This is a PyTorch/GPU implementation of Improving Masked Autoencoders by Learning Where to Mask. The repo is a modification on the MAE repo.
-
This repo is based on
timm==0.3.2, for which a fix is needed to work with PyTorch 1.8.1+. -
We provide a conda environment file
env.yamlto install dependencies.$ conda env create -f env.yaml
-
To speed up data loading in pre-training, we store the dataset into an HDF5 file. You can use
convert_to_hdf5.pyto convert the ImageNet-1k dataset to a single HDF5 file.
-
Use
run_pretrain.shto start pre-training on ImageNet. SetIMAGENET_DIRas the actual folder of your ImageNet dataset files. -
Use
run_finetune.sh/run_linprobing.shto start fine-tuning / linear-probing on ImageNet.
| Model | Linear Probing Acc-1 | Finetuning Acc-1 | Link |
|---|---|---|---|
| AutoMAE(MAE-800) | 66.7 | 83.32 | GDrive |
