The official implementation of Trustworthy Few-Shot Transfer of Medical VLMs through Split Conformal Prediction.
📜 Medical Image Computing and Computer Assisted Intervention (MICCAI)
Julio Silva-Rodríguez,
Ismail Ben Ayed,
Jose Dolz ⋅ ÉTS Montréal
- Install in your environment a compatible torch version with your GPU. For example:
conda create -n scat python=3.11 -y
conda activate scat
pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 --index-url https://download.pytorch.org/whl/cu124
git clone https://github.com/jusiro/SCA-T.git
cd FCA
pip install -r requirements.txt
- Configure data paths (see
./local_data/constants.py). - Download, and configure datasets (see
./local_data/datasets/README.md).
We present the basic usage here.
(a) Features extraction:
python extract_features.py --task Gleason,MESSIDOR
(b) Spit conformal prediction (SCP):
python scp.py --task Gleason,MESSIDOR --k 16 --alpha 0.10 --ncscore lac
(c) Transductive Split Conformal Adaptation (SCA-T):
python scat.py --task Gleason,MESSIDOR --k 16 --alpha 0.10 --ncscore lac
You will find the results upon training at ./local_data/results/.
If you find this repository useful, please consider citing this paper:
@inproceedings{scat25,
title={Trustworthy Few-Shot Transfer of Medical VLMs through Split Conformal Prediction},
author={Silva-Rodríguez, Julio and Ben Ayed, Ismail and Dolz, Jose},
booktitle={Medical Image Computing and Computer Assisted Intervention (MICCAI)},
year={2025}
}