Jinshan Pan, Long Sun, Boming Xu, Jiangxin Dong, and Jinhui Tang
IMAG Lab, Nanjing University of Science and Technology
This repo is a official implementation of "Learning Efficient Deep Discriminative Spatial and Temporal Networks for Video Deblurring".
DSTNet+ is an extension of DSTNet.
- 2025.03.25: All pretrained models and visual results are available.
- 2025.03.25: The paper can be found here.
- 2025.03.14: This paper is accepted by TPAMI.
- 2024.01.08: This repo is created.
- Python 3.9, PyTorch == 1.13
- BasicSR 1.4.2
- Platforms: Ubuntu 18.04, cuda-11
git clone https://github.com/sunny2109/DSTNet-plus.git
cd DSTNet-plus
conda create -n dstnetplus python=3.9
conda activate dstnetplus
# Install dependent packages
pip install -r requirements.txt
# Install cupy
# Please make sure that the installed Cupy version matches your existing CUDA installation!
pip install cupy-cuda11x
# Install BasicSR
python setup.py developUsed training and testing sets can be downloaded as follows:
| Training Set | Pretrained model | Visual Result |
|---|---|---|
| GoPro | Hugging Face | Github | Baidu Cloud | Hugging Face or Baidu Cloud |
| DVD | Hugging Face | Github | Baidu Cloud | Hugging Face or Baidu Cloud |
| BSD | Hugging Face | Github | Baidu Cloud | Hugging Face or Baidu Cloud |
| DAVIS-2017 | Hugging Face | Github | Baidu Cloud | Hugging Face or Baidu Cloud |
# train DSTNetPlus on GoPro dataset
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 python basicsr/train.py -opt options/train/train_base_GoPro.yml --launcher pytorch
# train DSTNetPlus on DVD dataset
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 python basicsr/train.py -opt options/train/train_base_DVD.yml --launcher pytorch
# train DSTNetPlus on BSD dataset
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 python basicsr/train.py -opt options/train/train_base_BSD1ms.yml --launcher pytorch
- Download the pretrained models.
Please download the pretrained and put it in ./checkpoints/.
- Download the testing dataset.
Please download the test dataset and put it in ./datasets/.
- Run the following commands:
python basicsr/test.py -opt options/test/test_base_GoPro.yml
cd results
python merge_full.py
- The test results will be in './results'.
We achieve SOTA performance on a set of blurring datasets. Detailed results can be found in the paper. All visual results of DSTNetPlus can be downloaded here.
Click to expand
- Model efficiency (PSNR vs. Runtime vs. Params)
- Quantitative evaluations
Evaluation on GoPro dataset Evaluation on DVD dataset
- Quantitative evaluations on the BSD dataset
- Quantitative evaluations on the Set8 dataset
- Deblurred results on GoPro dataset
- Deblurred results on DVD dataset
- Deblurred results on Real-world blurry frames
If you have any questions, please feel free to reach us out at cs.longsun@gmail.com
If you find our work helpful for your research, please consider giving a star ⭐ and citation 📝
@article{DSTNetPlus,
title={Learning Efficient Deep Discriminative Spatial and Temporal Networks for Video Deblurring},
author={Pan, Jinshan and Sun, Long and Xu Boming and Dong, Jiangxin and Tang, Jinhui},
journal={TPAMI},
year={2025}
}






