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Abstract

While text-to-video generation shows state-of-the-art re-
sults, fine-grained output control remains challenging for
users relying solely on natural language prompts. In this
work, we present FACTOR for fine-grained controllable
video generation. FACTOR provides an intuitive interface
where users can manipulate the trajectory and appearance
of individual objects in conjunction with a text prompt. We
propose a unified framework to integrate these control sig-
nals into an existing text-to-video model. Our approach
involves a multimodal condition module with a joint en-
coder, control-attention layers, and an appearance augmen-
tation mechanism. This design enables FACTOR to gener-
ate videos that closely align with detailed user specifica-
tions. Extensive experiments on standard benchmarks and
user-provided inputs demonstrate a notable improvement in
controllability by FACTOR over competitive baselines.

1. Introduction

Recent text-to-video models [6, 18, 25, 27, 32, 49, 50,
52, 59, 60, 80] allow users to translate their creative ideas
into video content easily. However, achieving precise con-
trol over the composition of these videos remains a chal-
lenge. Specifying detailed object movements and appear-
ances through text alone is often difficult and requires itera-
tive revisions. Even when users provide additional descrip-
tions like “from right to left” or “yellow and black trim,”
models can still struggle to generate the desired output, as
shown in Fig. 1 top. It is highly desirable to have a user-
friendly system that enables fine-grained control over the
appearance and motion of individual objects.

Recent advances such as ControlNet [75] offer poten-
tial solutions, integrating structural controls (e.g., optical
flow, depth) into text-to-video generation [10, 32, 61, 76].
Similar techniques have been developed in video edit-
ing [20, 38, 44, 54], where natural language guides the ma-
nipulation of a video’s content and style. While these meth-
ods offer promising results, they rely on dense control in-
puts for every frame – typically extracted from a refer-

ence video (Fig. 1 middle). This limits the generation of
novel videos with structures different from the reference
and makes the process impractical for manual user input.

On the appearance control front, methods like Dream-
Booth and its extensions [6, 21, 32, 47, 61, 79] allow for
subject customization in video generation. However, these
methods are limited to adjusting the appearance of individ-
ual subjects and cannot manipulate their appearances and
locations simultaneously. VideoComposer [56] takes a step
forward by integrating text with spatial and temporal con-
trols. However, it requires dense motion information from
a reference video and applies these controls globally to the
entire video. A method for generating videos composed of
multiple entities, with precise control over appearance and
motion, remains an exciting and open problem.

In this work, we introduce FACTOR, a framework for
fine-grained controllable video generation. We demonstrate
that for precise control, users should be able to easily ma-
nipulate individual entities when generating videos with
multiple objects. FACTOR prioritizes user-friendliness by
accepting sparse and intuitive inputs: a text prompt, user-
drawn bounding boxes, and user-provided reference im-
ages. To this end, we build FACTOR upon an off-the-
shelf text-to-video model [50]. We use a joint encoder
to integrate the multimodal input control signals and in-
sert control-attention layers into the model’s transformer
blocks. Training involves only these newly inserted lay-
ers, with the pre-trained model’s weights frozen. This
design ensures high-quality video generation while intro-
ducing object-level control mechanisms. We further en-
hance the diversity of reference appearance images through
color and geometric transformations to improve appearance
control. Experiments on the MSR-VTT benchmark [65]
demonstrate that FACTOR significantly improves genera-
tion quality, trajectory, and appearance control compared to
the alternative approaches. A user study further validates
the effectiveness of the proposed method. The main contri-
butions of this work are:

• We target the new form of fine-grained controllable
video generation that aims to synthesize videos via
multimodal context (text, appearance, and trajectory)
of individual objects from easy-to-give user inputs.

1



Prompt+Trajectory: “A car driving in Paris from right to left.” Prompt+Appearance: “A silver car with yellow and black trim driving in Paris.”

Prompt: “A car driving in Paris.”

Text-to-Video Generation 

Appearance ControlSparse Trajectory Control

Text-to-Video + ControlNet

car

FACTOR (Ours)
Reference Video

Control
Extraction

Dense Structural Control Prompt: “A shiny silver vehicle maneuvers towards a modern glass building.”

User Drawing Interface

Figure 1. Text-to-video generation [50] has limited controllable ability through user-provided prompts. Text-to-video+ControlNet [76]
requires dense control signals extracted from a reference video. To enable controllability through user-friendly inputs, FACTOR controls
precise subject movements through hand-drawn trajectories and their visual appearance using reference examples.

• We propose a unified framework to achieve multi-
modal control within a single training process. This
is achieved by injecting control signals with control-
attention and appearance augmentation.

• We validate that our method offers fine controllabil-
ity of multiple objects compared to existing works and
shows the additional benefit of creating interactions,
which is challenging for existing text-to-video models.

2. Related Work

Text-to-video generation. Text-to-video models have
made impressive progress. Token-based methods [27, 59,
60] utilize an auto-regressive model to predict videos in the
latent space. Diffusion-based models [25,26,49] extend the
2D diffusion model [46] to generate videos [5, 6, 8, 9, 18,
19, 21, 22, 32, 33, 39, 52, 52, 53, 55, 57, 64, 74, 80] by incor-
porating temporal layers. Although these models produce
promising results, they have limited control over the gen-
erated videos since text prompts cannot accurately convey
precise control signals. In this work, we develop a fine-
grained video generation framework that controls the loca-
tion and appearance of objects. We adopt a generative trans-
former model [50] as our base model, and our approach can
be adapted to diffusion-based models.

Controllable text-to-image generation. Various models
have been proposed to enhance the controllability of text-
to-image models, particularly in terms of structure and ap-
pearance. ControlNet [36, 42, 66, 71, 75, 78], structure-
guided generation [1, 23, 67, 70, 73], and training-free ap-
proaches [3, 14, 34, 62, 72] incorporate various spatial con-

trol signals such as edges, depth, segmentation, and hu-
man pose into pre-trained diffusion models. However, the
dense structure inputs these models require can be chal-
lenging for users to provide when generating videos. Fine-
tuning on reference images [16, 35, 47] and encoder-based
methods [17, 58] are employed to control the appearance
of subjects. However, these methods do not control the lo-
cations of subjects. In contrast, we propose a fine-tuning-
free method to jointly control the appearance and location
of subjects for video generation. ControlNet is extended
to control global appearance and style [66, 71], while FAC-
TOR focuses on individual subject appearance control.

Controllable text-to-video generation. Structural control
for video generation [10,12,13,15,32,37,40,56,61,63,76]
focuses on producing temporally consistent videos using a
temporal attention layer integrated with ControlNet. Video
editing approaches [7,20,28,30,38,43–45,48,51,54,64,69]
aim to alter the appearance and style of videos based on
text prompts. They typically require dense structural in-
puts extracted from reference videos. In contrast, our work
focuses on controllable T2V generation using sparse and
user-friendly control signals. Video customization through
fine-tuning [24,32,61,79] still relies on dense structural in-
puts and often lacks control over subject location [6, 21].
VideoComposer [56] employs a reference image for global
appearance control and a dense motion sequence for spatial
control. In contrast, FACTOR focuses on controlling the
generation of individual subjects using sparse inputs.
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Figure 2. Overview. a) Multimodal condition: a joint encoder is learned to encode the prompt and control to capture their interaction.
Control-attention layers are inserted into the transformer blocks of the text-to-video model to incorporate multimodal control signals. Only
the inserted layers are optimized to generate videos satisfying the fine-grained control. b) Entity control encoding: given T time steps,
the embedding of control ct is formed by the control for N entities, ent , where padding tokens replace the embedding of the non-existing
entity. The control for entity n at time t is formed by embeddings of the description, location, and reference appearance.

3. Method
Our main goal is to develop a user-friendly system al-

lowing entity-level motion and appearance control for video
generation. To this end, we enable users to provide multi-
modal inputs: a text prompt, user-drawn bounding box tra-
jectories, and user-provided reference images. By break-
ing down the video into manageable entities, users can cre-
ate the desired video content by adjusting the properties of
individual elements. Our intuitive control interface facili-
tates users to gradually design their videos by adding enti-
ties with reference images in one frame and adjusting their
positions across multiple frames. We first briefly review the
base T2V model and provide an overview of our approach.
Then, we introduce each component in detail.

3.1. Preliminaries: Text-to-video Generation
Our base T2V model [50] consists of an encoder-decoder

model that encodes the video into discrete tokens and a
bidirectional transformer model that predicts the video to-
kens conditioned on the embedding of text prompts. Dur-
ing training, the tokens are replaced with a special token
[MASK], and the transformer model is optimized to predict
the tokens at [MASK] locations based on the text embed-
ding. We minimize the negative log-likelihood of predicting
the masked tokens vt, t ∈ M , where M denotes the subset
of video tokens that are masked, v denotes the video token
sequence, and vM denotes the masked version of v.

L = − E
v∈D

∑
t∈M

log p(vt|vM , p). (1)

The transformer model contains a series of attention layers
that condition the video token prediction on the text em-
beddings. At inference time, all tokens are replaced with
[MASK], and the model iteratively predicts the tokens. We
use a token-based generative transformer model for its fast
inference and inherent flexibility in modeling various con-
trol signals directly within the same architecture.

3.2. Overview

We present a novel approach for fine-grained video gen-
eration that allows for precise control of individual objects
using user-friendly inputs. The problem is defined as fol-
lows: given a text prompt p and fine-grained control c as in-
puts, our model aims to generate a video that satisfies both
input conditions. Specifically, users provide multimodal
control c by 1) describing the desired entities in the video,
2) drawing their trajectories, and 3) providing a reference
appearance image for each entity. This pipeline helps users
create videos intuitively. The input control signal is given at
T timesteps. Assuming there areN entities in the video, we
define our control as c = {ct}Tt=1. At a single timestep t,
the embeddings ct are formed by a sequence of entity con-
trols, i.e., the embeddings of the N entities ct = {ent }Nn=1.
The embeddings ent encode the desired conditions to gener-
ate the entity indexed by n at time t, as shown in Fig. 2.

3.3. Multimodal Condition

We introduce an effective multimodal condition method
for generating videos that satisfy fine control of different
modalities within a single training pipeline. Our method
includes a joint encoder and a control-attention module.

Joint encoder. Existing text-to-image models (e.g., [36,
75]) use a separate encoder for each input condition and
directly input the independent embeddings into the model,
which is less effective (see Tab. 1 GLIGEN [36], Video-
Composer [56]) as the encoder needs to be trained for new
conditions and the interaction between the controls is ig-
nored. In contrast, we use a joint encoder that simultane-
ously encodes the text prompt p and the fine-grained con-
trol c of different modalities within the same encoder. This
design facilitates the learning of interactions between mul-
timodal inputs, captured in the contextualized embeddings.

Control-attention. The next task is to incorporate the se-
quence of control embeddings into the base T2V model.
A natural design choice is to include the control embed-
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dings in the original cross-attention module. However, this
poses difficulties in generating videos aligned with the new
control because the cross-attention layers are optimized for
the text prompt, weakening their flexibility for new inputs
(see Tab. 1 ELITE [58]). Instead, we insert a new control-
attention layer in each transformer block to accommodate
additional control. During training, we freeze the weights
of the pre-trained model and train the joint encoder and the
new control-attention layer. This allows the T2V model to
generate videos aligned with both text and the new multi-
modal condition. By fixing the pre-trained weights, we pre-
serve the capability to generate high-quality videos while
updating only 23% of the parameters.

Our control-attention has less computational overhead
(19%) compared to gated-attention [36], which struggles
to converge with the increasing length of tokens in videos.
While we use a generative transformer model, our control-
attention layers can be extended to other T2V models, like
diffusion models, which have similar attention blocks [6,
46]. This module can also handle other control signals, such
as camera poses. We achieve this by transforming the con-
trol into tokens and inputting them into our joint encoder
and control-attention layers. Our unified training process
conditions the model on multimodal control signals in a
single pipeline, avoiding the need for multiple condition-
specific methods.

3.4. Entity Control Encoding

Here, we discuss our entity-level fine-grained control.
The entity embeddings ent are constructed by encoding the
context of each entity. First, the description of the entity d
is given by text, e.g., a cat, and encoded into embeddings
ψentity(d). Second, the location of the entity l is given by the
top-left and bottom-right bounding box coordinates of the
entity and encoded as ψcoord(l). Finally, the reference ap-
pearance r of the entity is given by a single example image
and encoded by a CLIP image encoder as ψimage(r). The
embeddings ent are the concatenation of the description, lo-
cation, and appearance embeddings of the entity:

ent = Concat(ψentity(d
n
t ), ψcoord(l

n
t ), ψimage(r

n
t )). (2)

We replace the embeddings of ent with padding embeddings
when the entity of index n is missing at timestep t.

User-friendly inputs. To make our method user-friendly,
we assume descriptions and appearances are fixed through-
out the video, and only the location changes over time al-
though all the conditions can be thoroughly given at T
timesteps. Our method takes sparse inputs where the lo-
cation of the entity is provided by simply drawing a bound-
ing box in the first frame and dragging it to move to the
location in the last frame. We obtain the locations in mid-
dle frames by linear interpolation. Our sparse input is more
user-friendly compared to [56], which is only applicable to

dense inputs. In addition, we randomly drop the descrip-
tion, the location, and the appearance embeddings of the
entities 20% of the time during training. In this case, the
model is trained to generate results when one or more con-
trol signals are absent. At inference time, users can provide
partial control signals as inputs (see Fig. 11).
Data collection. In practice, very few video datasets in-
clude annotations for object trajectories and visual exam-
ples. To train our model, we employ an off-the-shelf object
detector [29] and tracking algorithm [4] to extractN entities
within a video clip and their locations across T timesteps.
For each entity, we collect a reference visual example r by
cropping the region defined by the detected bounding boxes.

3.5. Appearance Augmentation
Unlike image synthesis [35, 47], it is difficult to collect

multiple images of the same subject as training data for
videos. Here, we discuss how we create diverse reference
images of the subject. During training, we sample the refer-
ence visual example of the subject from a longer video clip
outside our training clip within the same video to obtain
reference images with more diverse appearances. However,
these samples still contain limited backgrounds and poses.
To create more diverse references, we apply strong augmen-
tation to the reference images. Specifically, we use color
augmentation to create diverse backgrounds and geometric
augmentation to introduce different subject poses. These
operations force the model to learn the subject’s appearance
and exclude irrelevant information such as backgrounds and
poses, thus preventing the model from overfitting the gen-
erated results to the given reference image.

To further enhance the motion of live subjects at infer-
ence time, we simulate different poses of the subject by
sampling a sequence of transformed variants of the refer-
ence image using translation and cropping. Specifically, we
randomly crop the reference image to an initial appearance
rn0 . Then, we define a translation vector δ to augment the
initial appearance. We create a sequence of reference im-
ages with enhanced poses, rnt = Tδ·t(r

n
0 ), where T denotes

the translation, as conditions at different timesteps. This
strategy greatly improves the motion dynamics of generated
live subjects, such as animals (See Tab. 3). In addition, the
test-time augmentation can be prompt-dependent, such as
using a translation vector spanning downward to customize
the target motion of getting up (See Fig. 10).

4. Experiments

Dataset. Our model is trained on a dataset consisting
of 10M videos from the WebVid dataset [2] and a ran-
domly sampled subset of 500M images from the WebLI
dataset [11]. Each training batch comprises 20% images
and 80% videos.
Evaluation metrics. 1) FVD assesses video quality. 2)
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Phenaki FACTOR (Ours)

"An elephant walking from the left to the right near a campfire, snow mountain in the background."

"The camera is moving towards a lion running at the beach with moving clouds in the sky."

Figure 3. Trajectory control. We assess FACTOR’s ability to control trajectories compared to the base model Phenaki [50]. The text
prompt is augmented with trajectory descriptions as inputs to Phenaki. While Phenaki fails to accurately generate object movements,
FACTOR successfully controls object movements. The blue and green boxes denote the positions in the initial and final frames.

“A panda pillow fighting with Santa Claus in a golden wheat field.”

“A monkey swinging on a swing in a tropical jungle in snow.”

“A motorcyclist high-fiving with a monkey on the shore.”

Figure 4. Enhanced subject interaction through trajectory con-
trol. By utilizing trajectories of the two main entities as inputs,
FACTOR improves the generation of subject interactions, a chal-
lenging task for T2V models.

CLIP-Tmeasures the alignment between prompts and gen-
erated videos using CLIP embeddings. 3) AP evaluates
alignment to trajectories by comparing detected bounding
boxes in generated videos with ground truth using an object
detector [29]. 4) CLIP-V quantifies alignment to reference
images by comparing image similarity in generated videos
with ground truth using CLIP embeddings [47].
Implementation details. We implement the base T2V
model following the architecture of Phenaki [50]. The base
model and FACTOR are trained for 1M and 500K steps with
batch sizes of 256 and 128, respectively. Videos are gener-
ated at a length of 11 and a resolution of 192×320. The
dimension of ct is 220×512. The model is trained with a
maximum of four entities. Further implementation details
and model architectures are in the supplementary materials.

4.1. Trajectory Control
First, we evaluate FACTOR’s ability to control the trajec-

tories of generated entities. Since FACTOR is constructed
based on Phenaki [50], we first validate that FACTOR en-

hances fine controllability compared to its base model with-
out compromising quality. We design several prompts us-
ing descriptions of bounding box trajectories as inputs to
Phenaki [50]. In Fig. 3, Phenaki fails to generate object
movements aligned with the designed prompts, whereas
FACTOR accurately generates the correct movement direc-
tion for the entity by conditioning the generation on hand-
drawn trajectories. In Fig. 4, we use trajectories of two
main entities as inputs. FACTOR generates videos aligned
with these trajectories and additionally benefits by gener-
ating interactions between entities, such as “high-fiving”,
even though our method is not specifically trained on anno-
tated interactions.

In Fig. 5, we demonstrate FACTOR’s advantages by
comparing it with state-of-the-art T2V and controllable
T2V models. By conditioning the generation on input tra-
jectories, FACTOR synthesizes videos with enhanced se-
mantic meaning and larger motion, such as an astronaut
stretching their hand to a duck. In contrast, the T2V model
VideoLDM [6], which relies solely on text prompts, gener-
ates videos with less dynamic motion. We compare FAC-
TOR with controllable T2V models [56, 68, 77] designed
to control subject movements. VideoComposer requires a
reference image and dense motion sequence, but with FAC-
TOR’s sparse trajectory inputs, it often generates static or
fade-out results due to its reliance on dense inputs. Direct-a-
Video, which controls object locations by amplifying atten-
tion maps, struggles with overlapping boxes. FACTOR bet-
ter aligns objects to bounding boxes by training on a large-
scale video dataset. MotionDirector, which requires ref-
erence videos for motion control, only approximately con-
trols object locations and cannot generate structures differ-
ent from the reference (e.g., an elephant lifting an object).

4.2. Appearance Control

We demonstrate FACTOR’s capability of appearance
control. For this evaluation, we use images of subjects
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Video LDM FACTOR (Ours)

VideoComposer FACTOR (Ours)

“A bear pushing the shopping cart on the street.”

“An astronaut feeding ducks on a sunny afternoon, reflection from the water.”

Direct-a-Video FACTOR (Ours)

“A cat jumping onto the sofa.”

MotionDirector FACTOR (Ours)

“An elephant lifting a teddy bear on the floor in the room.”

Reference Videos

Figure 5. Comparison to state-of-the-art. By conditioning video generation on trajectories, FACTOR synthesizes videos with larger
motions compared to T2V models. When using FACTOR’s trajectory inputs, VideoComposer generates fade-out effects, Direct-a-Video
struggles with overlapping boxes, and MotionDirector fails to generate videos with structures differing from the reference video.

DreamBooth FACTOR (Ours)

“A sks tea pot on top of a building in New York, drone flight, 4k.”

“A sks car driving in Manhattan.”

VideoBooth MotionDirector

Figure 6. Comparison of subject customization. FACTOR generates subjects with higher fidelity and larger movements compared to
DreamBooth and VideoBooth, which lack trajectory control. MotionDirector struggles to generate accurate environments (e.g., New York).

from [35, 47]. Each subject’s appearance is conditioned on
a single reference image for FACTOR. In this section, we
compare FACTOR to state-of-the-art subject customization
methods. We further evaluate FACTOR’s control injection
by comparing it to the control modules developed for T2I
models. We then show FACTOR’s ability to achieve con-
trollable image animation, a special type of appearance con-
trol.

First, we compare FACTOR with subject customiza-
tion images and video synthesis methods including Dream-
Booth [6], VideoBooth [31], and MotionDirector [77]. No-
tably, these models cannot control entity trajectories or han-

dle multiple entities. Fig. 6 shows FACTOR generates high-
fidelity customized subjects and exhibits larger movements
by controlling trajectories, outperforming DreamBooth and
VideoBooth. MotionDirector [77] uses separate temporal
and spatial LoRA for motion and appearance controls, re-
sulting in inadequate motion and incorrect environments
(e.g., New York).

Next, we evaluate FACTOR’s control module by com-
paring it to the control modules of ELITE and GLIGEN [36,
58] implemented on our video backbone. Since no exist-
ing models achieve the same control on videos as FAC-
TOR, we compare methods originally designed for T2I
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“A foot in a sks shoe walking on the road.”

“A sks teapot and a sks duck toy floating on the ocean.”

ELITE GLIGEN FACTOR (Ours)

Figure 7. Comparison of control modules. FACTOR generates videos that align accurately with input trajectories and appearances. Other
control methods, ELITE and GLIGEN, often generate inaccurate subject appearances and struggle to control their locations.

“Hot air balloons floating in the sky.”

Figure 8. Controllable image animation. FACTOR achieves im-
age animation conditioned on the initial frame and the trajectory.

tasks. In Fig. 7, we show that FACTOR generates subjects
that closely align with input trajectories and appearances.
In contrast, ELITE and GLIGEN often generate inaccura-
cies in subject appearance and struggle to effectively con-
trol their locations. GLIGEN’s use of separate encoders for
different controls introduces higher computational overhead
and presents convergence challenges for video models, lim-
iting its ability to inject precise control signals compared to
FACTOR’s unified encoder approach.

Though beyond the scope of this paper, we show FAC-
TOR’s capability for appearance control in image anima-
tion, aiming to generate videos conditioned on the first
frame. In Fig. 8, FACTOR animates the hot air balloon in
the initial frame based on the input trajectory. This capa-
bility leverages generative transformers adept at various in-
filling tasks. FACTOR’s training involves predicting video
tokens within random masks, enabling it to predict subse-
quent frames from the initial frame and control inputs, thus
achieving controllable image animation.

4.3. Quantitative Results

We evaluate our models on the MSR-VTT test set [65],
comprising 2,990 examples. We generate one video
per example by randomly selecting one prompt from 20
prompts [6]. We use an unseen set of 6,513 videos as
the real videos for FVD evaluation and compare two vari-
ants: 1) FACTOR-T: our model with trajectory control. 2)
FACTOR: our model with trajectory and appearance control.

In Tab. 1, we first compare FACTOR and FACTOR-
T with the base T2V model Phenaki, all using the same
video backbone but accepting different levels of control in-
puts. To test our control module’s capability, we use in-

Table 1. Quantitative results. FACTOR achieves higher AP and
CLIP-V scores, demonstrating its capability to generate videos
aligned with trajectory and appearance control inputs.

Methods FVD ↓ CLIP-T ↑ AP ↑ CLIP-V ↑
T2V models
MagicVideo 1290 — — —
VideoLDM — 0.2929 — —
Make-A-Video — 0.3049 — —
ModelScope 550 0.2930 — —
Controllable T2V models
VideoComposer 342 0.2906 0.126 0.742
Direct-a-Video 360 0.2849 0.144 0.658
GLIGEN 217 0.2817 0.173 0.703
ELITE 130 0.2712 0.137 0.733
Same backbones
Phenaki* 411 0.2870 0.099 0.663
FACTOR-T (Ours) 339 0.2787 0.290 0.683
FACTOR (Ours) 116 0.2721 0.356 0.763
*We implement and train the Phenaki model from scratch using our datasets.

puts automatically extracted from ground truth videos for
FACTOR and FACTOR-T. This allows us to quantitatively
evaluate the alignment between generated and ground truth
videos, noting the extracted inputs are noisier than user-
provided ones. FACTOR improves FVD scores with control
inputs that enforce closer alignment to real video distribu-
tions in trajectories and appearances. However, it achieves
slightly lower CLIP-T scores than Phenaki, likely due to
misalignment between extracted controls and text prompts
in test data. Longer training enhances control alignment
but could reduce prompt alignment, as noted in concurrent
works [41]. We also assess AP scores. While Phenaki is not
designed for generating videos with specific object trajecto-
ries, its AP score reflects chance alignment when prompts
sufficiently match input trajectories. FACTOR’s higher AP
score indicates successful alignment with provided trajec-
tory controls. Additionally, FACTOR outperforms Phenaki
in CLIP-V scores, showing superior alignment with appear-
ance controls. We also present results from other state-of-
the-art T2V models trained on different data and backbones
for reference.

Next, we compare FACTOR’s control injection module
with controllable T2V models. Compared to VideoCom-
poser [56] and Direct-a-Video [68], FACTOR achieves bet-
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Table 2. User study. FACTOR consistently achieves performance
gains using inputs provided solely by users. Average scores on a
0-2 scale are reported based on 16 prompts and 5 subjects.

Quality↑ Text↑ Trajectory↑ Appearance↑
Phenaki vs. FACTOR-T 1.13 / 1.63 0.72 / 1.97 0.16 / 1.96 -
Phenaki vs. FACTOR 1.25 / 1.63 1.70 / 1.75 0.43 / 1.88 0.38 / 1.75

Table 3. Ablation study. FACTOR consistently outperforms ab-
lated models across various metrics.

Methods FVD↓ CLIP-T↑ AP↑ CLIP-V↑
FACTOR 116 0.2721 0.356 0.763
w/o joint encoder 133 0.2719 0.307 0.726
w/o control-attention 127 0.2720 0.322 0.750
w/o augmentation 124 0.2723 0.341 0.758

“Milk poured into a sks vase.”

FACTOR (Ours)w/o control-attentionw/o joint encoder

Figure 9. Ablation study. FACTOR achieves better alignment
with control inputs compared with ablated models.

ter FVD, AP, and CLIP-V scores. These results highlight
FACTOR’s enhanced controllability with user-friendly tra-
jectory inputs. Compared to ELITE and GLIGEN [36, 58],
FACTOR also outperforms in terms of FVD, AP, and
CLIP-V scores, highlighting the effectiveness of FACTOR’s
control-attention module.

Finally, we conduct a user study using input controls pro-
vided by users. Raters assess two videos generated by dif-
ferent methods using the same inputs on a 0-2 scale for the
following criteria: quality, text alignment, trajectory align-
ment, and appearance alignment. Average scores from 16
videos and 5 subjects are reported in Tab. 2. FACTOR con-
sistently achieves higher ratings across all criteria.

4.4. Ablation Study

We conduct an ablation study to validate the effective-
ness of each proposed module. In Tab. 3 and Fig. 9, we com-
pare the following models: 1) w/o joint encoder:
uses separate encoders for prompt and fine control. 2)
w/o control-attention: concatenates prompt and
fine control inputs to the original cross-attention layer. 3)
w/o augmentation: trained without appearance aug-
mentation. FACTOR consistently achieves higher metrics
compared to these alternative models, confirming the im-
portance of the proposed components. Here, our appear-
ance augmentation technique proves effective across differ-
ent prompts, with augmentations randomly sampled.

In Fig. 10, we further demonstrate that appearance aug-
mentation can be dynamically adjusted at test time to bet-
ter meet user preferences. By applying a translation vector,
such as moving downwards for a jumping motion, we use
variations of the reference image as appearance conditions

“A sks dog jumping on the beach.”

Figure 10. Appearance augmentation. We demonstrate fine-
tuned augmentation at test time as a form of control. For in-
stance, adjusting the translation of the reference image downwards
to achieve a desired jumping motion.

1) painting: no control, 2) cat: trajectory, 3) sofa: trajectory, appearance

1) boat, duck: trajectory, 2) teapot, duck toy: trajectory, appearance

Figure 11. Partial and multiple control. FACTOR demonstrates
capability with partial inputs and supports up to four objects.

at different time steps, which enhances the realism of live
subjects’ motions. In Fig. 11, we show that FACTOR han-
dles partial inputs where one or more controls are absent for
the entities. Also, FACTOR supports up to four objects.

5. Conclusions

We introduce a novel approach for fine-grained, control-
lable video generation. Our framework allows users pre-
cise control over video creation by specifying entity names,
drawing trajectories, and providing visual appearance ex-
amples. Key components include a joint encoder for learn-
ing interaction among controls, control-attention modules
for precise control injection, and appearance augmentation
for diverse subject poses. This approach enables nuanced
control over the appearance and trajectory of multiple ob-
jects in generated videos.

Limitations. First, FACTOR’s performance relies on the
capabilities of the base T2V model. Integrating the pro-
posed control module into more advanced models could en-
hance overall quality. Second, FACTOR implicitly manages
camera poses (Fig. 6). Explicit control over camera poses
could be achieved by integrating them into FACTOR’s con-
trol sequences. Third, FACTOR faces challenges when text
prompts do not align well with fine-grained control inputs.
Lastly, generating subject poses significantly different from
a single reference image is challenging for FACTOR. Train-
ing FACTOR on datasets with multiple references and up-
grading the base model could improve its performance.
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