Abstract
This article presents a robust Morse theory-based framework for segmenting 3D X-ray computed tomography image (CT) and computing the fabric, relative arrangement of particles, of granular ensembles. The framework includes an algorithm for computing the segmentation, a data structure for storing the segmentation and representing both individual particles and the connectivity network, and visualizations of topological descriptors of the CT image that enable interactive exploration. The Morse theory-based framework produces superior quality segmentation of a granular ensemble as compared to prior approaches based on the watershed transform. The accuracy of the connectivity network also improves. Further, the framework supports the efficient computation of various distribution statistics on the segmentation and the connectivity network. Such a comprehensive characterization and quantification of the fabric of granular ensembles is the first step towards a multiple length scale understanding of the behavior.
Graphic abstract

















Similar content being viewed by others
References
Andò, E.: Experimental Investigation of Microstructural Changes in Deforming Granular Media Using X-ray Tomography. Theses, Université de Grenoble (2013)
Andò, E., Hall, S.A., Viggiani, G., Desrues, J., Bésuelle, P.: Experimental micromechanics: grain-scale observation of sand deformation. Géotech. Lett. 2(3), 107–112 (2012). https://doi.org/10.1680/geolett.12.00027
Andò, E., Hall, S.A., Viggiani, G., Desrues, J., Bésuelle, P.: Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach. Acta Geotech. 7(1), 1–13 (2012). https://doi.org/10.1007/s11440-011-0151-6
Baule, A., Morone, F., Herrmann, H.J., Makse, H.A.: Edwards statistical mechanics for jammed granular matter. Rev. Mod. Phys. 90(1), 015006 (2018)
Bernal, J., Mason, J.: Packing of spheres: co-ordination of randomly packed spheres. Nature 188(4754), 910–911 (1960)
Bhatia, H., Gyulassy, A.G., Lordi, V., Pask, J.E., Pascucci, V., Bremer, P.T.: Topoms: comprehensive topological exploration for molecular and condensed-matter systems. J. Comput. Chem. 39(16), 936–952 (2018)
Burland, J.B.: On the compressibility and shear strength of natural clays. Géotechnique 40(3), 329–378 (1990). https://doi.org/10.1680/geot.1990.40.3.329
Chan, T., Vese, L.: An active contour model without edges. In: International conference on scale-space theories in computer vision, pp. 141–151. Springer (1999)
Chazal, F., Michel, B.: An introduction to topological data analysis: fundamental and practical aspects for data scientists. arXiv preprint arXiv:1710.04019 (2017)
Delgado-Friedrichs, O., Robins, V., Sheppard, A.: Skeletonization and partitioning of digital images using discrete morse theory. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 654–666 (2014)
Desrues, J., Chambon, R., Mokni, M., Mazerolle, F.: Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Géotechnique 46(3), 529–546 (1996). https://doi.org/10.1680/geot.1996.46.3.529
Donev, A., Connelly, R., Stillinger, F.H., Torquato, S.: Underconstrained jammed packings of nonspherical hard particles: Ellipses and ellipsoids. Phys. Rev. E 75(5), 051304 (2007)
Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Soc (2010)
Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci., V.: Morse-Smale complexes for piecewise linear 3-manifolds. In: Proc. 19th Ann. symposium on computational geometry, pp. 361–370 (2003)
Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse complexes for piecewise linear 2-manifolds. In: Proceedings of the seventeenth annual symposium on computational geometry, pp. 70–79 (2001)
Fonseca, J., O‘Sullivan, C., Coop, M.R., Lee, P.D.: Non-invasive characterization of particle morphology of natural sands. Soils Found. 52(4), 712–722 (2012). https://doi.org/10.1016/j.sandf.2012.07.011
Forman, R.: A user‘s guide to discrete morse theory. Sém. Lothar. Combin. 48, 35 (2002)
Günther, D., Boto, R.A., Contreras-Garcia, J., Piquemal, J.P., Tierny, J.: Characterizing molecular interactions in chemical systems. IEEE Trans. Vis. Comput. Graphics 20(12), 2476–2485 (2014)
Gyulassy, A., Duchaineau, M., Natarajan, V., Pascucci, V., Bringa, E., Higginbotham, A., Hamann, B.: Topologically clean distance fields. IEEE Trans. Vis. Comput. Graphics 13(6), 1432–1439 (2007)
Hall, S.A., Bornert, M., Desrues, J., Pannier, Y., Lenoir, N., Viggiani, G., Bésuelle, P.: Discrete and continuum analysis of localised deformation in sand using x-ray micro-CT and volumetric digital image correlation. Géotechnique 60(5), 315–322 (2010). https://doi.org/10.1680/geot.2010.60.5.315
Hasan, A., Alshibli, K.: Three dimensional fabric evolution of sheared sand. Granul. Matter 14(4), 469–482 (2012). https://doi.org/10.1007/s10035-012-0353-0
Herring, A., Robins, V., Sheppard, A.: Topological persistence for relating microstructure and capillary fluid trapping in sandstones. Water Resour. Res. 55(1), 555–573 (2019)
Hsieh, J.: Computed Tomography: Principles, Design, Artifacts And Recent Advances. SPIE press (2003)
Imseeh, W.H., Druckrey, A.M., Alshibli, K.A.: 3d experimental quantification of fabric and fabric evolution of sheared granular materials using synchrotron micro-computed tomography. Granul. Matter (2018). https://doi.org/10.1007/s10035-018-0798-x
Kader, M., Brown, A., Hazell, P., Robins, V., Escobedo, J., Saadatfar, M.: Geometrical and topological evolution of a closed-cell aluminium foam subject to drop-weight impact: an x-ray tomography study. Int. J. Impact Eng 139, 103510 (2020)
Kong, D., Fonseca, J.: Quantification of the morphology of shelly carbonate sands using 3d images. Géotechnique 68(3), 249–261 (2018). https://doi.org/10.1680/jgeot.16.P.278
Krissian, K., Westin, C.F.: Fast and accurate redistancing for level set methods. Comput. Aided Syst. Theory (EUROCAST’03) pp. 48–51 (2003)
Matsumoto, Y.: An Introduction to Morse Theory. Amer. Math. Soc.: Translated from Japanese by K. Hudson and M, Saito (2002)
McCormick, M.M., Liu, X., Ibanez, L., Jomier, J., Marion, C.: Itk: enabling reproducible research and open science. Front. Neuroinform. 8, 13 (2014)
Meyer, F., Beucher, S.: Morphological segmentation. J. Vis. Commun. Image Represent. 1(1), 21–46 (1990)
Oda, M.: Initial fabrics and their relations to mechanical properties of granular material. Soils Found. 12(1), 17–36 (1972)
Oda, M.: Fabric tensor for discontinuous geological materials. Soils Found. 22(4), 96–108 (1982). https://doi.org/10.3208/sandf1972.22.4_96
Oda, M., Konishi, J., Nemat-Nasser, S.: Experimental micromechanical evaluation of strength of granular materials: Effects of particle rolling. Mech. Mater. 1(4), 269–283 (1982). https://doi.org/10.1016/0167-6636(82)90027-8
Oda, M., Nemat-Nasser, S., Konishi, J.: Stress-induced anisotropy in granular masses. Soils Found. 25(3), 85–97 (1985). https://doi.org/10.3208/sandf1972.25.3_85
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)
Robins, V., Wood, P.J., Sheppard, A.P.: Theory and algorithms for constructing discrete morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646–1658 (2011)
Roerdink, J.B., Meijster, A.: The watershed transform: Definitions, algorithms and parallelization strategies. Fundamenta Informa. 41(1, 2), 187–228 (2000)
Saadatfar, M., Takeuchi, H., Robins, V., Francois, N., Hiraoka, Y.: Pore configuration landscape of granular crystallization. Nat. Commun. 8(1), 1–11 (2017)
Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit, 4th edn. kitware, New York (2006)
Shivashankar, N., Natarajan, V.: Parallel computation of 3D Morse-Smale complexes. Comput. Graph. Forum 31(3), 965–974 (2012)
Shivashankar, N., Natarajan, V.: Efficient software for programmable visual analysis using Morse-Smale complexes. Topol. Methods Data Anal. Visual. (2017). https://doi.org/10.1007/978-3-319-44684-4_19
Shivashankar, N., Pranav, P., Natarajan, V., van de Weygaert, R., Bos, E.P., Rieder, S.: Felix: a topology based framework for visual exploration of cosmic filaments. IEEE Trans. Visual Comput. Graphics 22(6), 1745–1759 (2015)
Singh, S.: Weakly cemented granular materials: study at multiple length scales. Ph.D. thesis, Indian Institute of Science, Bengaluru, Department of Civil Engineering (2020)
Singh, S., Miers, J., Saldana, C., Murthy, T.: Quantification of fabric in cemented granular materials. Comput. Geotech. 125, 103644 (2020). https://doi.org/10.1016/j.compgeo.2020.103644
Soille, P.: Morphological Image Analysis: Principles and Applications. Springer (1999)
Sowers, G.B., Sowers, G.F.: Introductory soil mechanics and foundations. LWW (1951). https://doi.org/10.1097/00010694-195111000-00014
Van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E., Yu, T.: scikit-image: image processing in python. PeerJ 2, e453 (2014)
Wiebicke, M., Andò, E., Šmilauer, V., Herle, I., Viggiani, G.: A benchmark strategy for the experimental measurement of contact fabric. Granul. Matter 21(3), 1–13 (2019). https://doi.org/10.1007/s10035-019-0902-x
Yang, Z.X., Li, X.S., Yang, J.: Quantifying and modelling fabric anisotropy of granular soils. Géotechnique 58(4), 237–248 (2008). https://doi.org/10.1680/geot.2008.58.4.237
Zheng, J., Hryciw, R.D.: Segmentation of contacting soil particles in images by modified watershed analysis. Comput. Geotech. 73, 142–152 (2016). https://doi.org/10.1016/j.compgeo.2015.11.025
Acknowledgements
This work is supported by an Indo-Swedish joint network Project (DST/ INT/ SWD/VR/P-02/2019) and Swedish Research Council (VR) Grant 2018-07085 and the VR Grant 2019-05487. KP and VN are partially supported by a Swarnajayanti Fellowship from the Department of Science and Technology, India (DST/SJF/ETA-02/2015-16) and a Mindtree Chair research grant.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Pandey, K., Bin Masood, T., Singh, S. et al. Morse theory-based segmentation and fabric quantification of granular materials. Granular Matter 24, 27 (2022). https://doi.org/10.1007/s10035-021-01182-7
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1007/s10035-021-01182-7


