Skip to content

guanqiyuan/WeatherBench

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

70 Commits
 
 
 
 
 
 

Repository files navigation

🌧🌫❄WeatherBench: A Real-World Benchmark Dataset for All-in-One Adverse Weather Image Restoration [ACM MM 2025 Datasets Track]

Qiyuan Guan* 1, Qianfeng Yang* 1, Xiang Chen* 2, Tianyu Song 3, Guiyue Jin 1, Jiyu Jin 1

Dalian Polytechnic University1, Nanjing University of Science and Technology2, Dalian Martime University3

[Paper]

👉️ Welcome to visit our website (专注底层视觉领域的信息服务平台) for low-level vision:https://lowlevelcv.com/


⛳️ To do

  • ✔ Release the dataset
  • ✔ Release the visual results

🔨 Dataset pipeline

image


🔎 Illustration of the WeatherBench

image


⬇️ Dataset Download

Download Link Description
Google Drive / Baidu Netdisk (dlpu) Tran: 41,402 pairs. Test: 600 pairs.

📘 Quantitative Results

image


📷️ Visual Results

We provide evaluation code (Python Code) to assess PSNR, SSIM, and LPIPS results. You need to set the parameters --generated_images_path, --target_path, and --Score_save_path.

If WeatherBench is helpful for you, please help star the GitHub Repo. Thanks!

Method Download Link
DehazeFormer Google Drive / Baidu Netdisk (deha)
DCMPNet Google Drive / Baidu Netdisk (dcmp)
DRSformer Google Drive / Baidu Netdisk (drsf)
NeRD-Rain Google Drive / Baidu Netdisk (nerd)
SnowFormer Google Drive / Baidu Netdisk (snof)
MPRNet Google Drive / Baidu Netdisk (mprn)
Restormer Google Drive / Baidu Netdisk (rest)
AirNet Google Drive / Baidu Netdisk (airn)
TransWeather Google Drive / Baidu Netdisk (tran)
PromptIR Google Drive / Baidu Netdisk (prom)
WGWS-Net Google Drive / Baidu Netdisk (wgws)
DiffUIR Google Drive / Baidu Netdisk (diff)
MWFormer Google Drive / Baidu Netdisk (mwfo)
Histoformer Google Drive / Baidu Netdisk (hist)
AdaIR Google Drive / Baidu Netdisk (adai)

❣ Citation

If this work is helpful for your research, please consider citing the following BibTeX entry.

@inproceedings{guan2025weatherbench,
  title={Weatherbench: A real-world benchmark dataset for all-in-one adverse weather image restoration},
  author={Guan, Qiyuan and Yang, Qianfeng and Chen, Xiang and Song, Tianyu and Jin, Guiyue and Jin, Jiyu},
  booktitle={Proceedings of the 33rd ACM International Conference on Multimedia},
  pages={12607--12613},
  year={2025}
}

📧 Contact

If you have any questions, please feel free to contact qyuanguan@gmail.com or csqianfengyang@163.com.

Flag Counter

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages