Skip to content

wkklavis/Nora

Repository files navigation

Noise-Robust Tuning of SAM for Domain Generalized Ultrasound Image Segmentation

This is the official code of our MICCAI 2025 paper Nora 🥳

Requirement

conda create -n Nora python=3.7.16
conda activate Nora
pip install -r requirements.txt

Data Preparation

Process MYO data with: dataset/MYO/CAMUS_process.py, dataset/MYO/HMC_QU_process.py


Directory Structure

├── BUS
│   ├── BUSI
│   │   ├── images
│   │   └── masks
│   ├── DatasetB
│   │   ├── BUS
│   │   │   ├── image
│   │   │   └── label
│   └── STU
│       └── BUSI
│           ├── img
│           └── label
│
├── Thyroid
│   ├── DDTI dataset
│   │   └── DDTI
│   │       └── 2_preprocessed_data
│   │           └── stage2
│   │               ├── p_image
│   │               └── p_mask
│   ├── tn3k
│   │   ├── trainval-image
│   │   └── trainval-mask
│
├── MYO
│   ├── CAMUS3K
│   │   ├── images
│   │   └── labels
│   └── HMC-QU
│       ├── images
│       └── labels

Please download the pretrained SAM model (provided by the original repository of SAM) and put it in the ./pretrained folder. What's more, we also provide well-trained models at Release. Please put it in the ./snapshot folder for evaluation.

Training

BUS (BUSI → DatasetB, STU)

CUDA_VISIBLE_DEVICES=0 python train.py --source_root_path busi_dataset_path --target_root_path1 datasetb_dataset_path --target_root_path2 stu_dataset_path 

Thyroid (TN3K->DDTI)

CUDA_VISIBLE_DEVICES=0 python train_thyroid.py --source_root_path tn3k_dataset_path --target_root_path ddti_dataset_path 

MYO (CAMUS->HMC-QU)

CUDA_VISIBLE_DEVICES=0 python train_myo.py --source_root_path camus3k_dataset_path --target_root_path hmcqu_dataset_path 

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •  

Languages