Abstract
Understanding human activities and urban mobility patterns is key to solving many urban issues such as congestion and emissions. With the abundant data sets available at different levels of fidelity, one of the main challenges is the sparsity and heterogeneity of data sources. The integration of such data sources is essential to better inform system design and community-level strategies. In this paper, we incorporate a variety of data sources including land use, vehicle emissions and building footprint to comprehensively visualize and analyze traffic patterns in the Chicago Loop area. We first implement and compare three different nearest-neighbor-search algorithms to determine building occupancy assignment, and then perform a spatial-temporal correlation analysis of vehicle emissions focusing on factors such as land use, public transit and demographic. Lastly, we discuss the traffic characteristics from data analysis, such as traffic congestion formation and rush hours etc.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
EPA. Fast Facts U.S. Transportation Sector Greenhouse Gas Emissions 1990–2018 (2018). https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions
Williams, M.D., Thayer, G., Smith, L.: Technical Report LA-UR-9782 (1997)
National household travel survey. https://nhts.ornl.gov/
EPA. Motor vehicle emission simulator (MOVES) (2014). https://www.epa.gov/moves/latest-version-motor-vehicle-emission-simulator-moves
Microsoft. U.S. building footprints (2018). https://github.com/Microsoft/USBuildingFootprints
CMAP. Land use data. https://www.cmap.illinois.gov/data/land-use
CMAP. 2010 census data summarized to chicago community areas (2010). https://www.cmap.illinois.gov/data/land-use
CMAP. Community data snapshots raw data, July 2020 release (2020). https://datahub.cmap.illinois.gov/dataset/community-data-snapshots-raw-data
OpenStreetMap. https://www.openstreetmap.org
U.S. Government’s open data. https://www.data.gov/
Weather underground. https://www.wunderground.com/
Chicago data portal. https://data.cityofchicago.org/
Richardson, I., Thomson, M., Infield, D.: Energy and Buildings 40(8), 1560 (2008). https://doi.org/10.1016/j.enbuild.2008.02.006. http://www.sciencedirect.com/science/article/pii/S0378778808000467
McKenna, E., Krawczynski, M., Thomson, M.: Energy and Buildings 96, 30 (2015). https://doi.org/10.1016/j.enbuild.2015.03.013. http://www.sciencedirect.com/science/article/pii/S0378778815002054
Berres, A., Im, P., Kurte, K., Allen-Dumas, M., Thakur, G., Sanyal, J.: In: IEEE International Conference on Big Data (Big Data), pp. 3887–3895. IEEE (2019)
Shiva Nagendra, S., Khare, M.: Transportation Research Part D: Transport and Environment 8(4), 285 (2003). https://doi.org/10.1016/S1361-9209(03)00006-3. http://www.sciencedirect.com/science/article/pii/S1361920903000063
Huang, W., Xu, S., Yan, Y., Zipf, A.: Cities 84, p. 8 (2019). https://doi.org/10.1016/j.cities.2018.07.001. http://www.sciencedirect.com/science/article/pii/S0264275118302786
Bandeira, J.M., Coelho, M.C., Sá, M.E., Tavares, R., Borrego, C.: Science of the Total Environment 409(6), 1154 (2011). https://doi.org/10.1016/j.scitotenv.2010.12.008. http://www.sciencedirect.com/science/article/pii/S0048969710013112
Namdeo, A., Mitchell, G., Dixon, R.: Environmental Modelling & Software 17(2), 177 (2002). https://doi.org/10.1016/S1364-8152(01)00063-9. http://www.sciencedirect.com/science/article/pii/S1364815201000639
Gualtieri, G., Tartaglia, M.: Transportation Research Part D: Transport and Environment 3(5), 329 (1998). https://doi.org/10.1016/S1361-9209(98)00011-X. http://www.sciencedirect.com/science/article/pii/S136192099800011X
Bhatia, N., et al.: arXiv preprint arXiv:1007.0085 (2010)
Kamel, I., Faloutsos, C.: In: Proceedings of the Second International Conference on Information and Knowledge Management, pp. 490–499 (1993)
INRIX a smart way to drive (2016). URL https://inrix.com/mobile-apps/. INRIX Inc
He, F., Yan, X., Liu, Y., Ma, L.: Green intelligent transportation system and safety. Procedia Eng. 100(137), 11–12 (2016). https://doi.org/10.1016/j.proeng.2016.01.277. http://www.sciencedirect.com/science/article/pii/S1877705816003040
Oesterreicher, F., Vajda, I.: Ann. Insts. Stat. Math. 55, 639 (2003). https://doi.org/10.1007/BF02517812
McGhee, J.: Chicago commute is 2rd longest, but less stressful than in many cities (2017)
Acknowledgement
This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1727785 (Hu), CMMI-1853913 (Wang), and USDOT Dwight D. Eisenhower Fellowship program under Grant No. 693JJ31945012 (Wang).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Qu, A., Wang, Y., Hu, Y., Wang, Y., Baroud, H. (2020). A Data-Integration Analysis on Road Emissions and Traffic Patterns. In: Nichols, J., Verastegui, B., Maccabe, A.‘., Hernandez, O., Parete-Koon, S., Ahearn, T. (eds) Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI. SMC 2020. Communications in Computer and Information Science, vol 1315. Springer, Cham. https://doi.org/10.1007/978-3-030-63393-6_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-63393-6_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63392-9
Online ISBN: 978-3-030-63393-6
eBook Packages: Computer ScienceComputer Science (R0)Springer Nature Proceedings Computer Science