Skip to content

totoropink/iFSS-Diff

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Reference Documentation

1. Environment Setup

Please refer to SLiMe(https://github.com/aliasgharkhani/SLiMe) for environment configuration details.

2. Data Processing

  1. Download the corresponding dataset: iFSS you can follow the https://github.com/fcdl94/FSS and CD-FSS you can follow the https://github.com/slei109/PATNet?tab=readme-ov-file.

  2. organize images and masks following this structure:

    pascal-5/
    	├──train/
    		├── 0/                                     
    		|   ├── images
    		|   └── masks
    		├── 1/                                   
    		├── ... 
    		├── 3/
    	├──val/
    coco-20/
    	├──train/
    		├── 0/                                     
    		|   ├── images
    		|   └── masks
    		├── 1/                                   
     	├── ... 
    		├── 3/
    	├──val/
    Deepglobe/                                        
    	├── 1/                                     
    	|   ├── images
    	|   └── masks
    	├── 2/                                   
    	├── ... 
    	├── 6/
    ISIC/                                        
    	├── 1/                                     
    	|   ├── images
    	|   └── masks
    	├── 2/                                   
    	├── ... 
    	├── 3/
    Lung/
    	├── train/                                     
    	|   ├── images
    	|   └── masks
    FSS-1000/
    	├── ab_wheel/
    	└── ...
    
  3. Run the script:

    python process_data.py
    

3. Training

Execute the training script:

python train.py

4. Testing

Run the testing script: {CHECKPOINT_DIR} is the path where your optimized embeddings are stored, {TEST_DIR} is the test data path, and {OUTPUT_DIR} is the path your want to output results.

python -m src.main2 --dataset pascal \ 
					--checkpoint_dir {CHECKPOINT_DIR} \
					--test_data_dir {TEST_DIR} \
					--output_dir {OUTPUT_DIR} \
					--save_test_predictions

Thanks

The implementation is based on https://github.com/aliasgharkhani/SLiMe

About

The first framework to introduce diffusion models into iFSS

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages