ICML‘2021: Class2Simi: A Noise Reduction Perspective on Learning with Noisy Labels (PyTorch implementation).
This is the code for the paper:
Class2Simi: A Noise Reduction Perspective on Learning with Noisy Labels.
Songhua Wu*, Xiaobo Xia*, Tongliang Liu, Bo Han, Mingming Gong, Nannan Wang, Haifeng Liu, Gang Niu.
If you find this code useful for your research, please cite
@inproceedings{wu2021class2simi,
title={Class2simi: A noise reduction perspective on learning with noisy labels},
author={Wu, Songhua and Xia, Xiaobo and Liu, Tongliang and Han, Bo and Gong, Mingming and Wang, Nannan and Liu, Haifeng and Niu, Gang},
booktitle={International Conference on Machine Learning},
pages={11285--11295},
year={2021},
organization={PMLR}
}We implement our methods by PyTorch on Nvidia GeForce RTX 3090 Ti. The environment is as bellow:
- Ubuntu 20.04 Desktop
- PyTorch, version >= 0.4.1
- CUDA, version >= 9.0
- Anaconda3
We process the raw images and labels into .npy format. The MNIST dataset can be found in the /data folder of this repository. The CIFAR10 dataset can be download here.
Here is an example:
python main.py --dataset mnist --noise_type s --r 0.2 --loss forward