Merging Inductive Relations

JACOB PRINZ, University of Maryland, USA
LEONIDAS LAMPROPOULQOS, University of Maryland, USA

Inductive relations offer a powerful and expressive way of writing program specifications while facilitating
compositional reasoning. Their widespread use by proof assistant users has made them a particularly attractive
target for proof engineering tools such as QuickChick, a property-based testing tool for Coq which can
automatically derive generators for values satisfying an inductive relation. However, while such generators
are generally efficient, there is an infrequent yet seemingly inevitable situation where their performance
greatly degrades: when multiple inductive relations constrain the same piece of data.

In this paper, we introduce an algorithm for merging two such inductively defined properties that share an
index. The algorithm finds shared structure between the two relations, and creates a single merged relation
that is provably equivalent to the conjunction of the two. We demonstrate, through a series of case studies,
that the merged relations can improve the performance of automatic generation by orders of magnitude, as
well as simplify mechanized proofs by getting rid of the need for nested induction and tedious low-level
book-keeping.

CCS Concepts: « Software and its engineering — Software testing and debugging.
Additional Key Words and Phrases: inductive relations, merging, QuickChick

ACM Reference Format:
Jacob Prinz and Leonidas Lampropoulos. 2023. Merging Inductive Relations. Proc. ACM Program. Lang. 7, PLDI,
Article 178 (June 2023), 20 pages. https://doi.org/10.1145/3591292

1 INTRODUCTION

When using a proof assistant such as Coq [Coq Development Team 2021] or Agda [Norell 2008],
proof engineers generally reach for inductive relations to express their specifications. When
developing such specifications, having access to a testing tool that can quickly uncover errors before
embarking on potentially costly proof efforts can be invaluable, which has led to the development
of multiple such tools [Bulwahn 2012a; Chamarthi et al. 2011; Eastlund 2009; Lindblad 2007]. Most
recently, Paraskevopoulou et al. [2022] extended QuickChick [Lampropoulos and Pierce 2018], the
property-based testing tool for Coq, with facilities that specifically target inductive relations. In
particular, given an inductive relation P, they showed how to automatically derive both a generator
that produces random data satisfying P, as well as a partial decision procedure for P, allowing for
rapid testing feedback. These derived generators are generally extremely efficient, with minimal
overheads compared to handwritten generators that produce the same distribution. However, as
their use became more widespread, one problem became increasingly apparent: when multiple
inductive relations constrain the same piece of data, derived generators can only take one such
relation into account during generation, with severe implications for generation performance.
For concreteness, consider the type of binary trees in Coq [Coq Development Team 2021] with
labels at the nodes, and an encoding of binary search trees, satisfying the search invariant: for every

Authors’ addresses: Jacob Prinz, jacobeliasprinz@gmail.com, University of Maryland, College Park, USA; Leonidas Lam-
propoulos, leonidas@umd.edu, University of Maryland, College Park, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/6-ART178

https://doi.org/10.1145/3591292

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 178. Publication date: June 2023.

https://doi.org/10.1145/3591292
https://doi.org/10.1145/3591292

178:2 Jacob Prinz and Leonidas Lampropoulos

node with label x, every label in the left subtree is smaller than x and every label in the right is
larger than x:

Inductive Tree A :=
| Leaf : Tree A
| Node : A -> Tree A -> Tree A -> Tree A.

Inductive bst : nat -> nat -> Tree nat -> Prop :=
| bst_leaf : forall lo hi, bst lo hi Leaf
| bst_node : forall lo hi x 1 r,

lo < x < hi ->

bst 1o x 1 -> bst x hi r >

bst 1o hi (Node x 1 r).

This bst relation characterizes binary search trees with elements between lower and greater bounds
lo and hi: Leafs are always valid search trees, while Nodes satisfy the invariant if the label is between
lo and hi and its subtrees are valid search trees recursively with appropriately adjusted bounds.

A theorem one might want to prove about such trees is that inserting an element in the tree
preserves this search invariant, as long as the element being inserted is also between the lower and
higher bounds:

Theorem insert_preserves_bst :
forall x 1o hi t, 1o < x < hi ->
bst 1o hi t -> bst lo hi (insert x t).

The work of Paraskevopoulou et al. [2022] can be used to automatically derive efficient generators
and checkers for the bst inductive relation:

Derive Generator for (fun t => bst lo hi t).
Derive Checker for (bst lo hi t).

These commands define appropriate typeclass instances that allow for generating a tree t such
that bst 1o hi t holds for given lo and hi, and for checking whether bst 1o hi t holds when all
three arguments are given. These instances can then be used to quickly uncover any errors before
attempting a proof: !

QuickChick insert_preserves_bst.
+++ Passed 10000 tests (@ discards)
Time Elapsed: 0.56s
Size Statistics: 0: 37.5%, 1: 12.5%, 2: 10%, ..., 6: 10%

QuickChick can quickly generate thousands of valid binary search trees, with a healthy distribution
over various depths (albeit slightly skewed towards smaller ones). Indeed, given any inductive rela-
tion indexed by simply typed first-order data, QuickChick can generally derive efficient generators
and checkers to automate the testing process.

But what happens when there are additional constraints on the values to be generated? What if,
instead of binary search trees, our development involved AVL trees, which need to also be balanced:

Inductive bal : nat -> Tree -> Prop :=

| bal_leaf@ : bal @ Leaf

| bal_leaf1 : bal 1 Leaf

| bal_node : forall n t1 t2 m, bal n t1 -> bal n t2 -> bal (S n) (Node m t1 t2).

IFor presentation purposes, we have formatted the output of QuickChick to be more readable.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 178. Publication date: June 2023.

Merging Inductive Relations 178:3

Here, the inductive relation bal n t characterizes binary trees t whose every path from root to a
Leaf has length n-1 or n.

The straightforward way to define AVL trees would be to simply take the conjunction of bst and
bal. The insertion property of interest would then become:

Theorem insert_preserves_avl :
forall x lo hi t, lo < x < hi ->
bst 1o hi t -=> bal h t ->
bst lo hi (insert x t) /\ exists h' (bal h' (insert x t)).

How would one go about testing this property using the automatically derived generators? We
could either:

e generate trees t that are binary search trees and check if they are balanced, or
e generate trees t that are balanced and check whether they are valid search trees.

Only then could we check that the result of the insertion is a valid AVL tree.
Unfortunately, neither approach is anywhere close to being reasonably efficient—in fact, their
performance renders testing with them essentially ineffective:

(* Generate bsts, check if balanced: *)
*%xx Gave up! Passed only 2720 tests
Discarded: 20000
Time Elapsed: 1.31s
Size Statistics: @: 72.5%, 1: 25%, 2+: 2.5%
(* Generate balanced trees, check if bst: *)
**xx Gave up! Passed only 5726 tests
Discarded: 20000
Time Elapsed: 0.30s
Size Statistics: @: 35%, 1: 50%, 2: 15%

Either approach can only generate trivial valid trees, while wasting a lot of generation effort
producing larger but invalid ones. The main issue is that both relations are too sparsely inhabited to
be ignored during generation.

So what can we do? Current property-based testing practice dictates that users write, by hand,
a generator that produces trees that are both balanced and valid search trees. However, that can
be tedious and error-prone, and lies in stark contrast with QuickChick’s intended goal of quickly
checking if a goal is false before embarking on a proof effort.

An alternative approach would be to require that users write a single inductive relation that
incorporates both properties. Unfortunately, that is also not ideal: this is a very non-compositional
approach that does not allow for component reuse, separate reasoning, and can quickly become
unwieldy. But, setting user-friendliness aside for a moment, what if we did have access to such a
relation?

(* Generate balanced binary search trees directly: *)
+++ Passed 10000 tests (@ discards)
Time Elapsed: 0.95s
Size Statistics: 0: 14.3%, ..., 6: 14.3%

It would completely solve all problems with the derived generator!

Naturally, one might wonder: could we automatically obtain such an inductive relation that is
the conjunction of two others? That is precisely the main contribution of this paper. We develop an
algorithm for merging inductive relations (like bst and bal) into a single relation that is provably

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 178. Publication date: June 2023.

178:4 Jacob Prinz and Leonidas Lampropoulos

equivalent to their conjunction, but often far more useful: for testing purposes, it can lead to
dramatic speedups of multiple orders of magnitude; for proving purposes, it provides a more
powerful induction principle that can be used for hassle-free reasoning.

Our approach is not a panacea: it remains (for now) up to the user to identify cases where merging
inductives could be useful and explicitly invoke it. Moreover, when the recursive structure of the
inductive relations is fundamentally different, it will provide little benefit in terms of generation.
Still, in this paper we identify multiple cases where it does provide substantial benefit. In particular,
we offer the following contributions:

e We develop an algorithm for merging two inductive relations into a single one that is
equivalent to (but more useful than) their conjunction and implement this algorithm in Coq,
using QuickChick’s metaprogramming facilities (Section 2).

e We provide a generic proof script that, given two inductive relations P and Q that have been
merged into a single one PQ, proves the equivalence of PQ to the conjunction of P and Q,
showing in the process that the induction principle obtained is easier to work with (Section 3).

e We demonstrate through a series of case studies that generators derived for a merged inductive
relation can be more efficient than generators that don’t take both relations into account by
orders of magnitude, and that the merging algorithm can apply to a wide range of inductive
relations (Section 4).

We discuss limitations of our approach in Section 5.1 and related work in Section 6, before concluding
and drawing directions for future work in Section 7.

2 THE ALGORITHM
In this section, we present an algorithm which merges inductive relations of the form:

InductiveR(A1 — ... > Ay :Type) : T4 —» ... = T, — Prop:=
|C1 :Vxl cee Xfes (R1 €11 ...)—>...—>R61 ... €en |

We assume, just like Paraskevopoulou et al., that inductive relations can take an any number of type
parameters and any number of (simply typed) indices which may depend on those type parameters.
Each of the constructors C; of the inductive relation can universally quantify over any number of
(independent) variables x;. Each constructor may also constrain these variables via any number
of (potentially recursive) inductive relations R;. This class of inductive relations covers the vast
majority of inductive relations of interest [2022], but it leaves out some potentially interesting ones,
as it rules out higher-order constraints or existentially quantified variables from the premises of
the constructors.

2.1 Formal Problem Statement

Given two inductive relations P: Tqgy — ... > Ty > T > Propand Q : Tg; — ... — Ip, —
T — Prop of this form, where the last index is of the same type, our goal will be to produce an
inductive relation PQ of type Tay — ... — Tay, — Ty — ... — Ipy — T — Prop thatis

equivalent to the conjunction of the two:
V(ai:TAi)(b,-:TBi)(t:T), Pay ... apt A Qb] byt = PQa; ... a, by ... byt

That is, if the relations P and Q hold for some number of unshared indices a; ... a, and by ... by,
and a single shared index t, then so will PQ for the same indices and vice-versa.

In the rest of this section, we present our algorithm for merging two relations. Our actual
implementation can operate on arbitrarily positioned indices—the only requirement is that the
types in these positions unify. For presentation purposes, however, we will assume that the index

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 178. Publication date: June 2023.

Merging Inductive Relations 178:5

we’re merging over is in the last position and that its type is T. Next, in Section 3, we describe how
to prove the formal equivalence above, using the Coq proof assistant.

Of course, the merging problem can be trivially solved by simply taking the conjunction of P
and Q. Instead, we would like PQ to have more interesting recursive structure, without mentioning
P or Q if possible. We demonstrate that our algorithm has this property empirically in Section 4.

2.2 The Algorithm, by Example

Suppose that we have some term t and some terms a; and b; for which both P a; ... a, t and
Q by ... by, t are inhabited. That means that there must be some constructor from P and some
constructor from Q which create witnesses to these properties. However, not all pairs of constructors
can create elements parameterized by the same term ¢.

For example, in the introduction, we looked at bst and bal as two relations over trees. Suppose that
we would like to merge these into a single relation AVL: nat -> nat -> nat -> Tree nat -> Prop.
How could a Tree t satisfy both bst and bal? Looking at their definitions, there are intuitively two
ways that can happen: either ¢ is a Leaf, and the constructors bst_leaf (from bst) and bal_leaf@ or
bal_leaf1 (from bal) were used; or ¢ is a Node and the constructors bst_node and bal_node were used.
The remaining constructor combinations cannot be used as their conclusions have incompatible
shapes—a Leaf and a Node can never construct the same tree. This naturally gives rise to unification
as the core mechanism used to determine which constructors of P and Q could conceivably create
elements indexed by the same term.

Each such compatible pair of constructors from P and Q will then give rise to a constructor
for PQ that captures the constraints that they impose. In our AVL example, that will lead to the
following relation:

Merge (fun t => bst lo hi t) With (fun t => bal n t) As AVL.

Inductive AVL : nat -> nat -> nat -> Tree nat -> Prop :=
| bst_leaf_bal_leaf@ :
forall lo hi : nat, AVL lo hi @ Leaf
| bst_leaf_bal_leaf1
forall lo hi : nat, AVL lo hi 1 Leaf
| bst_node_bal_node :
forall (n : nat) (1 r : Tree nat) (x lo hi : nat),
lo<x<hi->AVL loxnl->AVL x hi nr ->
AVL 1o hi (S n) (Node x 1 r).

Notably, the pairs of recursive calls to bst and bal on the left and right subtrees have been merged
into a single call to AVL.

2.3 Unification

The first building block of the merging algorithm is unification, which lets us both prune incompat-
ible pairs of constructors (as described above), and allows us to relate variables that can appear in
the different constructors. Looking back at our running example, the Node constructors have the
following conclusions:

bst_node : ... -> bst lo hi (Node x 1 r)
bal_node : ... -> bal (S n) (Node m t1 t2)

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 178. Publication date: June 2023.

178:6 Jacob Prinz and Leonidas Lampropoulos

The two trees in their conclusions can be made equal using a substitution {m x,t1 + [, 12 +— r}.
In the general case, we will consider terms that can contain variables, constructors, and applica-
tions, as any functions that appear in those positions can be rewritten as equality constraints by
QuickChick [Paraskevopoulou et al. 2022].

Formally, unification inputs two terms and outputs a substitution, or a mapping from variables
to terms, such that the two terms are equal under that substitution. If such a substitution doesn’t
exist, it simply outputs fail. The following pseudocode represents this computation: a variable can
unify with any expression in which it doesn’t occur free (other than itself), two constructors can
unify if they are equal, and two applications need to unify in both the function and the argument.

unify : Term — Term — Maybe Sub

unify x x = {}

unify x e = if x occurs in e then fail else {x — e}

unify e x = if x occurs in e then fail else {x — e} (1)
unify CC’ = if C = C’ then {} else fail

unify (e; e2) (e] e;) =let o = unify e; e; in o U (unify (o e2) (o ey))

unify __ =fail

2.4 Merging Constructors

Armed with unification, given two relations P and Q, we can find all pairs of constructors (cp, cg)
which could possibly produce elements parameterized by the same shared parameter. The merged
relation PQ will need to have one constructor corresponding to each of these pairs, cpp. We can
therefore reduce our goal of generating all of PQ to a simpler subproblem: generating a single
constructor cpp from constructors cp and cg, given a substitution o that makes their conclusions
equal.

To that end, we can decompose the type of a constructor c of a relation P as a quintuple:

o A set of forall-quantified variables v, such as lo, hi,x,1, and r in bst_node.

e A set of recursive constraints rs over these variables, such as bst 1o x 1and bst x hi rin
bst_node.

e A set of non-recursive constraints os, such as 1o < x < hi in bst_node.

e The list of not-shared terms in its conclusion as, such as 1o and hi in bst_node (these take the
form of a list rather than a set because indices need to be put back in the correct order later).

e The shared term in its conclusion t, such as Node x 1 r in bst_node.

Given two such constructors cp = (vp, rsp, 0sp, asp, tp) and cgo = (v, s, 050, asp, tp), we need to
produce a new quintuple to serve as a constructor in PQ. This construction is shown in Algorithm 1.

First, we unify the two shared terms tp and tg. If it fails, this pair of constructors doesn’t need to
be merged. If successful, this yields a substitution o, a mapping from some variables in vp U vg
to terms. This substitution must then be applied to all possible terms (rs, os, as, and t) in both
constructor representations. In particular, after applying this substitution, o(tp) = o(tp), and this
term is the shared term for the conclusion of the merged constructor. Moreover, the set of variables
quantified over in the new merged constructor is the union of the sets of variables quantified in cp
or cp, excluding those that were substituted away by unification. The non-shared parameters of
the new constructor are simply the concatenation of those of cp and c¢ after substitution.

What remains is figuring out what to do with the recursive and non-recursive constraints of the
two input constructors. The latter is straightforward—every non-recursive constraint that appears

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 178. Publication date: June 2023.

Merging Inductive Relations 178:7

Algorithm 1. Merging Two Constructors

Inputs Two constructors cp = (vp, 'sp, 0sp, asp, tp) and cg = (vg, rsg, 050, aso, to)
Output The merged constructor cpg or failure.
1: 0 « unify tp to
2: t:=o(tp)
3: as = o(asp) U o(asp)
4: v:=0vpUug \ dom(o)
5: 08 := g(osp) U a(osg) Ua(rsp) Ua(rsg)
6: rs =10
7. forrp=Pay ... ants € o(rsp),ro= Qb1 ... by tp € o(rsp) do
8 if t, = t;, then
9: os:=os\ {rp,ro}
10: rs:=rsU{PQaj ... ap by ... by, t,}
11: return (v,rs, 0s,as, t)

in either cp or cg should also appear in their merge, so we simply take their union post-substitution
and place them in cpg.

To tackle recursive constraints, a first naive approach would be to also add the recursive con-
straints rsp and rsg to the non-recursive (as they’re now referring to a different inductive than
that for which they are part of its definition) constraints of the new merged constructor. But that
would not result in interesting shared recursive structure, and therefore would not facilitate testing
or proving. However, looking back at our problem definition, if we have some constraint in rsp
of type P a; ... a, t and another constraint in rsg of type Q by ... by, t, that is equivalent to
PQay ... ay by ... by t. Therefore, the final step of the merging algorithm is to look at the sets of
recursive constraints from cp and cp, find all matching pairs whose shared parameter is equal, and
construct a single recursive constraint for cpp from each pair. Any remaining recursive constraints
from the original constructors can then be added to the non-recursive arguments of cpp.

2.5 Unchanged Shared Parameters

While the algorithm above can handle the majority of cases of interest, there is an interesting
interaction (or rather lack of) when a constructor treats the shared index more like a parameter—
that is, it does not change across recursive calls. Consider, for instance, inequality over natural
numbers defined as a relation:

Inductive less : nat -> nat -> Prop :=
| less_n : forall n, less nn
| less_S : forall m n, less nm -> less n (S m).

Suppose that we want to merge this relation with itself to create a relation a < x < b for a fixed
a and b—this naturally comes up in the bst example itself as the constraint on the value of a Node!
We could do so by merging less a x with less x b, exploiting the fact that our implementation
doesn’t actually require the merge to be over the last index.

Unfortunately, the merging procedure in this case is less useful, yielding the following relation,
where between a b choldsifa <c¢ < b:

Inductive between : nat -> nat -> nat -> Prop :=
| less_n_less_n :
forall n' : nat, between n' n

n .

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 178. Publication date: June 2023.

178:8 Jacob Prinz and Leonidas Lampropoulos

| less_S_less_n :
forall m n : nat, less n m -> between n (S m) (S m)
| less_n_less_S :
forall m n' : nat, less n' m -> between n' (S m) n'
| less_S_less_S :
forall m" m n : nat, less (Sm) m' -> less n m -> between n (S m') (S m.

The relation is not recursive, and instead simply refers back to the original less relation.

However, a simple extension of the algorithm can help, based on the following key idea: since the
less_S constructor does not change its first parameter at all, it does not need to interact with the
other relation it is being merged with. More generally, suppose that our relation P has a constructor
with one recursive input, and it does not change the shared parameter from that input to its output.
That is cp is of the form:

.—>Pa ...apt—>...>Paj ... a,t

for some parameters g; and a;.
Recall our original correctness criterion on general relations P and Q:

V(a; : Ta;)(b; : Tgi)(¢:T), Pay ... ant A Qby ... byt &< PQay ... apby ... by t
This means that the implication in cp can be lifted into an implication about PQ:
.—>PQay ...anby ...byt—>...>PQaj ...a,b ... byt
As a result, we can add a constructor of this type to PQ, which fully accounts for the effect of cp,
and therefore we don’t need to merge it with any constructors of Q.
Using this trick to deal with the less_S constructor for the right-hand less to be merged, we can

perform unification on the remaining pairs of constructors, yielding the following improved result.
The less_S constructor is transformed into the less_S' constructor below:

Inductive between : nat -> nat -> nat -> Prop :=

| less_S' : forall x m n : nat, between x m n -> between x (S m) n
| less_Sless_n : forall m n : nat, less n m -> between n (S m) (S m)
| less_nless_n : forall n' : nat, between n' n' n'.

While this relation isn’t quite as nice as it might be if written by a human (less_Sless_n and
less_nless_n could be combined and simplified), it is recursive and useful for generation and
proving purposes.

2.6 Putting it All Together

Assembling all the individual pieces together, our complete algorithm for merging two inductive
relations is shown in Algorithm 2. First, we identify opportunities to lift constructors of P (lines
2-6) and Q (lines 7-11) as described in Section 2.5. Then, for every remaining pair of constructors
we invoke Algorithm 1 (lines 12-13), adding a constructor to our result for each one. Finally, we
return the resulting list of constructor representations for PQ (line 14).

3 REASONING ABOUT AND WITH MERGED RELATIONS

While the algorithm described in the previous section intuitively results in a merged relation that
should be equivalent to the conjunction of the two input relations, our implementation using
QuickChick’s metaprogramming facilities [Lampropoulos 2018] involves quite intricate manipu-
lations of Coq’s internal data representations. To ensure the correctness of our implementation,
reasoning about the implementation itself is essentially infeasible: the metaprogramming facilities
that allow for a maintainable implementation are all written in OCaml, without formally verified

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 178. Publication date: June 2023.

Merging Inductive Relations 178:9

Algorithm 2. Merging Two Inductive Relations

Input Two lists of constructor representations for P and Q
Output A list of constructor representations for PQ

1: PQ = []

2: for each ¢ = (v,rs,0s,as’,t) € P do

3: if rs = [P as t] then

4: bs := ug fresh variables

5: PQ :=PQU (v +bs, [PQ as bs t],0s,as’ + bs,)
6: P:=P \ c

7: for each ¢ = (v,rs,0s,bs’,t) € Q do

8: if rs = [Q bs t] then

9: as := up fresh variables
10: PQ := PQU (v +as, [PQ as bs t],o0s,as + bs’, t)
11: Q:=0\¢
12: for each (cp,cp) € Px Q do
13: PQ := PQ Umerge_constructors cp cp
14: return PQ

counterparts. Instead, we settled for the next best approach: translation validation [Pnueli et al.
1998].

For each merged inductive relation, we automatically prove (via generic proof scripts) soundness
and completeness of the merge: that the merged inductive relation implies the conjunction of the two
input inductive relations, and vice-versa. We then demonstrate that having access to the merged
inductive relation can simplify proof developments, via a case study on proving the correctness of
an efficient AVL tree search function.

3.1 Soundness and Completeness

Given two inductive relations P : (Ta; ...T : Prop) and Q : (Tg; ...T : Type) of the form
described in the previous section, we showed how to produce an inductive relation PQ of type
Tpgy ... Tg1...— T — Prop.

We can now state two theorems about the behavior of the derived relation PQ:

THEOREM 3.1. Soundness: V¥ ta; tgj t,PQ ta; tgjt — Piait AQipjt
Proor. By straightforward induction on the proof of PQ. O
THEOREM 3.2. Completeness: ¥ ta; tpj t,Pta;t ANQtpjt — PQta;tp;t

Proor. By induction on the proof of P, followed by a nested induction on the proof of Q, and
finally using the inductive definition of PQ. O

Proof Script Details. > While the high level structure of the proof of soundness is fairly simple, the
proof of completeness has a nested induction which requires additional low-level manipulations of
the context in the general case.

For concreteness, let’s revisit our AVL example from the introduction. First, we merge the bst
and bal inductive relations:

Merge (fun t => bst lo hi t) With (fun t => bal n t) As AVL.

2This subsection can be safely skipped by a reader who is not interested in low-level details of Coq proofs.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 178. Publication date: June 2023.

178:10 Jacob Prinz and Leonidas Lampropoulos

Then we can state and prove the soundness theorem:

Theorem AVL_sound :
forall 1o hi n t, AVL 1o hi n t -> bst 1o hi t /\ bal n t.
Proof. merge_sound. Qed.

...and the completeness theorem:

Theorem AVL_complete :
forall lo hi t, bst lo hi t -> forall n, bal nt -> AVL 1lo hi n t.
Proof. merge_complete. Qed.

Focusing on the details of the completeness proof, after the first induction on bst and context
manipulation, we’re left (amongst other things) with a hypothesis of type bal n (Node x 1 r)
that we would ideally want to induct on. However, as seasoned Coq users should expect at this
point, the fact that the tree is not a variable but a concrete Node constructor stands in the way—
we first need to generalize it but remember its shape. This is a standard trick [Pierce et al. 2018]
when a straightforward proof is all that is required. However, we wanted to provide general proof
scripts (merge_sound and merge_complete) to discharge all soundness and completeness theorems
on merged relations.

To that end we turned to metaprogramming: we wrote a wrapper around the induction tactic
(in OCaml), that first walks down the arguments of the hypothesis to be inducted upon and
generalizes any arguments that are not abstract variables. Armed with this remember_induct tactic,
we were able to construct the desired proof scripts, and discharge all soundness and theorems
that we encountered. We opted for an OCaml implementation rather than Ltac2 to implement this
(independently interesting!) tactic, since as of the time of writing this, generalize dependent was
not supported by Ltac2, but also because we believe this tactic could be independently useful for
Coq users.

3.2 Case Study

The first indication that the merged inductives lend themselves better to reasoning is the difference
in complexity of the soundness and completeness proofs: establishing the conjunction of the two
original relations from the merged one is a straightforward induction, but the other way around
requires nested induction and tedious low-level context manipulation. To further explore their
effectiveness, we turn to our running AVL tree example and attempt to prove the correctness of an
efficient search.

First, we specify tree membership with a straightforward traversal of the entire tree:

Fixpoint member (x : nat) (t : Tree) : bool :=
match t with
| Leaf => false
| Node x' 1 r => (x =? x') || member x 1 || member x r
end.

Then we write a version that relies on the search tree invariant to only search in one of the two
subtrees of the node, and we include a fuel to allow for reasoning about the upper bound of recursive
calls that need to be performed:

Fixpoint bst_search (fuel : nat) (x : nat) (t : Tree) : bool :=
match n with
| 0 => false
| S fuel' =>

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 178. Publication date: June 2023.

Merging Inductive Relations 178:11

match t with
| Leaf => false
| Node x' 1 r => if x <? x' then bst_search fuel' x 1
else if x' <? x then bst_search fuel' x r
else true
end
end.

Finally, we state (and prove) our desired correctness theorem, that the efficient search agrees
with member with a minimal amount of fuel:

Theorem bst_bal_search_member :
forall n lo hi x t,
bst 1o hi t =>bal nt -> lo < x -> x < hi ->
bst_search n x t = member x t.

We can also state the same theorem with a single precondition using AVL.

Just like when proving soundness and completeness of the merged relation, proving directly
with AVL as the hypothesis allows for a straightforward inductive proof, while having both bst and
bal requires a nested induction and similar low-level context manipulation. Alternatively, we could
apply the completeness theorem first to simplify the rest of the proof. Overall, the merged inductive
relation gives rise to an inductive hypothesis that lends itself to proof terms with a simpler recursive
structure than the conjunction of the two original inductive relations.

4 EVALUATION

In this section, we demonstrate that using a merged inductive relation gives a significant perfor-
mance boost to generation. We first demonstrate that the throughput of derived generators can
increase by orders of magnitude through three case studies, using AVL trees, Red-Black Trees, and
linear well-typed terms. Then, we show that our algorithm (and proofs) largely give useful results
by merging a series of list-based inductive relations.

4.1 Case Study: AVL Trees

Consider once again the example of AVL trees from the introduction. Using QuickChick, we derived
three generators for AVL trees: one using the merged AVL relation, and two which generated
terms satisfying one of bst or bal and checked against the other. Each generated tree t satisfies
bst @ 1000 t and bal d t for some depth d. In Figure 1, we plot the number of (valid) trees that
are successfully generated per second as a function of this depth. At a high enough depth, even
after 100000 attempts, each generator failed to produce any trees, and we include data points up to
the maximum depth which worked for each generator.

Particularly interesting is QuickChick’s treatment of the inequality generation: generating x such
that 1o < x < hi for given lo and hi. The default generator for this inductive relation skews heavily
towards the low numbers which leads to less than ideal coverage of the input space. However,
QuickChick leverages its flexible typeclass infrastructure to provide a simple yet more effective
such generator: choose (lo, hi), which uniformly distributes x in the desired range. To provide a
detailed account of the generator’s performance, we show the throughput of the merged inductive
relation both with, and without this improvement. This improvement could also affect bst-first
generation so we show that combination as well, although in practice it doesn’t help much.

We find that the merged inductive relation performs better than the generate-and-test variants
even without using choose. More importantly, when using the standard choose combinator, the
derived generator for merged AVL trees can generate thousands of AVL trees per second of depth

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 178. Publication date: June 2023.

178:12 Jacob Prinz and Leonidas Lampropoulos

140000
120000 merged
A 100000 @ bst-first
g
o] 80000 = bal-first
Z
Q 60000 - B - merged-custom-
= choose
40000 = @ - bst-first-custom-
choose
20000
-
0 |- -
5 6 7
Fig. 1. Throughput of valid AVL tree generation.
300000
250000 —— merged
=t rr-first
& 200000
% e st-first
|S)
w
150000
< —eo— bh-first
=
= 100000 = B - merged-custom-choose
= A= - bst-first-custom-choose
50000
0 R

4 5
BLACK HEIGHT

Fig. 2. Throughput of various generators for red-black trees.

up to 7. In contrast, the generate-and-check variants are essentially unable to generate non-trivial
trees, as even at depth 4 a random bst won’t be balanced, and a random balanced tree won’t satisfy
the search invariant.

3Due to the balance requirement, every depth increment roughly doubles the size of trees that are being generated, which
becomes the bottleneck after a while.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 178. Publication date: June 2023.

Merging Inductive Relations 178:13

(* Colors and Trees *)
Inductive color :=

| red : color

| black : color.

Inductive tree :=
| leaf : tree
| node : color -> nat -> tree -> tree -> tree.

(* No red node has a red child *)
Inductive rr : color -> tree -> Prop :=
| rbt_leaf : forall c, rr c leaf
| rbt_black_node : forall c1 c2 t1 t2 n,
rr ¢l t1 -> rr c2 t2 -> rr black (node black n t1 t2)
| rbt_red_node : forall t1 t2 n,
rr black t1 -> rr black t2 -> rr red (node red n t1 t2).

(* Enforces the black height of the tree *)
Inductive bh : nat -> tree -> Prop :=
| bh_leaf : bh 1 leaf
| bh_red_node : forall t1 t2 h n,
bh h t1 -> bh h t2 -> bh h (node red n t1 t2)
| bh_black_node : forall t1 t2 h n,
bh h t1 -> bh h t2 -> bh (S h) (node black n t1 t2).

Fig. 3. Red-black tree inductive definitions

4.2 Case Study: Red-Black Trees

A red-black tree is a binary tree where each node has a color and a number, satisfying three
conditions: (1) no red node has a red child, (2) every path from a root to a leaf goes through the
same number of black nodes (its black height), and (3) the tree satisfies the search tree invariant. *

We can represent each of these three properties with an inductive relation. Figure 3 shows the
inductive definitions involved (bst is elided for brevity as it is almost identical to the one earlier in
the paper, with the exception that the Node constructor now takes an additional color argument).

We can merge all three of these relations together by invoking the merging algorithm twice,
resulting in the code shown in Figure 4.

From these relations, we derived four generators: one using the merged rbt relation, and three
which generate elements of one relation and check against the other two. In Figure 2, we plot the
throughput of the various generators as a function of the black height of trees generated. Once
again, we include all heights for which generators were able to produce any trees within 100000
attempts, and include the performance with and without choose. We find an even more substantial
performance increase here: only the merged generator had any hope of producing non-trivial
red-black trees of black height greater than two.

4While (1) and (2) can in principle be written as one, we opted for this presentation to demonstrate that our merging
algorithm can be used recursively to merge more than two relations.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 178. Publication date: June 2023.

178:14 Jacob Prinz and Leonidas Lampropoulos

Merge (fun t => rr ¢ t) With (fun t => bh ¢ t) As red_black.
Merge (fun t => red_black color height t) With (fun t => bst lo hi t) As rbt.

Inductive rbt : color -> nat -> nat -> nat -> tree -> Prop :=
| rbt_leafbh_leafbst_leaf : forall lo hi c,
rbt ¢ 1 lo hi leaf
| rbt_black_nodebh_black_nodebst_node : forall lo hi x 1 r h cl1 c2,
lo < x<hi->rbtclhloxl1l->
rbt c2 h x hi r -> rbt black (S h) lo hi (node black x 1 r)
| rbt_red_nodebh_red_nodebst_node : forall lo hi x 1 r h,
lo < x < hi -> rbt black h 1o x 1 ->
rbt black h x hi r -> rbt red h lo hi (node red x 1 r).

Fig. 4. Merged red-black tree definition.

160000

140000

120000 —@— merged

100000 .
—@— typed-first

80000
linear-first

60000

PROGRAMS / SECOND

40000

20000

oo

1 2 3 4 5 6 7 8 9 10 11
GENERATOR FUEL / MAX DEPTH

0

Fig. 5. Throughput of valid lambda term generators.

4.3 Case Study: Typed and Linear STLC Terms

Another very common application of QuickChick is to test language developments, such as type
system implementations, interpreters, or compilers. To test such systems effectively, given a typing
relation in inductive form QuickChick can generate an efficient generator that only produces
well-typed terms [Paraskevopoulou et al. 2022]. But once again, when multiple constraints need
to be imposed (e.g. linearity—that functions use their arguments exactly once [Wadler 1990]),
generators are once again found to be lacking.

For this case study, we implemented a typing judgment for the simply-typed lambda calculus
as an inductive relation, as well as an inductive relation that encodes linearity of terms. We then
merged them using our algorithm and evaluated the performance of different derived generators.
The full code is quite large, but can be found in the full version of the paper.’

5Can be found at: https://lemonidas.github.io/pdf/MergingInductiveRelations.pdf

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 178. Publication date: June 2023.

https://lemonidas.github.io/pdf/MergingInductiveRelations.pdf

Merging Inductive Relations 178:15

60

50

40 —#— merged

typed-first
30 yp

linear-first
20

10

AVERAGE GENERATED PROGRAM SIZE

1 2 3 4 5 6 7 8 9 10 11
GENERATOR FUEL / MAX DEPTH

Fig. 6. Average size of lambda term generators

Just like in the previous case studies, we evaluated the performance of the generator that used
the merged relation, as well as that of generators that generate for a single relation and check
against the other. Unlike the previous case studies, we don’t have a parameter of the relation to
enforce the size of the generated program. Rather, we have to rely on QuickChick’s fuel parameter
to limit the maximum generation depth. To account for that, Figure 5 shows the throughput of the
different generators as a function of this fuel, while Figure 6 plots the average size of the generated
lambda terms.

The generator derived from the merged relation has no problem generating programs of an
arbitrarily large size, given enough fuel and time. In contrast, as expected, the generate-and-test
generators were not very efficient when trying to generate larger programs.

4.4 Case Study: A Variety of Relations on Lists

As discussed earlier, the task of producing a relation equivalent to the conjunction of two given
relations could be trivially solved by simply returning the conjunction of the two relations. If a
merged relation is to be useful, it needs to actually combine the constructors of the two relations.
However, even this is not sufficient to guarantee that the merged result is useful; some of the
resulting constructors may refer to both of the input relations! In that case, generating an element
of the merged relation requires solving a sub-problem of generating an element satisfying both of
the two relations anyway.

We attempt to quantify how often merging produces useful results by a percentage of constructors
which reference at most one of P, Q, or PQ, by merging a variety of inductive predicates over lists.
The definitions of the relations can be found in the full version of the paper

Most natural inductive relations on lists turn out to merge well with each other, as shown
in Figure 7, with an exception being permutations. Most inductive relations which are defined
recursively over the data will tend to merge together well. In particular, relations P where if ¢
is a constructor of the datatype of the shared parameter, then P ... (¢ x y z) is defined in
termsof P ... x, P ... y,and P ... z. However, the definition of permutations has a transitivity

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 178. Publication date: June 2023.

178:16 Jacob Prinz and Leonidas Lampropoulos

] | sorted | prefix | suffix | sublist permutation
sorted 100% 100% 100% 100% 40%
prefix 100% 100% 100% 100% 40%
suffix 100% 100% 100% 100% 43%
sublist 100% 100% 100% 100% 50%
permutation | 40% 40% 43% 50% 25%

Fig. 7. Percentage of constructors which don’t reference the original relations.

constructor which does not follow the recursive structure of the list, and is therefore a bad candidate
for merging.

4.5 Evaluating Generator Effectiveness

The evaluation section so far focused on the speed of the derived generators, but not on their
effectiveness. The latter is arguably even more important: after all, a generator might be able to
generate thousands of AVL or red-black trees instantly (e.g. by generating a leaf) without being
effective at finding bugs. When developing our framework, we relied on two observations to ensure
that we’re not producing useless generators.

First, the generators of Paraskevopoulou et al. come with mechanized proofs of completeness:
given an inductive relation P : A — Prop and a derived generator g that generates elements x of
type A that satisfy P, there is (provably) a nonzero chance that g will produce every possible x that
satisfies P up to a given size. In the merged setting where we have two such relations P and Q
that are merged into PQ, if we combine this fact (that a generator for the merged relation PQ is
provably complete) with the proofs in this paper that PQ is equivalent to P A Q, then we are at
least guaranteed that every possible input (up to a given size) that satisfies both P and Q has a
nonzero chance of being generated.

In addition, while a non-zero chance is a good start, there could still be significant biases in
generation that render testing ineffective. During our framework’s development we were relying
on gathering statistics (using QuickChick’s collect mechanism) to ensure that inputs are well-
distributed in the input space in terms of size, depth, and other similar structural metrics. Still, the
knowledge that values of larger sizes can be generated is not sufficient to know that more bugs can
be uncovered.

To that end, we also performed a mutation-testing based case study in the style of Paraskevopoulou
et al. We adapted the red-black tree implementation of Appel [2022] (and in particular its insert and
balance functions), injected bugs inspired by the binary search tree case study of Hughes [2019],
and then measured time-to-failure for three different generators: the one derived from the merged
inductive relation, the one derived from the black height relation followed by checking if the tree is
a valid search tree, and the one derived from the binary search tree relation followed by checking
if it has any black-height. The results are shown in Figure 8.

Figure 8 depicts, in log scale, the mean time to uncover each injected fault with each different
generation strategy, calculated across 10 runs. We observe that the generator derived from the
merged relation finds all bugs almost instantly (under 10 milliseconds), while generators derived
from a single relation can take up to three orders of magnitude more time to find the same faults
(sometimes not finding them at all within the allotted 10 second timeout). All the injected faults
can be found in the full version of the paper.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 178. Publication date: June 2023.

Merging Inductive Relations 178:17

‘ ‘ B Merged
oll ol 1 |
A2

N\ Y
@é\

10000

1000
100
10

Fig. 8. Time-to-failure (in milliseconds) of three different generators in log-scale. Each cluster of bars corre-
sponds to a different injected fault in a red-black tree implementation.

Time (ms)

x
& ¢

5 DISCUSSION
5.1 Limitations

The merging algorithm we presented in this paper can greatly speed up testing in scenarios where
multiple inductive relations constrain the same piece of data. However, while given two such
relations we can automatically derive a single one that is equivalent to their conjunction, and while
QuickChick can automatically generate terms satisfying the generated relation, a human user still
needs to identify a situation where the tool is useful. This paper develops a useful tool in the arsenal
of an experienced property-based testing user, and a crucial building block for future work towards
efficient, fully automatic testing of arbitrary Coq conjectures.

At the same time, relying on QuickChick to generate inputs for the merged relation means
that our approach inherits some of QuickChick’s limitations. In particular, the order in which
constraints appear in an inductive constructor matters [Paraskevopoulou et al. 2022], as it dictates
which universally quantified variables will be generated first. Using our algorithm to merge relations
before deriving a generator adds another layer of indirection which can make dealing with any
problems that arise from the order of constraints even more difficult.

Finally, our merging algorithm relies on identifying shared recursive structure between con-
structors. That is, given inductive relations P and Q with a shared index type A, our algorithm
is particularly effective when constructors whose conclusion contains subterms of type A also
contain premises that recursively restrict those subterms. This compositional structure exists for
many inductive relations in practice (e.g. structural constraints on trees, lambda term typing, etc.),
but not all relations as the permutation example shows. The algorithm also can’t directly handle
relations which only have this structure after some rewriting, such as a relation P which refers to
itself under another relation, like a conjunction P A Q. Cases like this might have to be rewritten
either manually or by additional lightweight automation. Still, in the not uncommon cases where
recursive structure is shared, the benefits are substantial.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 178. Publication date: June 2023.

178:18 Jacob Prinz and Leonidas Lampropoulos

5.2 Shrinking

An important aspect of property-based testing that we haven’t touched on throughout the paper
is shrinking, which is (for QuickChick) completely orthogonal to generation. In property-based
testing, shrinking is the process by which complex counterexamples are minimized by a (usually)
greedy algorithm that progressively searches for smaller and smaller inputs that still falsify the
property under test.

QuickChick’s shrinking in the presence of inductively defined constraints uses a type-based
shrink-and-test approach. For example, given a tree t that satisfies bst for some indexes 1o and
hi, QuickChick will: apply its default type-based shrinker for trees; filter the resulting smaller
trees to keep the ones that still satisfy the search tree invariant (using e.g. the derived checker
from Paraskevopoulou et al. [2022]); check if any still falsify the property; and finally repeat this
process until it hits a (possibly local) minimum.

This exact approach can and is still being followed when dealing with multiple constraints: if, for
instance, a tree is a balanced binary search, then QuickChick simply checks both constraints during
the first filtering pass. In principle, merging such constraints could actually improve performance a
bit (as it would lead to one recursive pass through the tree instead of two when filtering out invalid
bsts), but that’s a negligible gain compared to the cost of the shrinking process as a whole.

6 RELATED WORK

Generating Test Inputs Satisfying Multiple Constraints. Random generation of inputs lies at the
core of property-based testing and has been thoroughly studied since the emergence of Haskell
QuickCheck [Claessen and Hughes 2000], both in the form of handwritten random generators for
particularly challenging constraints [Hritcu et al. 2016; Midtgaard et al. 2017; Palka et al. 2011;
Yang et al. 2011] and as a general problem for automatically deriving such generators from a
language of constraints [Bulwahn 2012b; Claessen et al. 2015; Fetscher et al. 2015; Lampropoulos
et al. 2017, 2018]. Our work falls squarely in that last category, as we’re building on top of the
work of [Paraskevopoulou et al. 2022] to dramatically improve their generator performance when
multiple inductive relations constrain the same piece of data.

Prior work also encountered the same complication. In particular, Lampropoulos et al. [2017]
propose a domain specific language for specifying generators as lightly annotated functional
predicates that allow for explicitly delaying the instantiation of variables so that multiple different
constraints can be taken into account. Their approach is much more modular, but is quite slow,
reporting 35x overheads compared to handwritten generators.

In a different line of work, Claessen et al. [2015] exploit laziness to generate inputs satisfying
Haskell predicates, by pruning large parts of the search space as soon as possible. In their work,
they identify a parallel conjunction operator which allowed for exploring both predicates in a
conjunction to more efficiently prune the search space. These generators can be quite effective
when there is natural laziness to be exploited, but provide little benefit otherwise. Moreover, it is
unclear how such an approach could translate to the strict setting of proof assistants like Coq.

Ornaments and Modularization. Another related line of work is that of Ko and Gibbons [Ko and
Gibbons 2011, 2016]. Their goal is rather different: to make internalist representations of datatypes
(where constraints are intrinsically part of the datatype such as vectors of a particular size) as
easy to extend and manipulate as externalist representations (such as pairs of a list and a predicate
constraining its length). They use ornaments [Dagan and McBride 2014] as the foundation of
such predicates and introduce the notion of parallel composition of ornaments to address multiple
refinements on data in a compositional manner. Instead, our work intends to construct a single

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 178. Publication date: June 2023.

Merging Inductive Relations 178:19

representation of multiple constraints using only traditional inductive relations as inputs, and stays
within the confines of the Coq proof assistant and its established ecosystem.

7 CONCLUSION AND FUTURE WORK

In this paper we identified a problem with prior work on deriving generators for data satisfying
constraints in the form of inductive relations: when multiple constraints are imposed on the same
piece of data, existing algorithms can fail to generate nontrivial values. We introduced an algorithm
that addresses this problem by merging multiple inductive relations into one, leading to more
effective generation and simpler proving.

One avenue of future work is further integrating our tool inside QuickChick’s automated work-
flow. Currently, it is up to the user to identify a situation where this merging is needed and invoke
our tool. It would be interesting to explore opportunities for QuickChick to automatically identify
such cases leveraging the flexible typeclass mechanism of Coq.

ACKNOWLEDGMENTS

We thank Zoe Paraskevopoulou, Alex Kavvos, Antal Spector-Zabusky, and the anonymous reviewers
for their helpful comments. This work was supported by NSF award #2107206, Efficient and
Trustworthy Proof Engineering, and NSF award #2145649, CAREER: Fuzzing Formal Specifications
(any opinions, findings and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the NSF).

8 DATA AVAILABILITY

The artifact accompanying this paper that allows for reproducing the exact experiments can be
found on Zenodo [Prinz and Lampropoulos 2023]. Users interested in leveraging the techniques
described in this paper can also find them freely available in QuickChick [Lampropoulos and Pierce
2018], starting from the 2.0 release forward [Lampropoulos 2023].

REFERENCES

Andrew W. Appel. 2022. Verified Functional Algorithms. Software Foundations, Vol. 3. Electronic textbook.

Lukas Bulwahn. 2012a. The New Quickcheck for Isabelle - Random, Exhaustive and Symbolic Testing under One Roof.
In 2nd International Conference on Certified Programs and Proofs (CPP) (Lecture Notes in Computer Science, Vol. 7679).
Springer, 92-108. https://www.irisa.fr/celtique/genet/ACF/Bibliolsabelle/quickcheckNew.pdf

Lukas Bulwahn. 2012b. Smart Testing of Functional Programs in Isabelle. In 18th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR) (Lecture Notes in Computer Science, Vol. 7180). Springer, 153-167.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.229.1307 &rep=repl&type=pdf

Harsh Raju Chamarthi, Peter C. Dillinger, Matt Kaufmann, and Panagiotis Manolios. 2011. Integrating Testing and Interactive
Theorem Proving. In 10th International Workshop on the ACL2 Theorem Prover and its Applications (EPTCS, Vol. 70). 4-19.
http://arxiv.org/abs/1105.4394

Koen Claessen, Jonas Duregard, and Michal H. Palka. 2015. Generating constrained random data with uniform distribution.
J. Funct. Program. 25 (2015). https://doi.org/10.1017/S0956796815000143

Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for random testing of Haskell programs. In 5th ACM
SIGPLAN International Conference on Functional Programming (ICFP). ACM, 268-279. http://www.eecs.northwestern.
edu/~robby/courses/395-495-2009-fall/quick.pdf

The Coq Development Team. 2021. The Coq Proof Assistant. https://doi.org/10.5281/zenodo.4501022

Pierre-Evariste Dagan and Conor McBride. 2014. Transporting functions across ornaments. Journal of Functional Program-
ming 24, 2-3 (2014), 316-383. https://doi.org/10.1017/S0956796814000069

Carl Eastlund. 2009. DoubleCheck Your Theorems. In ACL2. http://www.ccs.neu.edu/scheme/pubs/acl209-e.pdf

Burke Fetscher, Koen Claessen, Michal H. Palka, John Hughes, and Robert Bruce Findler. 2015. Making Random Judgments:
Automatically Generating Well-Typed Terms from the Definition of a Type-System. In 24th European Symposium on
Programming (Lecture Notes in Computer Science, Vol. 9032). Springer, 383-405. http://users.eecs.northwestern.edu/
~baf111/random-judgments/

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 178. Publication date: June 2023.

https://www.irisa.fr/celtique/genet/ACF/BiblioIsabelle/quickcheckNew.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.229.1307&rep=rep1&type=pdf
http://arxiv.org/abs/1105.4394
https://doi.org/10.1017/S0956796815000143
http://www.eecs.northwestern.edu/~robby/courses/395-495-2009-fall/quick.pdf
http://www.eecs.northwestern.edu/~robby/courses/395-495-2009-fall/quick.pdf
https://doi.org/10.5281/zenodo.4501022
https://doi.org/10.1017/S0956796814000069
http://www.ccs.neu.edu/scheme/pubs/acl209-e.pdf
http://users.eecs.northwestern.edu/~baf111/random-judgments/
http://users.eecs.northwestern.edu/~baf111/random-judgments/

178:20 Jacob Prinz and Leonidas Lampropoulos

Catalin Hritcu, Leonidas Lampropoulos, Antal Spector-Zabusky, Arthur Azevedo Amorim, Maxime Denes, John Hughes,
Benjamin C. Pierce, and Dimitrios Vytiniotis. 2016. Testing Noninterference, Quickly. In Journal of Functional Programming
(FEP). https://doi.org/10.1017/S0956796816000058

John Hughes. 2019. How to Specify It! 20th International Symposium on Trends in Functional Programming (2019).

Hsiang-Shang Ko and Jeremy Gibbons. 2011. Modularising inductive families. In WGP@ICFP.

Hsiang-Shang Ko and Jeremy Gibbons. 2016. Programming with ornaments. Journal of Functional Programming 27 (12
2016). https://doi.org/10.1017/S0956796816000307

Leonidas Lampropoulos. 2018. Random Testing for Language Design. Ph. D. Dissertation. University of Pennsylvania.

Leonidas Lampropoulos. 2023. QuickChick 2.0 release. Github. https://github.com/QuickChick/QuickChick/releases/tag/v.
2.0+beta.16

Leonidas Lampropoulos, Diane Gallois-Wong, Catalin Hritcu, John Hughes, Benjamin C. Pierce, and Li-yao Xia. 2017.
Beginner’s Luck: a language for property-based generators. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, (POPL). https://doi.org/10.1145/3009837.3009868

Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce. 2018. Generating Good Generators for Inductive
Relations. In Proceedings of the ACM Conference on Principles of Programming Languages (POPL). https://doi.org/10.1145/
3158133

Leonidas Lampropoulos and Benjamin C. Pierce. 2018. QuickChick: Property-Based Testing In Coq. Electronic textbook.
http://www.cis.upenn.edu/~bcpierce/st

Fredrik Lindblad. 2007. Property Directed Generation of First-Order Test Data. In 8th Symposium on Trends in Functional
Programming (Trends in Functional Programming, Vol. 8). Intellect, 105-123. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.116.2439&rep=rep1&type=pdf

Jan Midtgaard, Mathias Nygaard Justesen, Patrick Kasting, Flemming Nielson, and Hanne Riis Nielson. 2017. Effect-
Driven QuickChecking of Compilers. Proc. ACM Program. Lang. 1, ICFP, Article 15 (aug 2017), 23 pages. https:
//doi.org/10.1145/3110259

Ulf Norell. 2008. Dependently Typed Programming in Agda. In Proceedings of the 6th International Conference on Advanced
Functional Programming (Heijen, The Netherlands) (AFP’08). Springer-Verlag, Berlin, Heidelberg, 230-266.

Michat H. Patka, Koen Claessen, Alejandro Russo, and John Hughes. 2011. Testing an Optimising Compiler by Generating
Random Lambda Terms. In Proceedings of the 6th International Workshop on Automation of Software Test (Waikiki,
Honolulu, HI, USA) (AST '11). ACM, New York, NY, USA, 91-97. https://doi.org/10.1145/1982595.1982615

Zoe Paraskevopoulou, Aaron Eline, and Leonidas Lampropoulos. 2022. Computing Correctly with Inductive Relations.
In Proceedings of the ACM SIGPLAN Symposium on Programming Language Design and Implementation (PLDI). https:
//doi.org/10.1145/3519939.3523707

Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael Greenberg, Catalin Hritcu,
Vilhelm Sjéberg, and Brent Yorgey. 2018. Logical Foundations. Electronic textbook, Version 5.5. http://www.cis.upenn.
edu/~bcepierce/sf

Amir Pnueli, Michael Siegel, and Eli Singerman. 1998. Translation Validation. In Tools and Algorithms for Construction and
Analysis of Systems, 4th International Conference, TACAS 98, Held as Part of the European Joint Conferences on the Theory
and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings (Lecture Notes in Computer
Science, Vol. 1384), Bernhard Steffen (Ed.). Springer, 151-166. https://doi.org/10.1007/BFb0054170

Jacob Prinz and Leonidas Lampropoulos. 2023. Artifact for Merging Inductive Relations. Zenodo. https://doi.org/10.5281/
zenodo.7709704

Philip Wadler. 1990. Linear Types can Change the World!. In Programming Concepts and Methods.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In Proceedings
of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2011, San Jose, CA,
USA, June 4-8, 2011. 283-294. https://doi.org/10.1145/1993498.1993532

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 178. Publication date: June 2023.

https://doi.org/10.1017/S0956796816000058
https://doi.org/10.1017/S0956796816000307
https://github.com/QuickChick/QuickChick/releases/tag/v.2.0+beta.16
https://github.com/QuickChick/QuickChick/releases/tag/v.2.0+beta.16
https://doi.org/10.1145/3009837.3009868
https://doi.org/10.1145/3158133
https://doi.org/10.1145/3158133
http://www.cis.upenn.edu/~bcpierce/sf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.2439&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.2439&rep=rep1&type=pdf
https://doi.org/10.1145/3110259
https://doi.org/10.1145/3110259
https://doi.org/10.1145/1982595.1982615
https://doi.org/10.1145/3519939.3523707
https://doi.org/10.1145/3519939.3523707
http://www.cis.upenn.edu/~bcpierce/sf
http://www.cis.upenn.edu/~bcpierce/sf
https://doi.org/10.1007/BFb0054170
https://doi.org/10.5281/zenodo.7709704
https://doi.org/10.5281/zenodo.7709704
https://doi.org/10.1145/1993498.1993532

	Abstract
	1 Introduction
	2 The Algorithm
	2.1 Formal Problem Statement
	2.2 The Algorithm, by Example
	2.3 Unification
	2.4 Merging Constructors
	2.5 Unchanged Shared Parameters
	2.6 Putting it All Together

	3 Reasoning about and with Merged Relations
	3.1 Soundness and Completeness
	3.2 Case Study

	4 Evaluation
	4.1 Case Study: AVL Trees
	4.2 Case Study: Red-Black Trees
	4.3 Case Study: Typed and Linear STLC Terms
	4.4 Case Study: A Variety of Relations on Lists
	4.5 Evaluating Generator Effectiveness

	5 Discussion
	5.1 Limitations
	5.2 Shrinking

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	8 Data Availability
	References

