., Artemova, E., Salnikov, M., Fedorov, M., Burnaev, E.: NAS-Bench-NLP: neural architecture search benchmark for natural language processing. CoRR abs/2006.07116 (2020)
Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)
Li, C., et al.: HW-NAS-Bench: hardware-aware neural architecture search benchmark. In: ICLR (2021)
Li, L., Talwalkar, A.: Random search and reproducibility for neural architecture search. In: UAI (2019)
Li, Y., Vinyals, O., Dyer, C., Pascanu, R., Battaglia, P.W.: Learning deep generative models of graphs. CoRR abs/1803.03324 (2018)
Liu, C., et al.: Progressive neural architecture search. In: ECCV (2018)
Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search (2019)
Lukasik, J., Friede, D., Zela, A., Hutter, F., Keuper, M.: Smooth variational graph embeddings for efficient neural architecture search. In: IJCNN (2021)
Luo, R., Tian, F., Qin, T., Chen, E., Liu, T.: Neural architecture optimization. In: NeurIPS (2018)
Mehta, Y., et al.: NAS-bench-suite: NAS evaluation is (now) surprisingly easy. CoRR abs/2201.13396 (2022)
Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., Khudanpur, S.: Recurrent neural network based language model. In: Kobayashi, T., Hirose, K., Nakamura, S. (eds.) INTERSPEECH 2010, 11th Annual Conference of the International Speech Communication Association, Makuhari, Chiba, Japan, 26–30 September 2010 (2010)
Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via parameter sharing. In: ICML (2018)
Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: AAAI (2019)
Real, E., et al.: Large-scale evolution of image classifiers. In: ICML (2017)
Rezaei, S.S.C., et al.: Generative adversarial neural architecture search. In: IJCAI (2021)
Rolínek, M., Musil, V., Paulus, A., P., M.V., Michaelis, C., Martius, G.: Optimizing rank-based metrics with blackbox differentiation. In: CVPR (2020)
Ru, B., Wan, X., Dong, X., Osborne, M.: Interpretable neural architecture search via bayesian optimisation with Weisfeiler-Lehman kernels (2021)
Shi, H., Pi, R., Xu, H., Li, Z., Kwok, J.T., Zhang, T.: Multi-objective neural architecture search via predictive network performance optimization. CoRR abs/1911.09336 (2019)
Siems, J., Zimmer, L., Zela, A., Lukasik, J., Keuper, M., Hutter, F.: Nas-bench-301 and the case for surrogate benchmarks for neural architecture search. CoRR abs/2008.09777 (2020)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2014)
Snoek, J., et al.: Scalable bayesian optimization using deep neural networks. In: ICML (2015)
Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the Inception architecture for Computer Vision. In: CVPR (2016)
Tripp, A., Daxberger, E., Hernández-Lobato, J.M.: Sample-efficient optimization in the latent space of deep generative models via weighted retraining. In: NeurIPS (2020)
Wen, W., Liu, H., Chen, Y., Li, H.H., Bender, G., Kindermans, P.: Neural predictor for neural architecture search. In: ECCV (2020)
White, C., Neiswanger, W., Nolen, S., Savani, Y.: A study on encodings for neural architecture search. In: NeurIPS (2020)
White, C., Neiswanger, W., Savani, Y.: Bananas: bayesian optimization with neural architectures for neural architecture search. In: AAAI (2021)
White, C., Nolen, S., Savani, Y.: Exploring the loss landscape in neural architecture search (2021)
White, C., Zela, A., Ru, B., Liu, Y., Hutter, F.: How powerful are performance predictors in neural architecture search? (2021)
Wu, J., et al.: Stronger NAS with weaker predictors. In: NeurIPS (2021)
Xie, S., Zheng, H., Liu, C., Lin, L.: SNAS: stochastic neural architecture search. In: ICLR (2019)
Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In: ICLR (2019)
Xu, Y., et al.: PC-DARTS: partial channel connections for memory-efficient architecture search. In: ICLR (2020)
Yan, S., White, C., Savani, Y., Hutter, F.: NAS-bench-x11 and the power of learning curves (2021)
Yan, S., Zheng, Y., Ao, W., Zeng, X., Zhang, M.: Does unsupervised architecture representation learning help neural architecture search? In: NeurIPS (2020)
Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., Hutter, F.: NAS-bench-101: towards reproducible neural architecture search. In: ICML (2019)
Zela, A., Elsken, T., Saikia, T., Marrakchi, Y., Brox, T., Hutter, F.: Understanding and robustifying differentiable architecture search. In: ICLR (2020)
Zhang, M., Jiang, S., Cui, Z., Garnett, R., Chen, Y.: D-VAE: a variational autoencoder for directed acyclic graphs. In: NIPS (2019)
Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: ICLR (2017)
Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: CVPR (2018)
Acknowledgment
JL and MK acknowledge the German Federal Ministry of Education and Research Foundation via the project DeToL.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lukasik, J., Jung, S., Keuper, M. (2022). Learning Where to Look – Generative NAS is Surprisingly Efficient. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13683. Springer, Cham. https://doi.org/10.1007/978-3-031-20050-2_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-20050-2_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20049-6
Online ISBN: 978-3-031-20050-2
eBook Packages: Computer ScienceComputer Science (R0)Springer Nature Proceedings Computer Science
