This repository contains the code for the paper's experiments: "FERERO: A Flexible Framework for Preference-Guided Multi-Objective Learning".
We continuously update this repo.
- Use the following command to install the dependencies
conda create -n ferero python=3.8
conda activate ferero
conda install pytorch torchvision==0.9.0 torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
conda install numpy scipy seaborn tqdm autograd==1.3
conda install -c conda-forge cvxpy cvxopt matplotlib-label-lines
Go to folder toy_experiments, and follow the instructions therein.
Go to folder multiMNIST, and follow the instructions therein.
Go to folder ASR, and follow the instructions therein.
MIT license
@inproceedings{chen2024FERERO,
title={FERERO: A Flexible Framework for Preference-Guided Multi-Objective Learning},
author={Chen, Lisha and Saif, AFM and Shen, Yanning and Chen, Tianyi},
booktitle={Advances in Neural Information Processing Systems},
year={2024}
}
- The toy example, multi-MNIST classification, and emotion recognition experiments use the code from PMTL and EPO.
- The multi-lingual ASR experiment uses the code from M2ASR as a baseline.
We thank the authors for providing the code and data. Please cite their works and ours if you use the code or data.
