Skip to content

kunwu522/certified_edge_unlearning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Certified Edge Unlearning for Graph Neural Networks

This is an implementation of paper Certified Edge Unlearning for Graph Neural Networks. We provide the code of graph edge unlearning. In addition, we present the code for reproducing the experiments.

Dependencies

Result Reproduction

Tightness of Bounds

python experiment.py -rq bound

Accuracy of CEU

python experiment.py -rq unlearn

Efficency of CEU

python experiment.py -rq efficiency

Efficacy of CEU

python experiment.py -rq efficacy

Effect of $\epsilon$

python experiment.py --rq epsilon

CGU Comparison

python experiment.py --rq cgu_compare

Common Parameters

  • -g, the ID of a GPU you want to use. Default: -1 (using CPU)
  • -edges, a list, indicates the numbers of edges you want to unlearn. Default: [100, 200, 400, 800, 1000].
  • -targets, a list, indicates what target models you want to evaluate. Default:['gcn', 'sage', 'gin'].
  • -datasets, a list, indicate what datasets you want to use. Default:['cora', 'citeseer', 'cs'].

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages