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Merging Inductive Relations
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Inductive relations offer a powerful and expressive way of writing program specifications while facilitating

compositional reasoning. Their widespread use by proof assistant users has made them a particularly attractive

target for proof engineering tools such as QuickChick, a property-based testing tool for Coq which can

automatically derive generators for values satisfying an inductive relation. However, while such generators

are generally efficient, there is an infrequent yet seemingly inevitable situation where their performance

greatly degrades: when multiple inductive relations constrain the same piece of data.

In this paper, we introduce an algorithm for merging two such inductively defined properties that share an

index. The algorithm finds shared structure between the two relations, and creates a single merged relation

that is provably equivalent to the conjunction of the two. We demonstrate, through a series of case studies,

that the merged relations can improve the performance of automatic generation by orders of magnitude, as

well as simplify mechanized proofs by getting rid of the need for nested induction and tedious low-level

book-keeping.
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1 INTRODUCTION
When using a proof assistant such as Coq [Coq Development Team 2021] or Agda [Norell 2008],

proof engineers generally reach for inductive relations to express their specifications. When

developing such specifications, having access to a testing tool that can quickly uncover errors before

embarking on potentially costly proof efforts can be invaluable, which has led to the development

of multiple such tools [Bulwahn 2012a; Chamarthi et al. 2011; Eastlund 2009; Lindblad 2007]. Most

recently, Paraskevopoulou et al. [2022] extended QuickChick [Lampropoulos and Pierce 2018], the

property-based testing tool for Coq, with facilities that specifically target inductive relations. In

particular, given an inductive relation 𝑃 , they showed how to automatically derive both a generator

that produces random data satisfying 𝑃 , as well as a partial decision procedure for 𝑃 , allowing for

rapid testing feedback. These derived generators are generally extremely efficient, with minimal

overheads compared to handwritten generators that produce the same distribution. However, as

their use became more widespread, one problem became increasingly apparent: when multiple

inductive relations constrain the same piece of data, derived generators can only take one such

relation into account during generation, with severe implications for generation performance.

For concreteness, consider the type of binary trees in Coq [Coq Development Team 2021] with

labels at the nodes, and an encoding of binary search trees, satisfying the search invariant: for every
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node with label x, every label in the left subtree is smaller than x and every label in the right is

larger than x:

Inductive Tree A :=

| Leaf : Tree A

| Node : A -> Tree A -> Tree A -> Tree A.

Inductive bst : nat -> nat -> Tree nat -> Prop :=

| bst_leaf : forall lo hi, bst lo hi Leaf

| bst_node : forall lo hi x l r,

lo < x < hi ->

bst lo x l -> bst x hi r ->

bst lo hi (Node x l r).

This bst relation characterizes binary search trees with elements between lower and greater bounds

lo and hi: Leafs are always valid search trees, while Nodes satisfy the invariant if the label is between

lo and hi and its subtrees are valid search trees recursively with appropriately adjusted bounds.

A theorem one might want to prove about such trees is that inserting an element in the tree

preserves this search invariant, as long as the element being inserted is also between the lower and

higher bounds:

Theorem insert_preserves_bst :

forall x lo hi t, lo < x < hi ->

bst lo hi t -> bst lo hi (insert x t).

The work of Paraskevopoulou et al. [2022] can be used to automatically derive efficient generators

and checkers for the bst inductive relation:

Derive Generator for (fun t => bst lo hi t).

Derive Checker for (bst lo hi t).

These commands define appropriate typeclass instances that allow for generating a tree t such

that bst lo hi t holds for given lo and hi, and for checking whether bst lo hi t holds when all

three arguments are given. These instances can then be used to quickly uncover any errors before

attempting a proof:
1

QuickChick insert_preserves_bst.

+++ Passed 10000 tests (0 discards)

Time Elapsed: 0.56s

Size Statistics: 0: 37.5%, 1: 12.5%, 2: 10%, ..., 6: 10%

QuickChick can quickly generate thousands of valid binary search trees, with a healthy distribution

over various depths (albeit slightly skewed towards smaller ones). Indeed, given any inductive rela-

tion indexed by simply typed first-order data, QuickChick can generally derive efficient generators

and checkers to automate the testing process.

But what happens when there are additional constraints on the values to be generated? What if,

instead of binary search trees, our development involved AVL trees, which need to also be balanced:

Inductive bal : nat -> Tree -> Prop :=

| bal_leaf0 : bal 0 Leaf

| bal_leaf1 : bal 1 Leaf

| bal_node : forall n t1 t2 m, bal n t1 -> bal n t2 -> bal (S n) (Node m t1 t2).

1
For presentation purposes, we have formatted the output of QuickChick to be more readable.
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Here, the inductive relation bal n t characterizes binary trees t whose every path from root to a

Leaf has length n-1 or n.

The straightforward way to define AVL trees would be to simply take the conjunction of bst and

bal. The insertion property of interest would then become:

Theorem insert_preserves_avl :

forall x lo hi t, lo < x < hi ->

bst lo hi t -> bal h t ->

bst lo hi (insert x t) /\ exists h' (bal h' (insert x t)).

How would one go about testing this property using the automatically derived generators? We

could either:

• generate trees t that are binary search trees and check if they are balanced, or

• generate trees t that are balanced and check whether they are valid search trees.

Only then could we check that the result of the insertion is a valid AVL tree.

Unfortunately, neither approach is anywhere close to being reasonably efficient—in fact, their

performance renders testing with them essentially ineffective:

(* Generate bsts, check if balanced: *)

*** Gave up! Passed only 2720 tests

Discarded: 20000

Time Elapsed: 1.31s

Size Statistics: 0: 72.5%, 1: 25%, 2+: 2.5%

(* Generate balanced trees, check if bst: *)

*** Gave up! Passed only 5726 tests

Discarded: 20000

Time Elapsed: 0.30s

Size Statistics: 0: 35%, 1: 50%, 2: 15%

Either approach can only generate trivial valid trees, while wasting a lot of generation effort

producing larger but invalid ones. The main issue is that both relations are too sparsely inhabited to
be ignored during generation.
So what can we do? Current property-based testing practice dictates that users write, by hand,

a generator that produces trees that are both balanced and valid search trees. However, that can

be tedious and error-prone, and lies in stark contrast with QuickChick’s intended goal of quickly

checking if a goal is false before embarking on a proof effort.

An alternative approach would be to require that users write a single inductive relation that

incorporates both properties. Unfortunately, that is also not ideal: this is a very non-compositional

approach that does not allow for component reuse, separate reasoning, and can quickly become

unwieldy. But, setting user-friendliness aside for a moment, what if we did have access to such a

relation?

(* Generate balanced binary search trees directly: *)

+++ Passed 10000 tests (0 discards)

Time Elapsed: 0.95s

Size Statistics: 0: 14.3%, ..., 6: 14.3%

It would completely solve all problems with the derived generator!

Naturally, one might wonder: could we automatically obtain such an inductive relation that is
the conjunction of two others? That is precisely the main contribution of this paper. We develop an

algorithm for merging inductive relations (like bst and bal) into a single relation that is provably
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equivalent to their conjunction, but often far more useful: for testing purposes, it can lead to

dramatic speedups of multiple orders of magnitude; for proving purposes, it provides a more

powerful induction principle that can be used for hassle-free reasoning.

Our approach is not a panacea: it remains (for now) up to the user to identify cases where merging

inductives could be useful and explicitly invoke it. Moreover, when the recursive structure of the

inductive relations is fundamentally different, it will provide little benefit in terms of generation.

Still, in this paper we identify multiple cases where it does provide substantial benefit. In particular,

we offer the following contributions:

• We develop an algorithm for merging two inductive relations into a single one that is

equivalent to (but more useful than) their conjunction and implement this algorithm in Coq,

using QuickChick’s metaprogramming facilities (Section 2).

• We provide a generic proof script that, given two inductive relations 𝑃 and 𝑄 that have been

merged into a single one 𝑃𝑄 , proves the equivalence of 𝑃𝑄 to the conjunction of 𝑃 and 𝑄 ,

showing in the process that the induction principle obtained is easier to work with (Section 3).

• We demonstrate through a series of case studies that generators derived for amerged inductive

relation can be more efficient than generators that don’t take both relations into account by

orders of magnitude, and that the merging algorithm can apply to a wide range of inductive

relations (Section 4).

We discuss limitations of our approach in Section 5.1 and relatedwork in Section 6, before concluding

and drawing directions for future work in Section 7.

2 THE ALGORITHM
In this section, we present an algorithm which merges inductive relations of the form:

Inductive 𝑅 (𝐴1 → . . . → 𝐴𝑛 : 𝑇𝑦𝑝𝑒) : 𝑇1 → . . . → 𝑇𝑚 → Prop :=

| 𝐶1 : ∀𝑥1 . . . 𝑥𝑘 , (𝑅1 𝑒11 . . .) → . . .→ 𝑅 𝑒1 . . . 𝑒𝑛 | · · ·

We assume, just like Paraskevopoulou et al., that inductive relations can take an any number of type

parameters and any number of (simply typed) indices which may depend on those type parameters.

Each of the constructors 𝐶𝑖 of the inductive relation can universally quantify over any number of

(independent) variables 𝑥𝑖 . Each constructor may also constrain these variables via any number

of (potentially recursive) inductive relations 𝑅𝑖 . This class of inductive relations covers the vast

majority of inductive relations of interest [2022], but it leaves out some potentially interesting ones,

as it rules out higher-order constraints or existentially quantified variables from the premises of

the constructors.

2.1 Formal Problem Statement
Given two inductive relations 𝑃 : 𝑇𝐴1 → . . . → 𝑇𝐴𝑛 → 𝑇 → 𝑃𝑟𝑜𝑝 and 𝑄 : 𝑇𝐵1 → . . . → 𝑇𝐵𝑚 →
𝑇 → 𝑃𝑟𝑜𝑝 of this form, where the last index is of the same type, our goal will be to produce an

inductive relation 𝑃𝑄 of type 𝑇𝐴1 → . . . → 𝑇𝐴𝑛 → 𝑇𝐵1 → . . . → 𝑇𝐵𝑚 → 𝑇 → 𝑃𝑟𝑜𝑝 that is

equivalent to the conjunction of the two:

∀(𝑎𝑖 : 𝑇𝐴𝑖 ) (𝑏𝑖 : 𝑇𝐵𝑖 ) (𝑡 : 𝑇 ), 𝑃 𝑎1 . . . 𝑎𝑛 𝑡 ∧ 𝑄 𝑏1 . . . 𝑏𝑚 𝑡 ⇐⇒ 𝑃𝑄 𝑎1 . . . 𝑎𝑛 𝑏1 . . . 𝑏𝑚 𝑡

That is, if the relations 𝑃 and𝑄 hold for some number of unshared indices 𝑎1 . . . 𝑎𝑛 and 𝑏1 . . . 𝑏𝑚 ,

and a single shared index 𝑡 , then so will 𝑃𝑄 for the same indices and vice-versa.

In the rest of this section, we present our algorithm for merging two relations. Our actual

implementation can operate on arbitrarily positioned indices—the only requirement is that the

types in these positions unify. For presentation purposes, however, we will assume that the index
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we’re merging over is in the last position and that its type is 𝑇 . Next, in Section 3, we describe how

to prove the formal equivalence above, using the Coq proof assistant.

Of course, the merging problem can be trivially solved by simply taking the conjunction of 𝑃

and𝑄 . Instead, we would like 𝑃𝑄 to have more interesting recursive structure, without mentioning

𝑃 or 𝑄 if possible. We demonstrate that our algorithm has this property empirically in Section 4.

2.2 The Algorithm, by Example
Suppose that we have some term 𝑡 and some terms 𝑎𝑖 and 𝑏 𝑗 for which both 𝑃 𝑎1 . . . 𝑎𝑛 𝑡 and

𝑄 𝑏1 . . . 𝑏𝑚 𝑡 are inhabited. That means that there must be some constructor from 𝑃 and some

constructor from𝑄 which create witnesses to these properties. However, not all pairs of constructors

can create elements parameterized by the same term 𝑡 .

For example, in the introduction, we looked at bst and bal as two relations over trees. Suppose that

we would like to merge these into a single relation AVL: nat -> nat -> nat -> Tree nat -> Prop.

How could a Tree 𝑡 satisfy both bst and bal? Looking at their definitions, there are intuitively two

ways that can happen: either 𝑡 is a Leaf, and the constructors bst_leaf (from bst) and bal_leaf0 or

bal_leaf1 (from bal) were used; or 𝑡 is a Node and the constructors bst_node and bal_nodewere used.

The remaining constructor combinations cannot be used as their conclusions have incompatible

shapes—a Leaf and a Node can never construct the same tree. This naturally gives rise to unification
as the core mechanism used to determine which constructors of 𝑃 and 𝑄 could conceivably create

elements indexed by the same term.

Each such compatible pair of constructors from 𝑃 and 𝑄 will then give rise to a constructor

for 𝑃𝑄 that captures the constraints that they impose. In our AVL example, that will lead to the

following relation:

Merge (fun t => bst lo hi t) With (fun t => bal n t) As AVL.

Inductive AVL : nat -> nat -> nat -> Tree nat -> Prop :=

| bst_leaf_bal_leaf0 :

forall lo hi : nat, AVL lo hi 0 Leaf

| bst_leaf_bal_leaf1 :

forall lo hi : nat, AVL lo hi 1 Leaf

| bst_node_bal_node :

forall (n : nat) (l r : Tree nat) (x lo hi : nat),

lo < x < hi -> AVL lo x n l -> AVL x hi n r ->

AVL lo hi (S n) (Node x l r).

Notably, the pairs of recursive calls to bst and bal on the left and right subtrees have been merged

into a single call to AVL.

2.3 Unification
The first building block of the merging algorithm is unification, which lets us both prune incompat-

ible pairs of constructors (as described above), and allows us to relate variables that can appear in

the different constructors. Looking back at our running example, the Node constructors have the

following conclusions:

bst_node : ... -> bst lo hi (Node x l r)

bal_node : ... -> bal (S n) (Node m t1 t2)
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The two trees in their conclusions can be made equal using a substitution {𝑚 ↦→ 𝑥, 𝑡1 ↦→ 𝑙, 𝑡2 ↦→ 𝑟 }.
In the general case, we will consider terms that can contain variables, constructors, and applica-

tions, as any functions that appear in those positions can be rewritten as equality constraints by

QuickChick [Paraskevopoulou et al. 2022].

Formally, unification inputs two terms and outputs a substitution, or a mapping from variables

to terms, such that the two terms are equal under that substitution. If such a substitution doesn’t

exist, it simply outputs 𝑓 𝑎𝑖𝑙 . The following pseudocode represents this computation: a variable can

unify with any expression in which it doesn’t occur free (other than itself), two constructors can

unify if they are equal, and two applications need to unify in both the function and the argument.

unify : Term→ Term→ Maybe Sub

unify 𝑥 𝑥 = {}
unify 𝑥 𝑒 = if 𝑥 occurs in 𝑒 then fail else {𝑥 → 𝑒}
unify 𝑒 𝑥 = if 𝑥 occurs in 𝑒 then fail else {𝑥 → 𝑒}
unify 𝐶 𝐶′ = if 𝐶 = 𝐶′ then {} else fail

unify (𝑒1 𝑒2) (𝑒′1 𝑒′2) = let 𝜎 = unify 𝑒1 𝑒
′
1
in 𝜎 ∪ (unify (𝜎 𝑒2) (𝜎 𝑒′

2
))

unify _ _ = fail

(1)

2.4 Merging Constructors
Armed with unification, given two relations 𝑃 and 𝑄 , we can find all pairs of constructors (𝑐𝑃 , 𝑐𝑄 )
which could possibly produce elements parameterized by the same shared parameter. The merged

relation 𝑃𝑄 will need to have one constructor corresponding to each of these pairs, 𝑐𝑃𝑄 . We can

therefore reduce our goal of generating all of 𝑃𝑄 to a simpler subproblem: generating a single

constructor 𝑐𝑃𝑄 from constructors 𝑐𝑃 and 𝑐𝑄 , given a substitution 𝜎 that makes their conclusions

equal.

To that end, we can decompose the type of a constructor 𝑐 of a relation 𝑃 as a quintuple:

• A set of forall-quantified variables 𝑣 , such as lo, hi,x,l, and r in bst_node.

• A set of recursive constraints 𝑟𝑠 over these variables, such as bst lo x l and bst x hi r in

bst_node.

• A set of non-recursive constraints 𝑜𝑠 , such as lo < x < hi in bst_node.

• The list of not-shared terms in its conclusion 𝑎𝑠 , such as lo and hi in bst_node (these take the

form of a list rather than a set because indices need to be put back in the correct order later).

• The shared term in its conclusion 𝑡 , such as Node x l r in bst_node.

Given two such constructors 𝑐𝑃 = (𝑣𝑃 , 𝑟𝑠𝑃 , 𝑜𝑠𝑃 , 𝑎𝑠𝑃 , 𝑡𝑃 ) and 𝑐𝑄 = (𝑣𝑄 , 𝑟𝑠𝑄 , 𝑜𝑠𝑄 , 𝑎𝑠𝑄 , 𝑡𝑄 ), we need to
produce a new quintuple to serve as a constructor in 𝑃𝑄 . This construction is shown in Algorithm 1.

First, we unify the two shared terms 𝑡𝑃 and 𝑡𝑄 . If it fails, this pair of constructors doesn’t need to

be merged. If successful, this yields a substitution 𝜎 , a mapping from some variables in 𝑣𝑃 ∪ 𝑣𝑄
to terms. This substitution must then be applied to all possible terms (𝑟𝑠 , 𝑜𝑠 , 𝑎𝑠 , and 𝑡 ) in both

constructor representations. In particular, after applying this substitution, 𝜎 (𝑡𝑃 ) = 𝜎 (𝑡𝑄 ), and this

term is the shared term for the conclusion of the merged constructor. Moreover, the set of variables

quantified over in the new merged constructor is the union of the sets of variables quantified in 𝑐𝑃
or 𝑐𝑄 , excluding those that were substituted away by unification. The non-shared parameters of

the new constructor are simply the concatenation of those of 𝑐𝑃 and 𝑐𝑄 after substitution.

What remains is figuring out what to do with the recursive and non-recursive constraints of the

two input constructors. The latter is straightforward—every non-recursive constraint that appears
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Algorithm 1. Merging Two Constructors

Inputs Two constructors 𝑐𝑃 = (𝑣𝑃 , 𝑟𝑠𝑃 , 𝑜𝑠𝑃 , 𝑎𝑠𝑃 , 𝑡𝑃 ) and 𝑐𝑄 = (𝑣𝑄 , 𝑟𝑠𝑄 , 𝑜𝑠𝑄 , 𝑎𝑠𝑄 , 𝑡𝑄 )
Output The merged constructor 𝑐𝑃𝑄 or failure.

1: 𝜎 ← unify 𝑡𝑃 𝑡𝑄
2: 𝑡 := 𝜎 (𝑡𝑃 )
3: 𝑎𝑠 := 𝜎 (𝑎𝑠𝑃 ) ∪ 𝜎 (𝑎𝑠𝑄 )
4: 𝑣 := 𝑣𝑃 ∪ 𝑣𝑄 \ 𝑑𝑜𝑚(𝜎)
5: 𝑜𝑠 := 𝜎 (𝑜𝑠𝑃 ) ∪ 𝜎 (𝑜𝑠𝑄 ) ∪ 𝜎 (𝑟𝑠𝑃 ) ∪ 𝜎 (𝑟𝑠𝑄 )
6: 𝑟𝑠 := ∅
7: for 𝑟𝑃 = 𝑃 𝑎1 . . . 𝑎𝑛 𝑡𝑎 ∈ 𝜎 (𝑟𝑠𝑃 ), 𝑟𝑄 = 𝑄 𝑏1 . . . 𝑏𝑚 𝑡𝑏 ∈ 𝜎 (𝑟𝑠𝑄 ) do
8: if 𝑡𝑎 = 𝑡𝑏 then
9: 𝑜𝑠 := 𝑜𝑠 \ {𝑟𝑃 , 𝑟𝑄 }
10: 𝑟𝑠 := 𝑟𝑠 ∪ {𝑃𝑄 𝑎1 . . . 𝑎𝑛 𝑏1 . . . 𝑏𝑚 𝑡𝑎}
11: return (𝑣, 𝑟𝑠, 𝑜𝑠, 𝑎𝑠, 𝑡)

in either 𝑐𝑃 or 𝑐𝑄 should also appear in their merge, so we simply take their union post-substitution

and place them in 𝑐𝑃𝑄 .

To tackle recursive constraints, a first naive approach would be to also add the recursive con-

straints 𝑟𝑠𝑃 and 𝑟𝑠𝑄 to the non-recursive (as they’re now referring to a different inductive than

that for which they are part of its definition) constraints of the new merged constructor. But that

would not result in interesting shared recursive structure, and therefore would not facilitate testing

or proving. However, looking back at our problem definition, if we have some constraint in 𝑟𝑠𝑃
of type 𝑃 𝑎1 . . . 𝑎𝑛 𝑡 and another constraint in 𝑟𝑠𝑄 of type 𝑄 𝑏1 . . . 𝑏𝑚 𝑡 , that is equivalent to

𝑃𝑄 𝑎1 . . . 𝑎𝑛 𝑏1 . . . 𝑏𝑚 𝑡 . Therefore, the final step of the merging algorithm is to look at the sets of

recursive constraints from 𝑐𝑃 and 𝑐𝑄 , find all matching pairs whose shared parameter is equal, and

construct a single recursive constraint for 𝑐𝑃𝑄 from each pair. Any remaining recursive constraints

from the original constructors can then be added to the non-recursive arguments of 𝑐𝑃𝑄 .

2.5 Unchanged Shared Parameters
While the algorithm above can handle the majority of cases of interest, there is an interesting

interaction (or rather lack of) when a constructor treats the shared index more like a parameter—

that is, it does not change across recursive calls. Consider, for instance, inequality over natural

numbers defined as a relation:

Inductive less : nat -> nat -> Prop :=

| less_n : forall n, less n n

| less_S : forall m n, less n m -> less n (S m).

Suppose that we want to merge this relation with itself to create a relation 𝑎 ≤ 𝑥 ≤ 𝑏 for a fixed

𝑎 and 𝑏—this naturally comes up in the bst example itself as the constraint on the value of a Node!

We could do so by merging 𝑙𝑒𝑠𝑠 𝑎 𝑥 with 𝑙𝑒𝑠𝑠 𝑥 𝑏, exploiting the fact that our implementation

doesn’t actually require the merge to be over the last index.

Unfortunately, the merging procedure in this case is less useful, yielding the following relation,

where between a b c holds if 𝑎 ≤ 𝑐 ≤ 𝑏:

Inductive between : nat -> nat -> nat -> Prop :=

| less_n_less_n :

forall n' : nat, between n' n' n'.
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| less_S_less_n :

forall m n : nat, less n m -> between n (S m) (S m)

| less_n_less_S :

forall m n' : nat, less n' m -> between n' (S m) n'

| less_S_less_S :

forall m' m n : nat, less (S m) m' -> less n m -> between n (S m') (S m).

The relation is not recursive, and instead simply refers back to the original 𝑙𝑒𝑠𝑠 relation.

However, a simple extension of the algorithm can help, based on the following key idea: since the

less_S constructor does not change its first parameter at all, it does not need to interact with the

other relation it is being merged with. More generally, suppose that our relation 𝑃 has a constructor

with one recursive input, and it does not change the shared parameter from that input to its output.

That is 𝑐𝑃 is of the form:

. . .→ 𝑃 𝑎1 . . . 𝑎𝑛 𝑡 → . . .→ 𝑃 𝑎′
1
. . . 𝑎′𝑛 𝑡

for some parameters 𝑎𝑖 and 𝑎
′
𝑖 .

Recall our original correctness criterion on general relations 𝑃 and 𝑄 :

∀(𝑎𝑖 : 𝑇𝐴𝑖 ) (𝑏𝑖 : 𝑇𝐵𝑖 ) (𝑡 : 𝑇 ), 𝑃 𝑎1 . . . 𝑎𝑛 𝑡 ∧ 𝑄 𝑏1 . . . 𝑏𝑚 𝑡 ⇐⇒ 𝑃𝑄 𝑎1 . . . 𝑎𝑛 𝑏1 . . . 𝑏𝑚 𝑡

This means that the implication in 𝑐𝑃 can be lifted into an implication about 𝑃𝑄 :

. . .→ 𝑃𝑄 𝑎1 . . . 𝑎𝑛 𝑏1 . . . 𝑏𝑚 𝑡 → . . .→ 𝑃𝑄 𝑎′
1
. . . 𝑎′𝑛 𝑏1 . . . 𝑏𝑚 𝑡

As a result, we can add a constructor of this type to 𝑃𝑄 , which fully accounts for the effect of 𝑐𝑃 ,

and therefore we don’t need to merge it with any constructors of 𝑄 .

Using this trick to deal with the less_S constructor for the right-hand less to be merged, we can

perform unification on the remaining pairs of constructors, yielding the following improved result.

The less_S constructor is transformed into the less_S' constructor below:

Inductive between : nat -> nat -> nat -> Prop :=

| less_S' : forall x m n : nat, between x m n -> between x (S m) n

| less_Sless_n : forall m n : nat, less n m -> between n (S m) (S m)

| less_nless_n : forall n' : nat, between n' n' n'.

While this relation isn’t quite as nice as it might be if written by a human (less_Sless_n and

less_nless_n could be combined and simplified), it is recursive and useful for generation and

proving purposes.

2.6 Putting it All Together
Assembling all the individual pieces together, our complete algorithm for merging two inductive

relations is shown in Algorithm 2. First, we identify opportunities to lift constructors of 𝑃 (lines

2-6) and 𝑄 (lines 7-11) as described in Section 2.5. Then, for every remaining pair of constructors

we invoke Algorithm 1 (lines 12-13), adding a constructor to our result for each one. Finally, we

return the resulting list of constructor representations for 𝑃𝑄 (line 14).

3 REASONING ABOUT ANDWITH MERGED RELATIONS
While the algorithm described in the previous section intuitively results in a merged relation that

should be equivalent to the conjunction of the two input relations, our implementation using

QuickChick’s metaprogramming facilities [Lampropoulos 2018] involves quite intricate manipu-

lations of Coq’s internal data representations. To ensure the correctness of our implementation,

reasoning about the implementation itself is essentially infeasible: the metaprogramming facilities

that allow for a maintainable implementation are all written in OCaml, without formally verified
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Algorithm 2. Merging Two Inductive Relations

Input Two lists of constructor representations for 𝑃 and 𝑄

Output A list of constructor representations for 𝑃𝑄

1: 𝑃𝑄 := []
2: for each 𝑐 = (𝑣, 𝑟𝑠, 𝑜𝑠, 𝑎𝑠′, 𝑡) ∈ 𝑃 do
3: if 𝑟𝑠 = [𝑃 𝑎𝑠 𝑡] then
4: 𝑏𝑠 := 𝑢𝑄 fresh variables

5: 𝑃𝑄 := 𝑃𝑄 ∪ (𝑣 + 𝑏𝑠, [𝑃𝑄 𝑎𝑠 𝑏𝑠 𝑡], 𝑜𝑠, 𝑎𝑠′ + 𝑏𝑠, 𝑡)
6: 𝑃 := 𝑃 \ 𝑐
7: for each 𝑐 = (𝑣, 𝑟𝑠, 𝑜𝑠, 𝑏𝑠′, 𝑡) ∈ 𝑄 do
8: if 𝑟𝑠 = [𝑄 𝑏𝑠 𝑡] then
9: 𝑎𝑠 := 𝑢𝑃 fresh variables

10: 𝑃𝑄 := 𝑃𝑄 ∪ (𝑣 + 𝑎𝑠, [𝑃𝑄 𝑎𝑠 𝑏𝑠 𝑡], 𝑜𝑠, 𝑎𝑠 + 𝑏𝑠′, 𝑡)
11: 𝑄 := 𝑄 \ 𝑐
12: for each (𝑐𝑃 , 𝑐𝑄 ) ∈ 𝑃 ×𝑄 do
13: 𝑃𝑄 := 𝑃𝑄 ∪ merge_constructors 𝑐𝑃 𝑐𝑄

14: return 𝑃𝑄

counterparts. Instead, we settled for the next best approach: translation validation [Pnueli et al.

1998].

For each merged inductive relation, we automatically prove (via generic proof scripts) soundness
and completeness of the merge: that the merged inductive relation implies the conjunction of the two

input inductive relations, and vice-versa. We then demonstrate that having access to the merged

inductive relation can simplify proof developments, via a case study on proving the correctness of

an efficient AVL tree search function.

3.1 Soundness and Completeness
Given two inductive relations 𝑃 : (𝑇𝐴1 . . .𝑇 : 𝑃𝑟𝑜𝑝) and 𝑄 : (𝑇𝐵1 . . .𝑇 : 𝑇𝑦𝑝𝑒) of the form

described in the previous section, we showed how to produce an inductive relation 𝑃𝑄 of type

𝑇𝐴1 . . .𝑇𝐵1 . . .→ 𝑇 → 𝑃𝑟𝑜𝑝 .

We can now state two theorems about the behavior of the derived relation PQ:

Theorem 3.1. Soundness: ∀ 𝑡𝐴𝑖 𝑡𝐵𝑗 𝑡, 𝑃𝑄 𝑡𝐴𝑖 𝑡𝐵𝑗 𝑡 → 𝑃 𝑡𝐴𝑖 𝑡 ∧𝑄 𝑡𝐵𝑗 𝑡

Proof. By straightforward induction on the proof of 𝑃𝑄 . □

Theorem 3.2. Completeness: ∀ 𝑡𝐴𝑖 𝑡𝐵𝑗 𝑡, 𝑃 𝑡𝐴𝑖 𝑡 ∧𝑄 𝑡𝐵𝑗 𝑡 → 𝑃𝑄 𝑡𝐴𝑖 𝑡𝐵𝑗 𝑡

Proof. By induction on the proof of 𝑃 , followed by a nested induction on the proof of 𝑄 , and

finally using the inductive definition of 𝑃𝑄 . □

Proof Script Details. 2 While the high level structure of the proof of soundness is fairly simple, the

proof of completeness has a nested induction which requires additional low-level manipulations of

the context in the general case.

For concreteness, let’s revisit our AVL example from the introduction. First, we merge the bst

and bal inductive relations:

Merge (fun t => bst lo hi t) With (fun t => bal n t) As AVL.

2
This subsection can be safely skipped by a reader who is not interested in low-level details of Coq proofs.
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Then we can state and prove the soundness theorem:

Theorem AVL_sound :

forall lo hi n t, AVL lo hi n t -> bst lo hi t /\ bal n t.

Proof. merge_sound. Qed.

...and the completeness theorem:

Theorem AVL_complete :

forall lo hi t, bst lo hi t -> forall n, bal n t -> AVL lo hi n t.

Proof. merge_complete. Qed.

Focusing on the details of the completeness proof, after the first induction on bst and context

manipulation, we’re left (amongst other things) with a hypothesis of type bal n (Node x l r)

that we would ideally want to induct on. However, as seasoned Coq users should expect at this

point, the fact that the tree is not a variable but a concrete Node constructor stands in the way—

we first need to generalize it but remember its shape. This is a standard trick [Pierce et al. 2018]

when a straightforward proof is all that is required. However, we wanted to provide general proof

scripts (merge_sound and merge_complete) to discharge all soundness and completeness theorems

on merged relations.

To that end we turned to metaprogramming: we wrote a wrapper around the induction tactic

(in OCaml), that first walks down the arguments of the hypothesis to be inducted upon and

generalizes any arguments that are not abstract variables. Armed with this remember_induct tactic,

we were able to construct the desired proof scripts, and discharge all soundness and theorems

that we encountered. We opted for an OCaml implementation rather than Ltac2 to implement this

(independently interesting!) tactic, since as of the time of writing this, generalize dependent was

not supported by Ltac2, but also because we believe this tactic could be independently useful for

Coq users.

3.2 Case Study
The first indication that the merged inductives lend themselves better to reasoning is the difference

in complexity of the soundness and completeness proofs: establishing the conjunction of the two

original relations from the merged one is a straightforward induction, but the other way around

requires nested induction and tedious low-level context manipulation. To further explore their

effectiveness, we turn to our running AVL tree example and attempt to prove the correctness of an

efficient search.

First, we specify tree membership with a straightforward traversal of the entire tree:

Fixpoint member (x : nat) (t : Tree) : bool :=

match t with

| Leaf => false

| Node x' l r => (x =? x') || member x l || member x r

end.

Then we write a version that relies on the search tree invariant to only search in one of the two

subtrees of the node, and we include a fuel to allow for reasoning about the upper bound of recursive

calls that need to be performed:

Fixpoint bst_search (fuel : nat) (x : nat) (t : Tree) : bool :=

match n with

| O => false

| S fuel' =>
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match t with

| Leaf => false

| Node x' l r => if x <? x' then bst_search fuel' x l

else if x' <? x then bst_search fuel' x r

else true

end

end.

Finally, we state (and prove) our desired correctness theorem, that the efficient search agrees

with member with a minimal amount of fuel:

Theorem bst_bal_search_member :

forall n lo hi x t,

bst lo hi t -> bal n t -> lo < x -> x < hi ->

bst_search n x t = member x t.

We can also state the same theorem with a single precondition using AVL.

Just like when proving soundness and completeness of the merged relation, proving directly

with AVL as the hypothesis allows for a straightforward inductive proof, while having both bst and

bal requires a nested induction and similar low-level context manipulation. Alternatively, we could

apply the completeness theorem first to simplify the rest of the proof. Overall, the merged inductive

relation gives rise to an inductive hypothesis that lends itself to proof terms with a simpler recursive

structure than the conjunction of the two original inductive relations.

4 EVALUATION
In this section, we demonstrate that using a merged inductive relation gives a significant perfor-

mance boost to generation. We first demonstrate that the throughput of derived generators can

increase by orders of magnitude through three case studies, using AVL trees, Red-Black Trees, and

linear well-typed terms. Then, we show that our algorithm (and proofs) largely give useful results

by merging a series of list-based inductive relations.

4.1 Case Study: AVL Trees
Consider once again the example of AVL trees from the introduction. Using QuickChick, we derived

three generators for AVL trees: one using the merged AVL relation, and two which generated

terms satisfying one of bst or bal and checked against the other. Each generated tree 𝑡 satisfies

bst 0 1000 t and bal d t for some depth 𝑑 . In Figure 1, we plot the number of (valid) trees that

are successfully generated per second as a function of this depth. At a high enough depth, even

after 100000 attempts, each generator failed to produce any trees, and we include data points up to

the maximum depth which worked for each generator.

Particularly interesting is QuickChick’s treatment of the inequality generation: generating x such

that lo < x < hi for given lo and hi. The default generator for this inductive relation skews heavily

towards the low numbers which leads to less than ideal coverage of the input space. However,

QuickChick leverages its flexible typeclass infrastructure to provide a simple yet more effective

such generator: choose (lo, hi), which uniformly distributes x in the desired range. To provide a

detailed account of the generator’s performance, we show the throughput of the merged inductive

relation both with, and without this improvement. This improvement could also affect bst-first

generation so we show that combination as well, although in practice it doesn’t help much.

We find that the merged inductive relation performs better than the generate-and-test variants

even without using choose. More importantly, when using the standard choose combinator, the

derived generator for merged AVL trees can generate thousands of AVL trees per second of depth
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Fig. 1. Throughput of valid AVL tree generation.

Fig. 2. Throughput of various generators for red-black trees.

up to 7.
3
In contrast, the generate-and-check variants are essentially unable to generate non-trivial

trees, as even at depth 4 a random bst won’t be balanced, and a random balanced tree won’t satisfy

the search invariant.

3
Due to the balance requirement, every depth increment roughly doubles the size of trees that are being generated, which

becomes the bottleneck after a while.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 178. Publication date: June 2023.



Merging Inductive Relations 178:13

(* Colors and Trees *)

Inductive color :=

| red : color

| black : color.

Inductive tree :=

| leaf : tree

| node : color -> nat -> tree -> tree -> tree.

(* No red node has a red child *)

Inductive rr : color -> tree -> Prop :=

| rbt_leaf : forall c, rr c leaf

| rbt_black_node : forall c1 c2 t1 t2 n,

rr c1 t1 -> rr c2 t2 -> rr black (node black n t1 t2)

| rbt_red_node : forall t1 t2 n,

rr black t1 -> rr black t2 -> rr red (node red n t1 t2).

(* Enforces the black height of the tree *)

Inductive bh : nat -> tree -> Prop :=

| bh_leaf : bh 1 leaf

| bh_red_node : forall t1 t2 h n,

bh h t1 -> bh h t2 -> bh h (node red n t1 t2)

| bh_black_node : forall t1 t2 h n,

bh h t1 -> bh h t2 -> bh (S h) (node black n t1 t2).

Fig. 3. Red-black tree inductive definitions

4.2 Case Study: Red-Black Trees
A red-black tree is a binary tree where each node has a color and a number, satisfying three

conditions: (1) no red node has a red child, (2) every path from a root to a leaf goes through the

same number of black nodes (its black height), and (3) the tree satisfies the search tree invariant.
4

We can represent each of these three properties with an inductive relation. Figure 3 shows the

inductive definitions involved (bst is elided for brevity as it is almost identical to the one earlier in

the paper, with the exception that the Node constructor now takes an additional color argument).

We can merge all three of these relations together by invoking the merging algorithm twice,

resulting in the code shown in Figure 4.

From these relations, we derived four generators: one using the merged rbt relation, and three

which generate elements of one relation and check against the other two. In Figure 2, we plot the

throughput of the various generators as a function of the black height of trees generated. Once

again, we include all heights for which generators were able to produce any trees within 100000

attempts, and include the performance with and without choose. We find an even more substantial

performance increase here: only the merged generator had any hope of producing non-trivial

red-black trees of black height greater than two.

4
While (1) and (2) can in principle be written as one, we opted for this presentation to demonstrate that our merging

algorithm can be used recursively to merge more than two relations.
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Merge (fun t => rr c t) With (fun t => bh c t) As red_black.

Merge (fun t => red_black color height t) With (fun t => bst lo hi t) As rbt.

Inductive rbt : color -> nat -> nat -> nat -> tree -> Prop :=

| rbt_leafbh_leafbst_leaf : forall lo hi c,

rbt c 1 lo hi leaf

| rbt_black_nodebh_black_nodebst_node : forall lo hi x l r h c1 c2,

lo < x < hi -> rbt c1 h lo x l ->

rbt c2 h x hi r -> rbt black (S h) lo hi (node black x l r)

| rbt_red_nodebh_red_nodebst_node : forall lo hi x l r h,

lo < x < hi -> rbt black h lo x l ->

rbt black h x hi r -> rbt red h lo hi (node red x l r).

Fig. 4. Merged red-black tree definition.

Fig. 5. Throughput of valid lambda term generators.

4.3 Case Study: Typed and Linear STLC Terms
Another very common application of QuickChick is to test language developments, such as type

system implementations, interpreters, or compilers. To test such systems effectively, given a typing

relation in inductive form QuickChick can generate an efficient generator that only produces

well-typed terms [Paraskevopoulou et al. 2022]. But once again, when multiple constraints need

to be imposed (e.g. linearity—that functions use their arguments exactly once [Wadler 1990]),

generators are once again found to be lacking.

For this case study, we implemented a typing judgment for the simply-typed lambda calculus

as an inductive relation, as well as an inductive relation that encodes linearity of terms. We then

merged them using our algorithm and evaluated the performance of different derived generators.

The full code is quite large, but can be found in the full version of the paper.
5

5
Can be found at: https://lemonidas.github.io/pdf/MergingInductiveRelations.pdf
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Fig. 6. Average size of lambda term generators

Just like in the previous case studies, we evaluated the performance of the generator that used

the merged relation, as well as that of generators that generate for a single relation and check

against the other. Unlike the previous case studies, we don’t have a parameter of the relation to

enforce the size of the generated program. Rather, we have to rely on QuickChick’s fuel parameter

to limit the maximum generation depth. To account for that, Figure 5 shows the throughput of the

different generators as a function of this fuel, while Figure 6 plots the average size of the generated

lambda terms.

The generator derived from the merged relation has no problem generating programs of an

arbitrarily large size, given enough fuel and time. In contrast, as expected, the generate-and-test

generators were not very efficient when trying to generate larger programs.

4.4 Case Study: A Variety of Relations on Lists
As discussed earlier, the task of producing a relation equivalent to the conjunction of two given

relations could be trivially solved by simply returning the conjunction of the two relations. If a

merged relation is to be useful, it needs to actually combine the constructors of the two relations.

However, even this is not sufficient to guarantee that the merged result is useful; some of the

resulting constructors may refer to both of the input relations! In that case, generating an element

of the merged relation requires solving a sub-problem of generating an element satisfying both of

the two relations anyway.

We attempt to quantify how oftenmerging produces useful results by a percentage of constructors

which reference at most one of 𝑃 , 𝑄 , or 𝑃𝑄 , by merging a variety of inductive predicates over lists.

The definitions of the relations can be found in the full version of the paper

Most natural inductive relations on lists turn out to merge well with each other, as shown

in Figure 7, with an exception being permutations. Most inductive relations which are defined

recursively over the data will tend to merge together well. In particular, relations 𝑃 where if 𝑐

is a constructor of the datatype of the shared parameter, then 𝑃 . . . (𝑐 𝑥 𝑦 𝑧) is defined in

terms of 𝑃 . . . 𝑥 , 𝑃 . . . 𝑦, and 𝑃 . . . 𝑧. However, the definition of permutations has a transitivity
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sorted prefix suffix sublist permutation

sorted 100% 100% 100% 100% 40%

prefix 100% 100% 100% 100% 40%

suffix 100% 100% 100% 100% 43%

sublist 100% 100% 100% 100% 50%

permutation 40% 40% 43% 50% 25%

Fig. 7. Percentage of constructors which don’t reference the original relations.

constructor which does not follow the recursive structure of the list, and is therefore a bad candidate

for merging.

4.5 Evaluating Generator Effectiveness
The evaluation section so far focused on the speed of the derived generators, but not on their

effectiveness. The latter is arguably even more important: after all, a generator might be able to

generate thousands of AVL or red-black trees instantly (e.g. by generating a leaf) without being

effective at finding bugs. When developing our framework, we relied on two observations to ensure

that we’re not producing useless generators.

First, the generators of Paraskevopoulou et al. come with mechanized proofs of completeness:

given an inductive relation 𝑃 : 𝐴→ 𝑃𝑟𝑜𝑝 and a derived generator g that generates elements x of

type 𝐴 that satisfy 𝑃 , there is (provably) a nonzero chance that g will produce every possible x that

satisfies 𝑃 up to a given size. In the merged setting where we have two such relations 𝑃 and 𝑄

that are merged into 𝑃𝑄 , if we combine this fact (that a generator for the merged relation 𝑃𝑄 is

provably complete) with the proofs in this paper that 𝑃𝑄 is equivalent to 𝑃 ∧𝑄 , then we are at

least guaranteed that every possible input (up to a given size) that satisfies both 𝑃 and 𝑄 has a

nonzero chance of being generated.

In addition, while a non-zero chance is a good start, there could still be significant biases in

generation that render testing ineffective. During our framework’s development we were relying

on gathering statistics (using QuickChick’s collect mechanism) to ensure that inputs are well-

distributed in the input space in terms of size, depth, and other similar structural metrics. Still, the

knowledge that values of larger sizes can be generated is not sufficient to know that more bugs can

be uncovered.

To that end, we also performed amutation-testing based case study in the style of Paraskevopoulou

et al. We adapted the red-black tree implementation of Appel [2022] (and in particular its insert and

balance functions), injected bugs inspired by the binary search tree case study of Hughes [2019],

and then measured time-to-failure for three different generators: the one derived from the merged

inductive relation, the one derived from the black height relation followed by checking if the tree is

a valid search tree, and the one derived from the binary search tree relation followed by checking

if it has any black-height. The results are shown in Figure 8.

Figure 8 depicts, in log scale, the mean time to uncover each injected fault with each different

generation strategy, calculated across 10 runs. We observe that the generator derived from the

merged relation finds all bugs almost instantly (under 10 milliseconds), while generators derived

from a single relation can take up to three orders of magnitude more time to find the same faults

(sometimes not finding them at all within the allotted 10 second timeout). All the injected faults

can be found in the full version of the paper.
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Fig. 8. Time-to-failure (in milliseconds) of three different generators in log-scale. Each cluster of bars corre-
sponds to a different injected fault in a red-black tree implementation.

5 DISCUSSION
5.1 Limitations
The merging algorithm we presented in this paper can greatly speed up testing in scenarios where

multiple inductive relations constrain the same piece of data. However, while given two such

relations we can automatically derive a single one that is equivalent to their conjunction, and while

QuickChick can automatically generate terms satisfying the generated relation, a human user still

needs to identify a situation where the tool is useful. This paper develops a useful tool in the arsenal

of an experienced property-based testing user, and a crucial building block for future work towards

efficient, fully automatic testing of arbitrary Coq conjectures.

At the same time, relying on QuickChick to generate inputs for the merged relation means

that our approach inherits some of QuickChick’s limitations. In particular, the order in which

constraints appear in an inductive constructor matters [Paraskevopoulou et al. 2022], as it dictates

which universally quantified variables will be generated first. Using our algorithm tomerge relations

before deriving a generator adds another layer of indirection which can make dealing with any

problems that arise from the order of constraints even more difficult.

Finally, our merging algorithm relies on identifying shared recursive structure between con-

structors. That is, given inductive relations 𝑃 and 𝑄 with a shared index type A, our algorithm

is particularly effective when constructors whose conclusion contains subterms of type A also

contain premises that recursively restrict those subterms. This compositional structure exists for

many inductive relations in practice (e.g. structural constraints on trees, lambda term typing, etc.),

but not all relations as the permutation example shows. The algorithm also can’t directly handle

relations which only have this structure after some rewriting, such as a relation 𝑃 which refers to

itself under another relation, like a conjunction 𝑃 ∧𝑄 . Cases like this might have to be rewritten

either manually or by additional lightweight automation. Still, in the not uncommon cases where

recursive structure is shared, the benefits are substantial.
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5.2 Shrinking
An important aspect of property-based testing that we haven’t touched on throughout the paper

is shrinking, which is (for QuickChick) completely orthogonal to generation. In property-based

testing, shrinking is the process by which complex counterexamples are minimized by a (usually)

greedy algorithm that progressively searches for smaller and smaller inputs that still falsify the

property under test.

QuickChick’s shrinking in the presence of inductively defined constraints uses a type-based

shrink-and-test approach. For example, given a tree t that satisfies bst for some indexes lo and

hi, QuickChick will: apply its default type-based shrinker for trees; filter the resulting smaller

trees to keep the ones that still satisfy the search tree invariant (using e.g. the derived checker

from Paraskevopoulou et al. [2022]); check if any still falsify the property; and finally repeat this

process until it hits a (possibly local) minimum.

This exact approach can and is still being followed when dealing with multiple constraints: if, for

instance, a tree is a balanced binary search, then QuickChick simply checks both constraints during

the first filtering pass. In principle, merging such constraints could actually improve performance a

bit (as it would lead to one recursive pass through the tree instead of two when filtering out invalid

bsts), but that’s a negligible gain compared to the cost of the shrinking process as a whole.

6 RELATEDWORK
Generating Test Inputs Satisfying Multiple Constraints. Random generation of inputs lies at the

core of property-based testing and has been thoroughly studied since the emergence of Haskell

QuickCheck [Claessen and Hughes 2000], both in the form of handwritten random generators for

particularly challenging constraints [Hritcu et al. 2016; Midtgaard et al. 2017; Pałka et al. 2011;

Yang et al. 2011] and as a general problem for automatically deriving such generators from a

language of constraints [Bulwahn 2012b; Claessen et al. 2015; Fetscher et al. 2015; Lampropoulos

et al. 2017, 2018]. Our work falls squarely in that last category, as we’re building on top of the

work of [Paraskevopoulou et al. 2022] to dramatically improve their generator performance when

multiple inductive relations constrain the same piece of data.

Prior work also encountered the same complication. In particular, Lampropoulos et al. [2017]

propose a domain specific language for specifying generators as lightly annotated functional

predicates that allow for explicitly delaying the instantiation of variables so that multiple different

constraints can be taken into account. Their approach is much more modular, but is quite slow,

reporting 35x overheads compared to handwritten generators.

In a different line of work, Claessen et al. [2015] exploit laziness to generate inputs satisfying

Haskell predicates, by pruning large parts of the search space as soon as possible. In their work,

they identify a parallel conjunction operator which allowed for exploring both predicates in a

conjunction to more efficiently prune the search space. These generators can be quite effective

when there is natural laziness to be exploited, but provide little benefit otherwise. Moreover, it is

unclear how such an approach could translate to the strict setting of proof assistants like Coq.

Ornaments and Modularization. Another related line of work is that of Ko and Gibbons [Ko and

Gibbons 2011, 2016]. Their goal is rather different: to make internalist representations of datatypes

(where constraints are intrinsically part of the datatype such as vectors of a particular size) as

easy to extend and manipulate as externalist representations (such as pairs of a list and a predicate

constraining its length). They use ornaments [Dagan and McBride 2014] as the foundation of

such predicates and introduce the notion of parallel composition of ornaments to address multiple

refinements on data in a compositional manner. Instead, our work intends to construct a single
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representation of multiple constraints using only traditional inductive relations as inputs, and stays

within the confines of the Coq proof assistant and its established ecosystem.

7 CONCLUSION AND FUTUREWORK
In this paper we identified a problem with prior work on deriving generators for data satisfying

constraints in the form of inductive relations: when multiple constraints are imposed on the same

piece of data, existing algorithms can fail to generate nontrivial values. We introduced an algorithm

that addresses this problem by merging multiple inductive relations into one, leading to more

effective generation and simpler proving.

One avenue of future work is further integrating our tool inside QuickChick’s automated work-

flow. Currently, it is up to the user to identify a situation where this merging is needed and invoke

our tool. It would be interesting to explore opportunities for QuickChick to automatically identify

such cases leveraging the flexible typeclass mechanism of Coq.
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8 DATA AVAILABILITY
The artifact accompanying this paper that allows for reproducing the exact experiments can be

found on Zenodo [Prinz and Lampropoulos 2023]. Users interested in leveraging the techniques

described in this paper can also find them freely available in QuickChick [Lampropoulos and Pierce

2018], starting from the 2.0 release forward [Lampropoulos 2023].
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Vilhelm Sjöberg, and Brent Yorgey. 2018. Logical Foundations. Electronic textbook, Version 5.5. http://www.cis.upenn.

edu/~bcpierce/sf

Amir Pnueli, Michael Siegel, and Eli Singerman. 1998. Translation Validation. In Tools and Algorithms for Construction and
Analysis of Systems, 4th International Conference, TACAS ’98, Held as Part of the European Joint Conferences on the Theory
and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings (Lecture Notes in Computer
Science, Vol. 1384), Bernhard Steffen (Ed.). Springer, 151–166. https://doi.org/10.1007/BFb0054170

Jacob Prinz and Leonidas Lampropoulos. 2023. Artifact for Merging Inductive Relations. Zenodo. https://doi.org/10.5281/

zenodo.7709704

Philip Wadler. 1990. Linear Types can Change the World!. In Programming Concepts and Methods.
Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In Proceedings

of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2011, San Jose, CA,
USA, June 4-8, 2011. 283–294. https://doi.org/10.1145/1993498.1993532

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 178. Publication date: June 2023.

https://doi.org/10.1017/S0956796816000058
https://doi.org/10.1017/S0956796816000307
https://github.com/QuickChick/QuickChick/releases/tag/v.2.0+beta.16
https://github.com/QuickChick/QuickChick/releases/tag/v.2.0+beta.16
https://doi.org/10.1145/3009837.3009868
https://doi.org/10.1145/3158133
https://doi.org/10.1145/3158133
http://www.cis.upenn.edu/~bcpierce/sf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.2439&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.2439&rep=rep1&type=pdf
https://doi.org/10.1145/3110259
https://doi.org/10.1145/3110259
https://doi.org/10.1145/1982595.1982615
https://doi.org/10.1145/3519939.3523707
https://doi.org/10.1145/3519939.3523707
http://www.cis.upenn.edu/~bcpierce/sf
http://www.cis.upenn.edu/~bcpierce/sf
https://doi.org/10.1007/BFb0054170
https://doi.org/10.5281/zenodo.7709704
https://doi.org/10.5281/zenodo.7709704
https://doi.org/10.1145/1993498.1993532

	Abstract
	1 Introduction
	2 The Algorithm
	2.1 Formal Problem Statement
	2.2 The Algorithm, by Example
	2.3 Unification
	2.4 Merging Constructors
	2.5 Unchanged Shared Parameters
	2.6 Putting it All Together

	3 Reasoning about and with Merged Relations
	3.1 Soundness and Completeness
	3.2 Case Study

	4 Evaluation
	4.1 Case Study: AVL Trees
	4.2 Case Study: Red-Black Trees
	4.3 Case Study: Typed and Linear STLC Terms
	4.4 Case Study: A Variety of Relations on Lists
	4.5 Evaluating Generator Effectiveness

	5 Discussion
	5.1 Limitations
	5.2 Shrinking

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	8 Data Availability
	References

