Skip to content

yh2371/ModSkill

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ModSkill: Physical Character Skill Modularization

ICCV 2025

Preparation

Installation

Install the required dependencies:

pip install -r requirement.txt

Download Data and Checkpoints

Download datasets and pretrained checkpoints using the provided script:

bash download_data.sh

This script will download:

  • HumanML3D text descriptions and mappings to AMASS motions for generative adaptive sampling
  • Pretrained model checkpoints
  • Required assets and resources

The data will be saved to sample_data/ and checkpoints to output/HumanoidIm/ directories. Please follow PHC for steps to prepare AMASS training/test datasets.

Training

To train a model, use the following command:

python modskill/run_hydra.py \
    learning=<learning_config> \
    exp_name=<experiment_name> \
    env=<env_config> \
    robot=<robot_config> \
    env.motion_file=<path_to_motion_file> \
    env.num_envs=<num_envs> \
    epoch=-1

For example:

python modskill/run_hydra.py \
    learning=im_pnn_bigger \
    exp_name=modskill_attn \
    env=env_im_pnn \
    robot=smpl_humanoid \
    env.motion_file=./sample_data/train.pkl \
    env.num_envs=3072 \
    epoch=-1

Validation/Evaluation

To evaluate a trained model, set test=True im_eval=True:

python modskill/run_hydra.py \
    learning=<learning_config> \
    exp_name=<experiment_name> \
    epoch=<checkpoint_epoch> \
    test=True \
    env=<env_config> \
    env.motion_file=<path_to_motion_file> \
    env.num_envs=<num_envs> \
    env.obs_v=6 \
    headless=True \
    im_eval=True

For example:

python modskill/run_hydra.py \
    learning=im_pnn_bigger \
    exp_name=modskill_attn \
    epoch=-1 \
    test=True \
    env=env_im_pnn \
    env.motion_file=./sample_data/test.pkl \
    robot.freeze_hand=True \
    robot.box_body=False \
    env.num_envs=1 \
    env.obs_v=6 \
    headless=True \
    im_eval=True

BibTeX

If you find our work helpful or use our code, please consider citing:

@inproceedings{huang2025modskill,
  title={Modskill: Physical character skill modularization},
  author={Huang, Yiming and Dou, Zhiyang and Liu, Lingjie},
  booktitle={IEEE/CVF International Conference on Computer Vision},
  year={2025}
  }

Acknowledgments

We would like to acknowledge the following amazing works that this paper builds upon:

About

ICCV 25 ModSkill: Physical Character Skill Modularization

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published