Skip to content
/ IGFNet Public

The official implementation of our IEEE ROBIO paper: "IGFNet: Illumination-Guided Fusion Network for Semantic Scene Understanding using RGB-Thermal Images".

Notifications You must be signed in to change notification settings

lab-sun/IGFNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

IGFNet-Pytorch

The official pytorch implementation of IGFNet: Illumination-Guided Fusion Network for Semantic Scene Understanding using RGB-Thermal Images.

We test our code in Python 3.6.9, CUDA 11.1, cuDNN 8, and PyTorch 1.10.1.

Introduction

IGFNet introduces an interpretable RGB-Thermal fusion network and utilize illumination to guide the fusion of multi-modal features, which includes an Illumination Estimation Module (IEM) and an Illumination-Guided-Cross-Modal Rectification Module (IGCM-RM).

Dataset

The dataset can be downloaded from the MFNet project page.

Pretrained weights

The pretrained weight of IGFNet can be downloaded from here

Usage

  • Clone this repo
$ git clone https://github.com/lab-sun/IGFNet.git
  • Build docker image
$ cd ~/IGFNet
$ docker build -t docker_image_igfnet .
  • Download the dataset
$ (You should be in the IGFNet folder)
$ mkdir ./datasets
$ cd ./datasets
$ (download our preprocessed dataset.zip in this folder)
$ unzip -d .. dataset.zip
  • To reproduce our results, you need to download our pretrained weights.
$ (You should be in the IGFNet folder)
$ mkdir ./pretrained
$ cd ./pretrained
$ docker run -it --shm-size 8G -p 1234:6006 --name docker_container_igfnet --gpus all -v ~/IGFNet:/workspace docker_image_igfnet
$ cd /workspace
$ python3 train.py
  • To see the training process
$ (fire up another terminal)
$ docker exec -it docker_container_igfnet /bin/bash
$ cd /workspace
$ tensorboard --bind_all --logdir=./runs/tensorboard_log/
$ (fire up your favorite browser with http://localhost:1234, you will see the tensorboard)

The results will be saved in the ./runs folder. Note: Please change the smoothing factor in the Tensorboard webpage to 0.999, otherwise, you may not find the patterns from the noisy plots. If you have the error docker: Error response from daemon: could not select device driver, please first install NVIDIA Container Toolkit on your computer!

Acknowledgement

Some of the codes are borrowed from CMX

About

The official implementation of our IEEE ROBIO paper: "IGFNet: Illumination-Guided Fusion Network for Semantic Scene Understanding using RGB-Thermal Images".

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •