This code has been completely written from scratch using PyTorch library. A sample of dataset has been already uploaded in folder of sample_dataset
- Install
requirements.txtby running
pip3 install -r requirements.txt- Follow the Jupyter notebook denoising_ae.ipynb for complete code
- For loading dataset of origami change the variable
origami_dataset_dirto the directory containing folders of input and output. - Similarly change the variable
inpandoutto the directory containing various images containing Network's input and Output images repsectively.
origami_dataset_dir = "MarowDataset"
inp='Input'
out='Output'- Dataset Directory info
MarowDataset
│
├── Input
│ ├── img100_1.png
│ ├── img100_2.png
│ ├── ....
|
├── Output
│ ├── img100_1.png
│ ├── img100_2.png
│ ├── ....
- There are various helper functions written by me to aid the code. These can be found in file
DAE_dataset_helper.pyandDAE_model.py
## The classes imported below are used for dataloader, transformation and model
from DAE_dataset_helper import OrigamiDatasetGenerate
from DAE_dataset_helper import ToTensor,Resize, RandomBackground
from DAE_model import AugmentedAutoencoder- Rohit Lal - WEBSITE
- Ruphan S